


Ka-Band Power Amplifier

Preliminary Measured Data

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice

June 4, 2004

TGA4517-EPU

Key Features

- Frequency Range: 31 37 GHz
- 35 dBm Nominal Psat
- 15 dB Nominal Gain
- 12 dB Nominal Return Loss
- Bias 5-6 V, 2 A Quiescent
- 0.15 um 3MI pHEMT Technology
- Chip Dimensions 4.35 x 3.90 x 0.05 mm (0.171 x 0.154 x 0.002) in

Primary Applications

- Point-to-Point Radio
- Military Radar Systems
- Ka-Band Sat-Com

June 4, 2004

TGA4517-EPU

TABLE I ABSOLUTE MAXIMUM RATINGS 1/

SYMBOL	PARAMETER	VALUE	NOTES
Vd	Drain Voltage	8 V	<u>2/</u>
Vg	Gate Voltage Range	-3 TO 0 V	
ld	Drain Current (Under RF Drive)	4 A	<u>2</u> / <u>3</u> /
Ig	Gate Current	141 mA	<u>3</u> /
P _{IN}	Input Continuous Wave Power	TBD	
P _D	Power Dissipation	18.3 W	<u>2/ 4</u> /
Т _{сн}	Operating Channel Temperature	150 ⁰ C	<u>5</u> / <u>6</u> /
Τ _M	Mounting Temperature (30 Seconds)	320 ⁰ C	
T _{STG}	Storage Temperature	-65 to 150 ⁰ C	

1/ These ratings represent the maximum operable values for this device.

2/ Combinations of supply voltage, supply current, input power, and output power shall not exceed P_D.

- <u>3</u>/ Total current for the entire MMIC.
- 4/ When operated at this bias condition (with RF applied) at a base plate temperature of 70 °C, the median life is 1E+6 hrs.
- 5/ Junction operating temperature will directly affect the device median time to failure (MTTF). For maximum life, it is recommended that junction temperatures be maintained at the lowest possible levels.
- <u>6</u>/ These ratings apply to each individual FET.

TABLE II DC PROBE TESTS (Ta = 25 °C, Nominal)

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNITS
V _{BVGD,Q1-Q2}	Breakdown Voltage Gate-Drain	-30	-14	-11	V
V _{BVGD,Q15-Q30}	Breakdown Voltage Gate-Drain	-30	-14	-11	V
V _{P,Q15-Q30}	Pinch-Off Voltage	-1.5	-1	-0.5	V

Each FET Cell is 750um

June 4, 2004

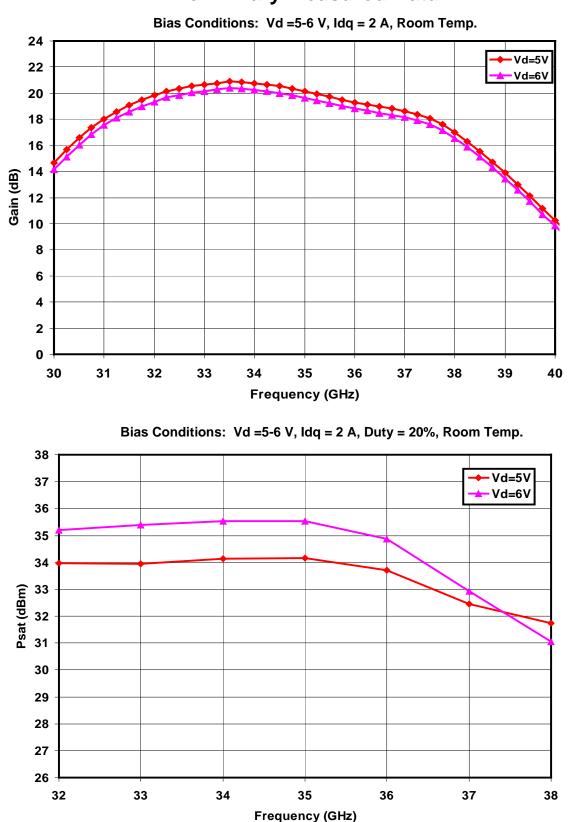
TGA4517-EPU

TABLE III ELECTRICAL CHARACTERISTICS

 $(Ta = 25 \ ^{\circ}C, Nominal)$

PARAMETER	TYPICAL	UNITS
Frequency Range	31 - 37	GHz
Drain Voltage, Vd	6	V
Drain Current (Quiescent), Idq	2	А
Gate Voltage, Vg	-0.5	V
Small Signal Gain, S21	15	dB
Input Return Loss, S11	14	dB
Output Return Loss, S22	12	dB
Output Power, Psat	35	dBm

