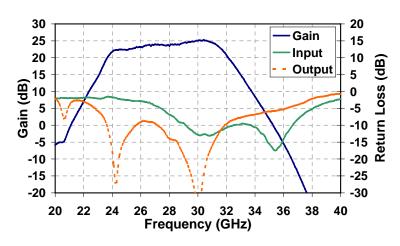
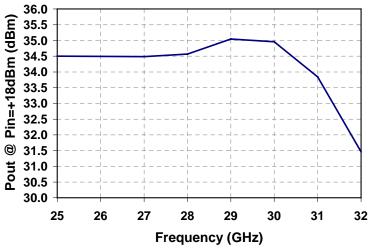

TriQuintNot Recommended for New Designs July 22, 2003 SEMICONDUCTOR®

TriQuint Recommends the TGA4905-EPU-CP be used for New Designs

3 Watt Ka Band Packaged Amplifier


TGA4901-EPU-CP



Preliminary Measured Performance

Bias Conditions: Vd=6V Idq=2.2A

TGA4901 S-Parameters

Key Features and Performance

- 34.8 dBm Midband Psat
- 24 dB Nominal Gain
- 8 dB Typical Input Return Loss
- 12 dB Typical Output Return Loss
- 25 31 GHz Frequency Range
- 0.25µm pHEMT Technology
- Bias Conditions: 6V, 2.2A
- Package Dimensions:
 13.34 x 9.65 x 1.85 mm
 (0.525 x 0.380 x 0.073 in)

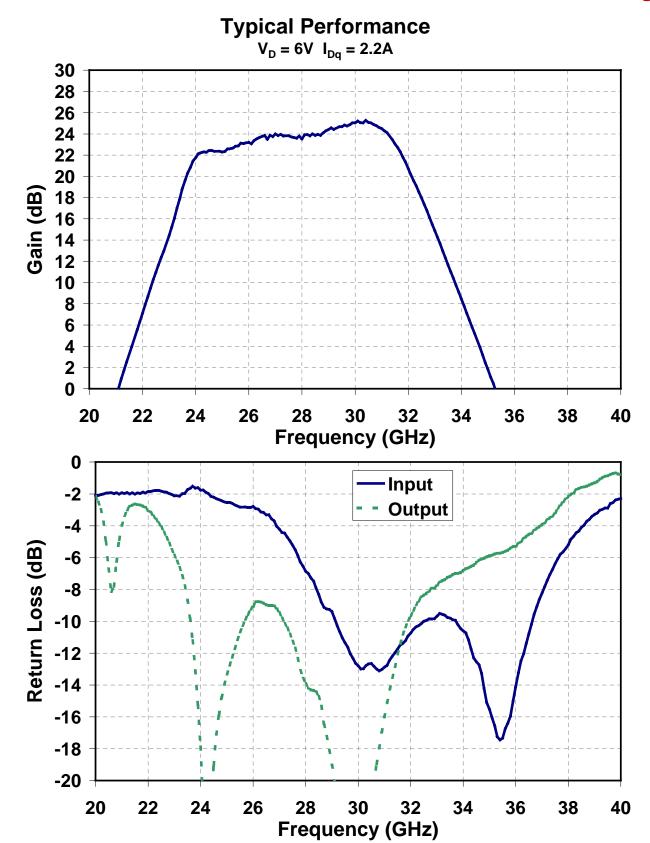
Primary Applications

- Satellite Ground Terminal
- Point to Point

MAXIMUM RATINGS

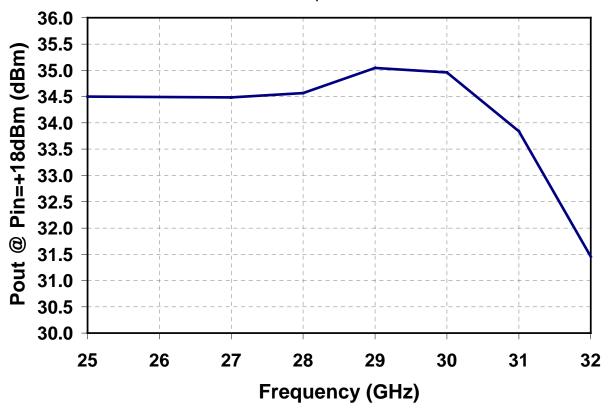
Symbol	Parameter <u>1</u> /	Value	Notes
V_D	Drain Voltage	8 V	<u>2</u> /
V_{G}	Gate Voltage Range	-5V to 0V	
I _D	Drain Current (Quiescent)	3.0 A	<u>2</u> /
I _G	Gate Current	62 mA	
P _{IN}	Input Continuous Wave Power	24 dBm	<u>2</u> /
P _D	Power Dissipation	16.8 W	<u>2</u> / <u>3</u> /
T _{CH}	Operating Channel Temperature	150 °C	<u>4</u> / <u>5</u> /
T _M	Mounting Temperature (30 Seconds)	320 °C	
T _{STG}	Storage Temperature	-65 to 150 °C	

