

#### **Applications**

- · Commercial and Military Radar
- Communications

#### **Product Features**

• Frequency Range: 2.5 – 4.0GHz

NF: 2.5dBITOI: 29dBmP1dB: >28.5dBm

Small Signal Gain: 12dBReturn Loss: >12dB

Retuil Loss. >12ab

• Bias:  $V_D = 6V$ ,  $I_{DQ} = 320mA$ ,  $V_G = -0.7V$ 

Balance Topology

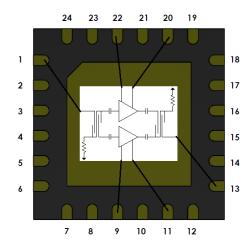
• Package Dimensions: 5 x 5 x 0.85mm

## **General Description**

TriQuint's TGA2613-SM is a balanced S-Band high linearity Low Noise Amplifier. The balanced configuration supports low return loss and improves robustness into non-ideal loads. The TGA2613-SM operates from 2.5 to 4GHz and is designed using TriQuint's proven 0.15um pHEMT production process.

The TGA2613-SM typically provides 2.5dB noise figure, 29dBm ITOI, greater than 28.5dBm P1dB, and 12dB small signal gain.

The TGA2613-SM is available in a low cost, surface mount, 24-lead 5x5mm QFN. It is ideally suited to support for both radar and communication applications.


Both RF ports have intergraded DC blocking caps and are fully matched to  $50\Omega$  for simple system integration.

Lead-free and RoHS compliant

Evaluation Boards are available upon request.

#### QFN 5x5 mm 24L

# **Functional Block Diagram**



## **Pad Configuration**

| Pad No.                                | Symbol  |
|----------------------------------------|---------|
| 1                                      | RF In   |
| 2 - 8, 10, 12, 14 - 19,<br>21, 23 - 24 | N/C     |
| 9, 22                                  | $V_{G}$ |
| 11, 20                                 | $V_D$   |
| 13                                     | RF Out  |
|                                        |         |

# **Ordering Information**

| Part       | <b>ECCN</b> | Description               |
|------------|-------------|---------------------------|
| TGA2613-SM | EAR99       | S-Band High Linearity LNA |



#### **Absolute Maximum Ratings**

| Parameter                                     | Value        |
|-----------------------------------------------|--------------|
| Drain Voltage (V <sub>D</sub> )               | 6.5V         |
| Gate Voltage Range (V <sub>G</sub> )          | -5 to 0V     |
| Drain Current (I <sub>D</sub> )               | 600mA        |
| Gate Current (I <sub>G</sub> )                | -3.5 to 19mA |
| Power Dissipation, 85 °C (P <sub>DISS</sub> ) | 2.6W         |
| Input Power, CW, 50 Ω, (P <sub>IN</sub> )     | 30dBm        |
| Channel temperature (T <sub>CH</sub> )        | 200°C        |
| Mounting Temperature (30 Seconds)             | 260°C        |
| Storage Temperature                           | -55 to 150°C |

Operation of this device outside the parameter ranges given above may cause permanent damage. These are stress ratings only, and functional operation of the device at these conditions is not implied.

### **Recommended Operating Conditions**

| Parameter                        | Value         |
|----------------------------------|---------------|
| Drain Voltage (V <sub>D</sub> )  | 6V            |
| Drain Current (I <sub>DQ</sub> ) | 320mA         |
| Gate Voltage (V <sub>G</sub> )   | -0.7V Typical |

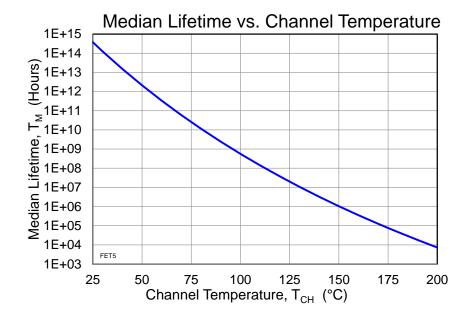
Electrical specifications are measured at specified conditions. Specifications are not guaranteed overall operating conditions.

