

Advance Product Information April 13, 2005

DC - 35 GHz Wideband Amplifier

TGA4832

Product Description

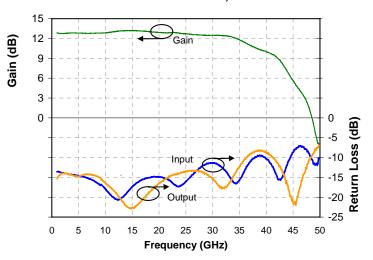
The TriQuint TGA4832 is a medium power wideband AGC amplifier which operates from DC to 35 GHz. Typical small signal gain is 12dB and typical input and output return losses are >10dB. The TGA4832 provides 18 dBm of output power at 1 dB gain compression.

Drain bias may be applied through the output port for best efficiency or through the on-chip drain termination. Two stages in cascade demonstrate 3.8Vpp output voltage swing with 350mV at the input when stimulated with 40Gb/s 2^31-1prbs NRZ data. RF ports are DC coupled enabling the user to customize system corner frequencies. The TGA4832 requires off-chip decoupling and blocking components.

The TGA4832 is suitable for a variety of wideband electronic warfare systems such as radar warning receivers, electronic counter measures, decoys, and jammers. It is also an excellent choice for 40Gb/s NRZ applications. The TGA4832 is capable of driving an Electro-Absorptive optical Modulator (EAM) with electrical Non-Return to Zero (NRZ) data. In addition, the TGA4832 may also be used as a predriver or a receive gain block.

Bond pad and backside metallization is gold plated for compatibility with eutectic alloy attachment methods as well as the thermocompression and thermosonic wire bonding processes. Each device is 100% DC and RF tested on-wafer to ensure performance compliance. The device is available in die form.

Key Features and Performance


- Frequency Range: DC to 35GHz Linear
- 40Gb/s Optical Modulator Driver
- 12dB Small Signal Gain
- 17 dBm Typical Output Power (4Vpp)
- < 15ps Edge Rates
- 4Vpp 40Gb/s NRZ PRBS Linear
- 0.15um pHEMT Technology
- Bias: Vd = 5V, Id = 135 mA
- Chip Size: 1.79 x 1.00 x 0.1 mm (0.070 x 0.039 x 0.004 in)

Primary Applications

- Test Equipment
- Ultra Wideband
- 40Gb/s NRZ EAM Driver
- 40Gb/s NRZ Predriver or Gain Block

Measured Performance

Bias Conditions: Vd = 5V, Id = 135mA

Note: This device is early in the characterization process prior to finalizing all electrical specifications. Specifications are subject to change without notice

TABLE I MAXIMUM RATINGS 1/

SYMBOL	PARAMETER	Biased thru On-chip Drain Termination	Biased thru the RF Output Port using a Bias Tee	NOTES
	POSITIVE SUPPLY VOLTAGE	Vd ≤6V	Vd ≤6V	<u>2</u> /, <u>3</u> /
	POSITIVE SUPPLY CURRENT	ld ≤ 135 mA	ld ≤ 135 mA	<u>3</u> /
	POWER DISSIPATION	1.3 W	0.7 W	<u>3</u> /, <u>4</u> /
	NEGATIVE GATE			
Vg	Voltage Range	+1V to -3 V		
lg	Gate Current	10 mA		
	CONTROL GATE			
Vctrl	Voltage Range	Vd/2 to	–3V	<u>5</u> /
Ictl	Gate Current	10 m	A	
	RF INPUT			
P _{IN}	Sinusoidal Continuous Wave Power	TBD		
Vin	40 Gb/s PRBS Input Voltage Peak to Peak	TBD		
T _{CH}	OPERATING CHANNEL TEMPERATURE	117 °C		6/
T _M	MOUNTING TEMPERATURE (30 SECONDS)	320 °C		
T _{STG}	STORAGE TEMPERATURE	-65 to 11	17 ºC	

Notes:

- 1/ These ratings represent the maximum operable values for the device.
- 2/ Assure Vd Vctrl ≤ 8 V. Compute Vd as follows, Vd = V+ Id*40
- 3/ Combinations of supply voltage, supply current, input power, and output power shall not exceed P_D.
- 4/ When operated at this power dissipation with a base plate temperature of 70°C, the median life is 1 E+6 hours.
- 5/ Assure Vctrl never exceeds Vd during bias up and down sequences. Also, assure Vctrl never exceeds 5V during normal operation.
- 6/ Junction operating temperature will directly affect the device median time to failure (MTTF). For maximum life, it is recommended that junction temperatures be maintained at the lowest possible levels.