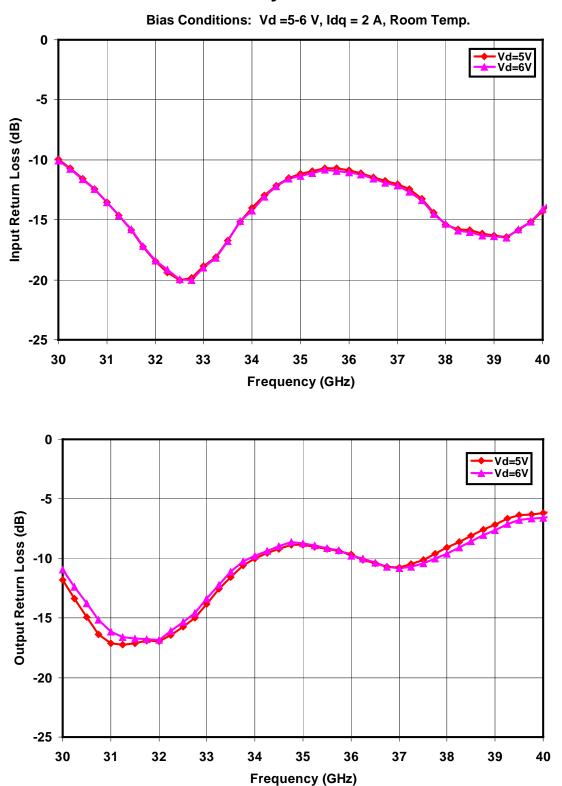
TABLE IV THERMAL INFORMATION


PARAMETER	TEST	Т _{сн}	R _{θJC}	T _M
	CONDITIONS	(^о С)	(°C/W)	(HRS)
R _{eJC} Thermal Resistance (channel to backside of carrier)	Vd = 6 V Idq = 2 A Pdiss = 12 W	122.3	4.36	1.2E+7

Note: Assumes eutectic attach using 1.5 mil 80/20 AuSn mounted to a 20 mil CuMo Carrier at 70°C baseplate temperature and with RF applied.