- 1/ These ratings represent the maximum operable values for this device.
- 2/ Combinations of supply voltage, supply current, input power, and output power shall not exceed P_D.
- 3/ P_D is the power dissipation allowed in order to reach a channel temperature of 150°C with a package base temperature of 70°C. When operated at this power dissipation with a baseplate temperature of 70°C, the MTTF is reduced from 5.3E+6 to 1.0E+6 hours.
- 4/ These ratings apply to each individual FET.
- 5/ Junction operating temperature will directly affect the device median time to failure (T_M). For maximum life, it is recommended that junction temperatures be maintained at the lowest possible levels.

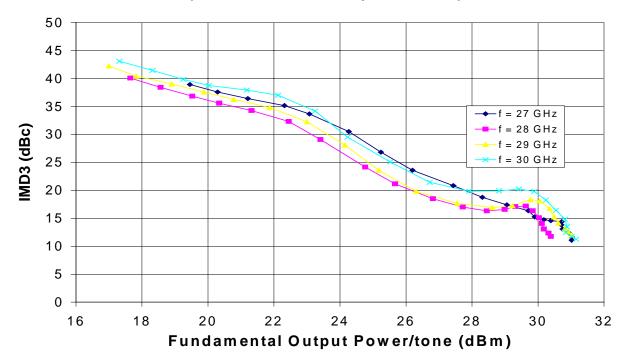

TABLE II RF CHARACTERIZATION TABLE $(T_A = 25^{\circ}C, Nominal)$ $(Vd = 6V, Idq = 2.2A \pm 5\%)$

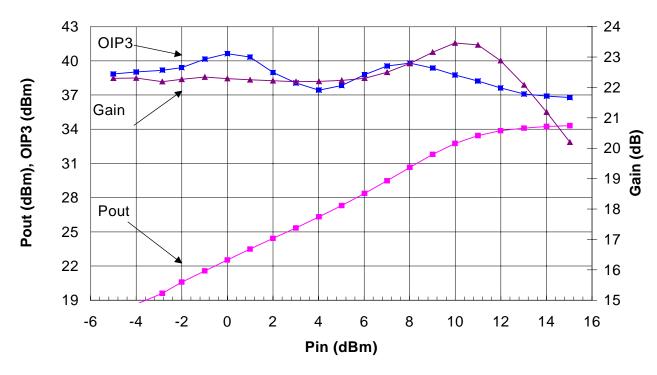
SYMBOL	PARAMETER	TEST CONDITION	LIMITS TYPICAL	UNITS
Gain	Small Signal Gain	F = 25 – 31GHz	24	dB
IRL	Input Return Loss	F = 25 – 31GHz	8	dB
ORL	Output Return Loss	F = 25 – 31GHz	12	dB
PWR	Output Power @ Pin = +18dBm	F = 25 – 31GHz	34.5	dBm

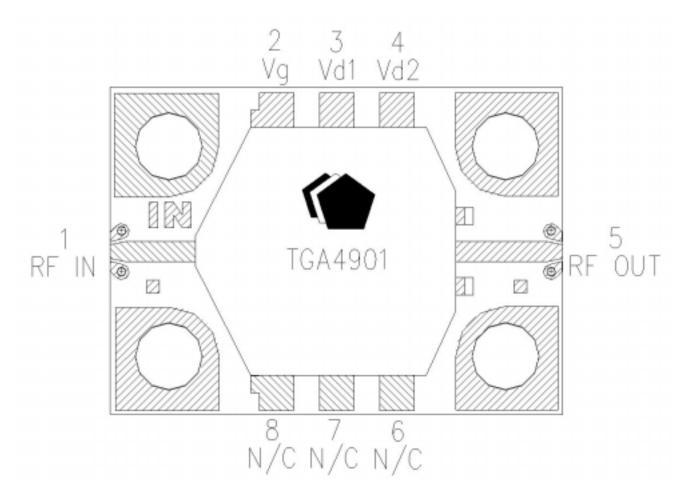
TABLE III THERMAL INFORMATION*


Parameter	Test Conditions	T _{CH} (°C)	R _{⊝JC} (°C/W)	T _M (hrs)
$R_{\Theta JC}$ Thermal Resistance (Channel to Backside of Package)	$V_D = 6V$ $I_D = 2.2A$ $P_{DISS} = 13.2W$	131.33	4.65	5.3E+6