TABLE II DC PROBE TEST

 $(T_A = 25 \, ^{\circ}C, Nominal)$

SYMBOL	PARAMETER	MINIMUM	MAXIMUM	UNIT
I _{max}	Maximum Drain Current	45	603	mA
V_p	Pinch-off Voltage	-1	0	V
G_{m}	Transconductance	180	630	V

TABLE III RF CHARACTERIZATION TABLE

 $(T_A = 25^{\circ}C \text{ Nominal})$

NOTE	TEST	MEASUREMENT CONDITIONS	VALUE		UNITS	
			MIN	TYP	MAX	
	SMALL SIGNAL BW			35		GHz
<u>1</u> /, <u>2</u> /	SMALL-SIGNAL GAIN MAGNITUDE	100KHz thru 30GHz		12		dB
<u>1</u> /, <u>2</u> /	GAIN FLATNESS	100KHz thru 30GHz		+/-1		dB
<u>1</u> /, <u>2</u> /	INPUT RETURN LOSS MAGNITUDE	100KHz thru 30GHz		10		dB
<u>1</u> /, <u>2</u> /	OUTPUT RETURN LOSS MAGNITUDE	100KHz thru 30GHz		10		dB
	OUTPUT POWER AT P1dB	100KHz thru 30GHz		18		dBm
<u>3</u> /, <u>4</u> /	AMPLITUDE	40Gb/s NRZ		4		Vpp

Notes:

- 1/ Verified at die level on-wafer probe (future requirement, data is not currently available).
- 2/ Small Signal S-Parameter RF Probe Bias: Vd = 5 V, Vctrl=float, adjust Vg to achieve Id=135mA
- 3/ Verified by design, MMIC assembled onto evaluation platform detailed on page 8.
- 4/ Vd=5V, VCTRL=Float, and VG adjusted for Id=135mA.

Advance Product Information April 13, 2005

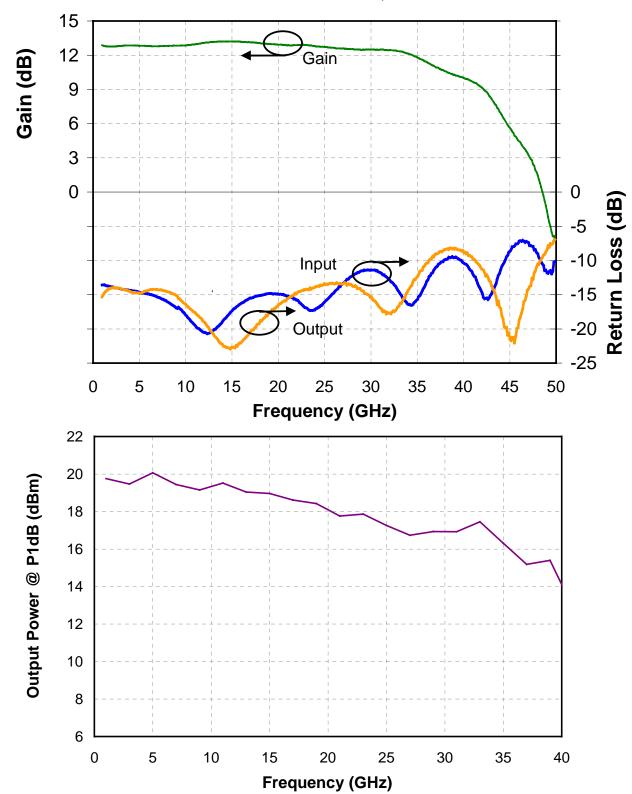
TGA4832

TABLE IV THERMAL INFORMATION*

PARAMETER	TEST CONDITIONS	T _{CH} (°C)	R _{θJC} (°C/W)	T _M (HRS)
R _{NJC} Thermal Resistance (channel to backside of carrier)	$Vds = 2.5 V^*$ $I_D = 135 \text{ mA}$ Pdiss = 0.34 W	92	64	1.5 E+7

^{*} Vds = 2.5V across common gate or common source FET in cascode pair.