# **Electrical Specifications**

Test conditions unless otherwise noted:  $25^{\circ}$ C,  $V_D = 6$ V,  $I_{DQ} = 320$ mA,  $V_G = -0.7$ V Typical

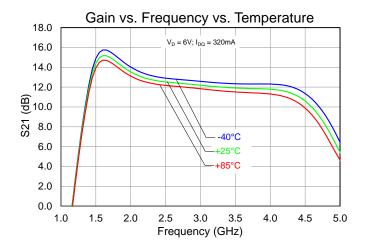
| Parameter                             | Min | Typical | Max | Units |
|---------------------------------------|-----|---------|-----|-------|
| Operational Frequency Range           | 2.5 |         | 4.0 | GHz   |
| Small Signal Gain                     |     | 12      |     | dB    |
| Input Return Loss                     |     | >12     |     | dB    |
| Output Return Loss                    |     | >12     |     | dB    |
| Noise Figure                          |     | 2.5     |     | dB    |
| Output Power at 1 dB Gain Compression |     | >28.5   |     | dBm   |
| Input TOI                             |     | 29      |     | dBm   |
| Gain Temperature Coefficient          |     | -0.007  |     | dB/°C |

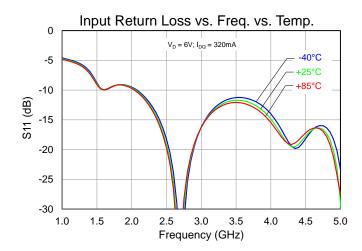


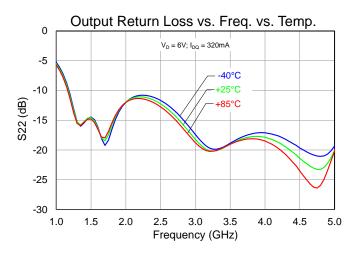

### **Thermal and Reliability Information**

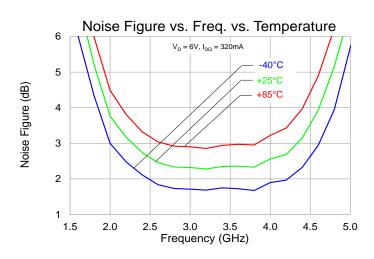
| Parameter                                            | Test Conditions                                     | Value      | Units |
|------------------------------------------------------|-----------------------------------------------------|------------|-------|
| Thermal Resistance (θ <sub>JC</sub> ) <sup>(1)</sup> |                                                     | 35.42      | °C/W  |
| Channel Temperature (T <sub>CH</sub> )               | $T_{base} = 85^{\circ}C$                            | 153        | °C    |
| Median Lifetime (T <sub>M</sub> )                    | $V_D = 6V$ , $I_{DQ} = 320$ mA, $P_{DISS} = 1.92$ W | 7.5 x 10^5 | Hrs   |