June 4, 2004

TGA4517-EPU

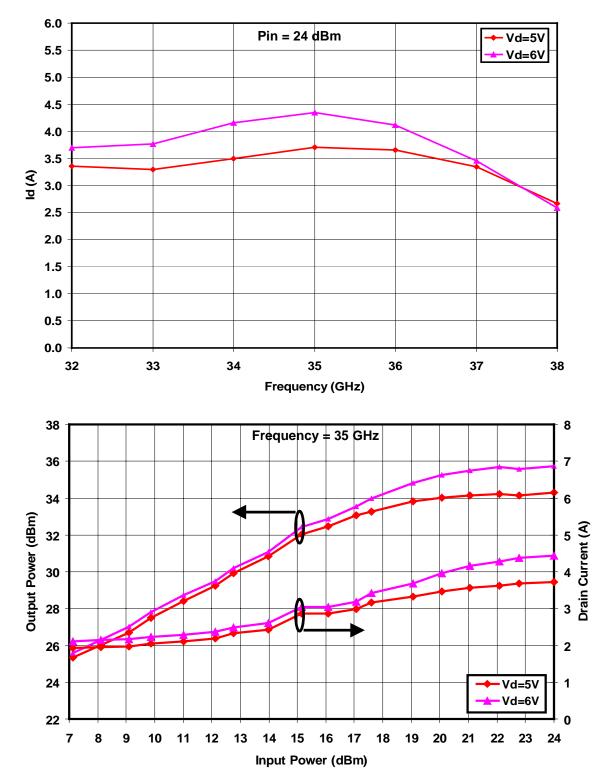


Preliminary Measured Data

June 4, 2004

TGA4517-EPU

Preliminary Measured Data

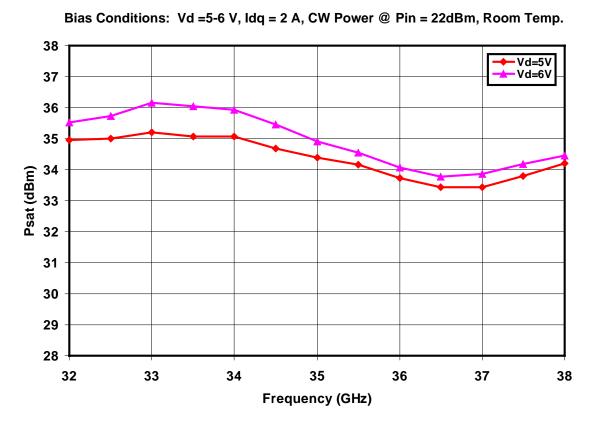


June 4, 2004

TGA4517-EPU

Preliminary Measured Data

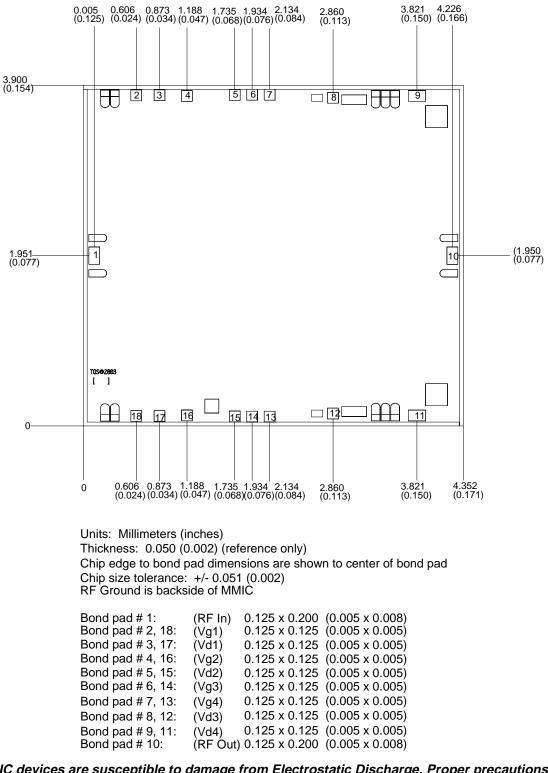
Drain Current vs. Drain Voltage, Duty = 20%, Room Temp.



Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice

TriQuint Semiconductor Texas: Phone (972)994-8465 Fax (972)994-8504 Email: Info-mmw@tqs.com Web: www.triquint.com

TGA4517-EPU

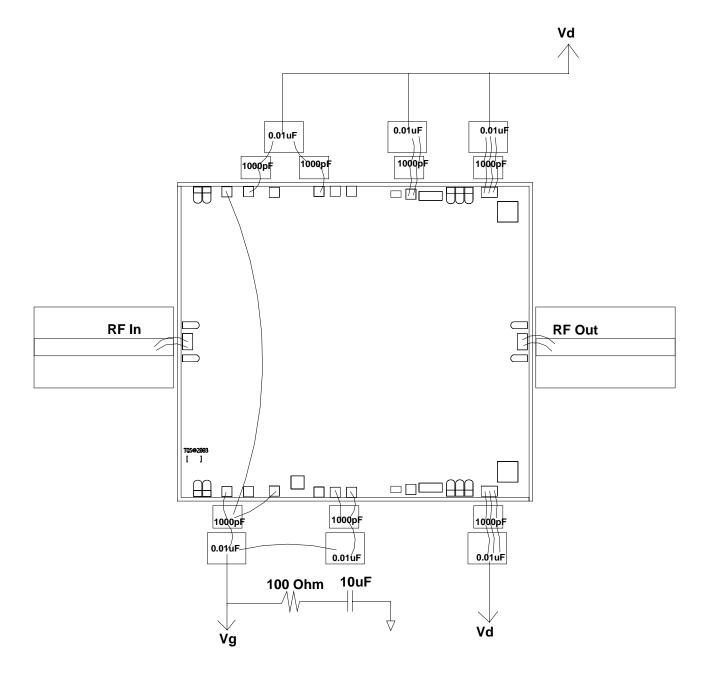


Preliminary Measured Data

June 4, 2004

TGA4517-EPU

Mechanical Drawing


TriQuint 🔇

11CONDUCTOR_®

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

Chip Assembly Diagram

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

Advance Product Information June 4, 2004 TGA4517-EPU

Assembly Process Notes

Reflow process assembly notes:

- Use AuSn (80/20) solder with limited exposure to temperatures at or above 300^oC (30 seconds max).
- An alloy station or conveyor furnace with reducing atmosphere should be used.
- No fluxes should be utilized.
- Coefficient of thermal expansion matching is critical for long-term reliability.
- Devices must be stored in a dry nitrogen atmosphere.

Component placement and adhesive attachment assembly notes:

- Vacuum pencils and/or vacuum collets are the preferred method of pick up.
- Air bridges must be avoided during placement.
- The force impact is critical during auto placement.
- Organic attachment can be used in low-power applications.
- Curing should be done in a convection oven; proper exhaust is a safety concern.
- Microwave or radiant curing should not be used because of differential heating.
- Coefficient of thermal expansion matching is critical.

Interconnect process assembly notes:

- Thermosonic ball bonding is the preferred interconnect technique.
- Force, time, and ultrasonics are critical parameters.
- Aluminum wire should not be used.
- Maximum stage temperature is 200^oC.

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.