Note: Assumes eutectic attach using 1.5 mil 80/20 AuSn mounted to a 20 mil CuMo Carrier at 70°C baseplate temperature. Worst case condition with no RF applied, 100% of DC power is dissipated. Thermal transfer is conducted thru the bottom of the TGA4832 into the mounting carrier. Design the mounting interface to assure adequate thermal transfer to the base plate.

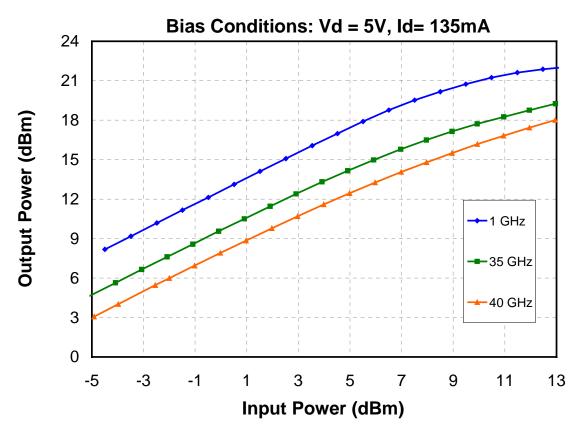


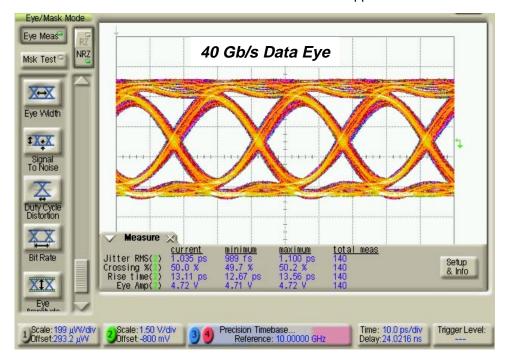
Advance Product Information

April 13, 2005 TGA4832

Measured Fixtured Data

Bias Conditions: Vd = 5V, Id= 135mA




Advance Product Information

April 13, 2005 TGA4832

Measured Fixtured Data

40Gb/s NRZ 2^31-1 PRBS Vin=1.8Vpp.

Bias Procedure for V+ = 10.4 V Operation Fiber Optic Applications

Bias ON

- 1. Disable the PPG
- 2. Set Vg=-1V
- 3. Set Vctrl = 2.2V (if appliable)
- 4. Increase V+ to 7V observing Id.
 - Assure Id increased to between 10 and 100mA
- 5. Raise V+ to 10.4V
 - Id should still be between 10 and 100mA
- 6. Make Vg more positive until Id=135mA.
 - Typical value for Vg is -0.3V
- 7. Enable the PPG

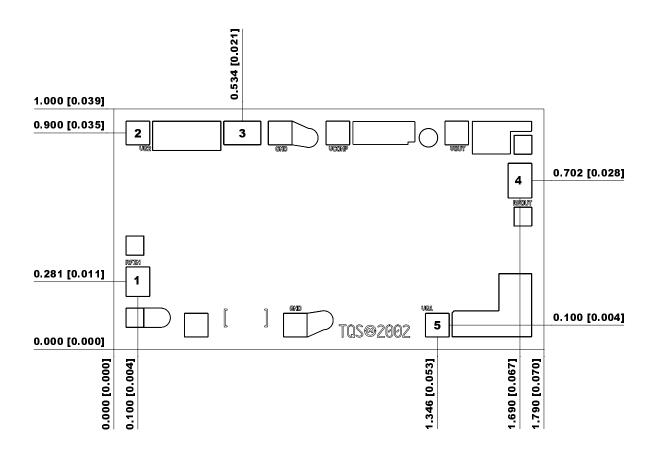
Bias OFF

- 1. Disable the output of the PPG
- 2. Set Vctrl = 0V (if appliable)
- 3. Set V+=0V
- 4. Set Vg=0V

Note: Assure Vctrl never exceeds Vd during Bias ON and Bias OFF sequences and during normal operation.