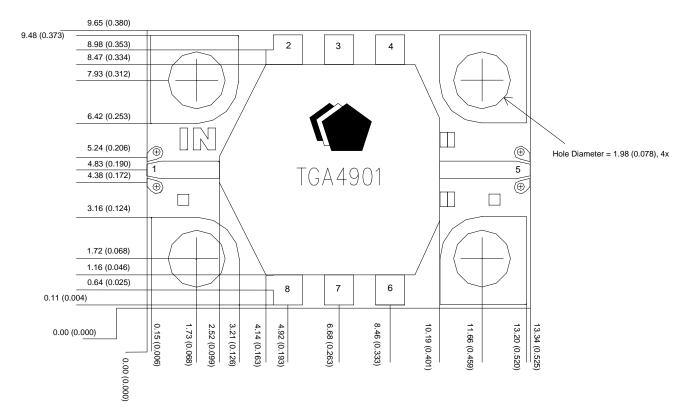
^{*} The thermal information is a result of a detailed thermal model


Typical Performance


$$V_{D} = 6V I_{Dq} = 2.2A$$

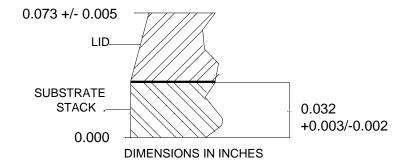

Typical Performance

 $V_D = 6V I_{Dq} = 2.2A$ (Data reflects die level performance)



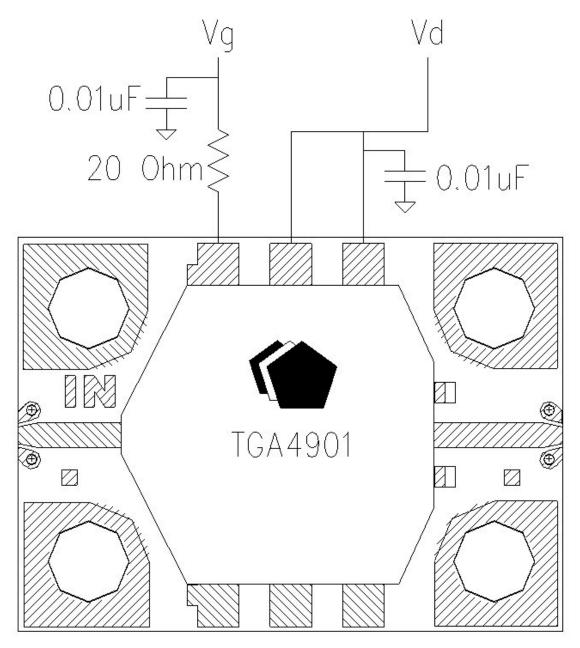
Package Pinout Diagram

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.


Mechanical Drawing

Units: millimeters (inches) Tolerance: +/-0.08 (0.003) RF Ground through Backside

Bond Pad #1	(RF Input)	2.03 x 0.57	(0.080 x 0.022)
Bond Pad #2		1.02 x 1.03	(0.044 x 0.040)
Bond Pad #3	(Vď1)	1.02 x 1.03	(0.044 x 0.040)
Bond Pad #4	(Vd2)	1.02 x 1.03	(0.044 x 0.040)
Bond Pad #5	(RF Óutput)	2.66 x 0.61	(0.105 x 0.240)
Bond Pad #6	(N/C)	1.02 x 1.05	(0.044 x 0.041)
Bond Pad #7	(N/C)	1.02 x 1.05	(0.044 x 0.041)
Bond Pad #8	(N/C)	1.02 x 1.05	(0.044 x 0.041)


Top View

Side View

TriQuintNot Recommended for New Designs SEMICONDUCTOR® Advance Product Information Not Recommended for New Designs TGA4901-EPU-CP

TriQuint Recommends the TGA4905-EPU-CP be used for New Designs
Bias Schematic

WHEN USING 1 MIL DIAMETER BONDWIRES, IT IS
RECOMMENDED AND A MINIMUM THAT 2 WIRES BE USED
FOR THE RF INPUT, RF OUTPUT, VG & VD1. IT IS
RECOMMENDED THAT 6 BONDWIRES BE USED FOR VD2,
MINIMUM OF 4.

ORDERING INFORMATION

PART	PACKAGE STYLE
TGA4901-EPU-CP	CARRIER PLATE