Bias Procedure @ Vd = 5V Operation

- 1. Bias Conditions: Vd = 5.0 V, Id = 135 mA
- 2. Adjust Vg for Id = 135 mA
- 3. Adjust Vctrl for Gain and Eye crossing control. Vctrl bias is optional
- 4. Positive or negative gate bias may be required to achieve recommended operating point:- 0.5 V < Vg < + 0.5 V


Note: +5V Bias operation requires a bias tee

Advance Product Information

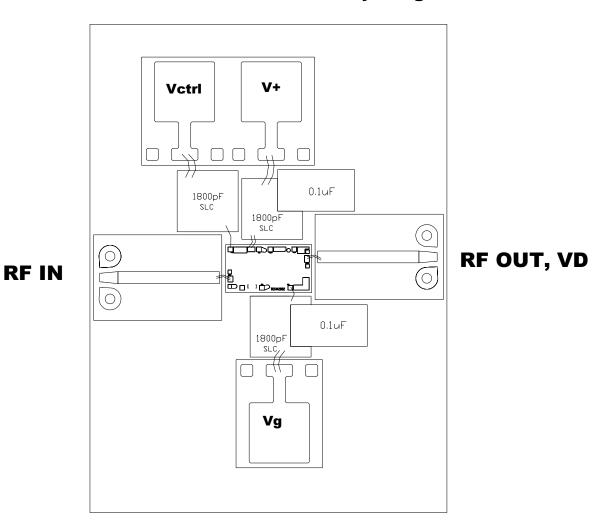
April 13, 2005 TGA4832

Mechanical Drawing

Units: millimeters (inches)

Thickness: 0.100 (0.004) (reference only)

Chip edge to bond pad dimensions are shown to center of pad


Chip size tolerance: +/- 0.051 (0.002)

GND IS BACKSIDE OF MMIC

Bond Pad #1:	RF In	0.100 x 0.125 [0.0039 x 0.0049]
Bond Pad #2:	Vctrl	0.100 x 0.100 [0.0039 x 0.0039]
Bond Pad #3:	V+	0.100 x 0.156 [0.0039 x 0.0061]
Bond Pad #4:	RF Out/Vd (RF Out)	0.100 x 0.145 [0.0039 x 0.0057]
Bond Pad #5:	Vg	$0.100 \times 0.100 \ [0.0039 \times 0.0039]$

Recommended Assembly Diagram

Note: Input and Output ports are DC coupled.

Recommended Components:

* CAPACITOR VALUE	BYPASSING EFFECTIVE TO:
None	20 MHz
0.01 uF	4 MHz
0.1 uF	250 KHz

Assembly Process Notes

Reflow process assembly notes:

- Use AuSn (80/20) solder with limited exposure to temperatures at or above 300 °C for 30 sec
- An alloy station or conveyor furnace with reducing atmosphere should be used.
- No fluxes should be utilized.
- Coefficient of thermal expansion matching is critical for long-term reliability.
- Devices must be stored in a dry nitrogen atmosphere.

Component placement and adhesive attachment assembly notes:

- Vacuum pencils and/or vacuum collets are the preferred method of pick up.
- Air bridges must be avoided during placement.
- The force impact is critical during auto placement.
- Organic attachment can be used in low-power applications.
- Curing should be done in a convection oven; proper exhaust is a safety concern.
- Microwave or radiant curing should not be used because of differential heating.
- Coefficient of thermal expansion matching is critical.

Interconnect process assembly notes:

- Thermosonic ball bonding is the preferred interconnect technique.
- Force, time, and ultrasonics are critical parameters.
- Aluminum wire should not be used.
- Devices with small pad sizes should be bonded with 0.0007-inch wire.
- Maximum stage temperature is 200 °C.