#### Notes:


1. Thermal resistance measured at back of the package.

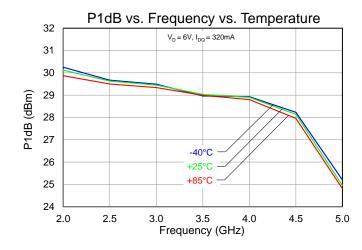

### **Median Lifetime**

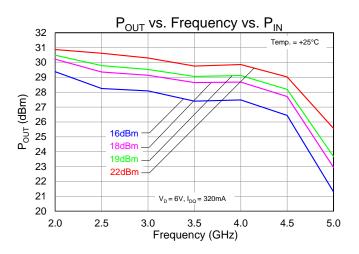


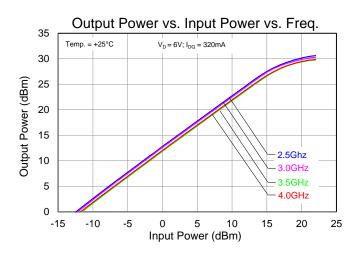



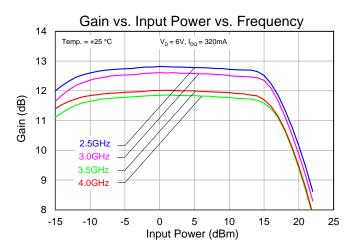

## **Typical Performance: Small Signal**

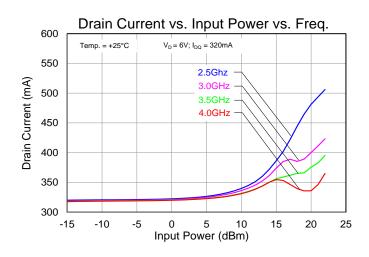




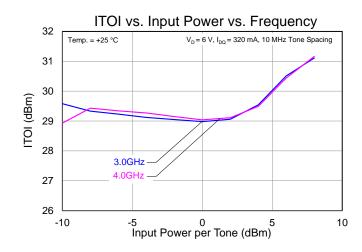



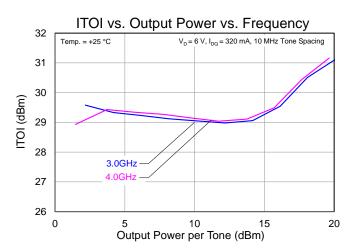



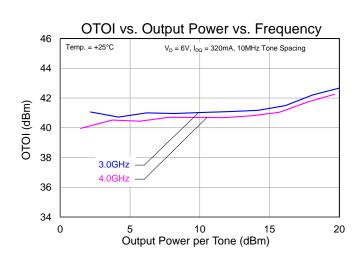


## **Typical Performance: Large Signal**

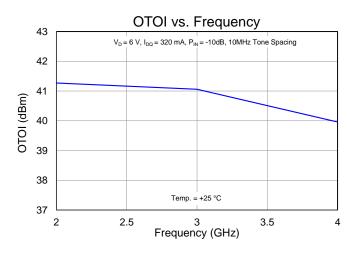


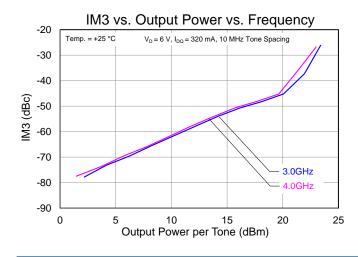


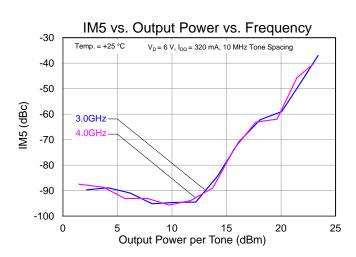


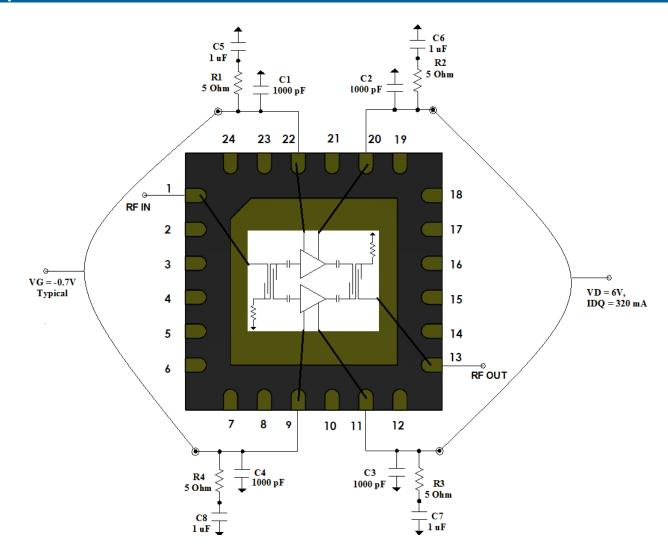





## **Typical Performance: Linearity**













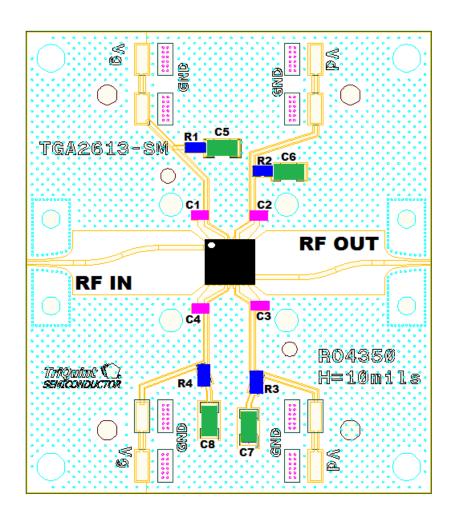

### **Application Circuit**



Notes:

1. VG & VD must be biased from both sides (top and bottom.)

### **Bias-up Procedure**

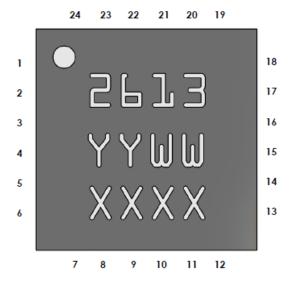

- 1. Set  $I_D$  limit to 550mA,  $I_G$  limit to 15mA
- 2. Set V<sub>G</sub> to -2.0V
- 3. Set VD +6V
- 4. Adjust  $V_G$  more positive until  $I_{DQ}$  = 320mA ( $V_G \sim$  -0.7V Typical)
- 5. Apply RF signal

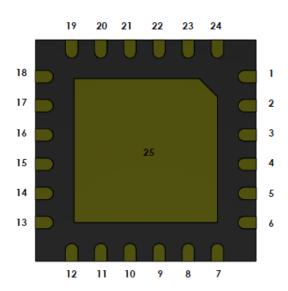
#### **Bias-down Procedure**

- 1. Turn off RF signal
- 2. Reduce V<sub>G</sub> to -2.0V. Ensure I<sub>DQ</sub> ~ 0mA
- 3. Set V<sub>D</sub> to 0V
- 4. Turn off V<sub>D</sub> supply
- 5. Turn off V<sub>G</sub> supply



### **Evaluation Board**



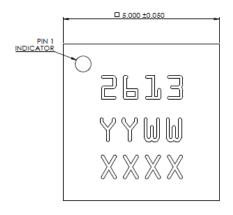


## **Bill of Material**

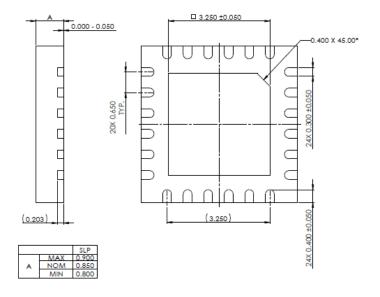
| Reference Des. | Value  | Description               | Manuf.  | Part Number |
|----------------|--------|---------------------------|---------|-------------|
| C1 - C4        | 1000pF | Cap, 0402, 50 V, 10%, X7R | Various |             |
| C5 - C8        | 1µF    | Cap, 1206, 50 V, 10%, X7R | Various |             |
| R1 - R4        | 5 Ohms | Res, 0603, 5%             | Various |             |



## **Pin Layout**







# **Pin Description**

| Pin No.                             | Symbol | Description                                                                                                                |
|-------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------|
| 1,                                  | RF IN  | Input; matched to 50 Ω. DC Blocked                                                                                         |
| 2 - 8, 10, 12, 14 - 19, 21, 23 - 24 | NC     | No Connection – Recommended grounding on PCB.                                                                              |
| 9, 22                               | GATE   | Gate voltage; bias network is required; must be biased from both sides; see recommended Application Information on page 7  |
| 11, 20                              | DRAIN  | Drain voltage; bias network is required; must bebiased from both sides; see recommended Application Information on page 7. |
| 13                                  | RF OUT | Output; matched to 50 Ω. DC Blocked                                                                                        |
| 25                                  | GND    | Ground Paddle. Multiple vias should be employed to minimize inductance and thermal resistance.                             |



### **Mechanical Information**





Units: millimeter

Tolerances: unless specified

 $x.xxx = \pm 0.127$ 

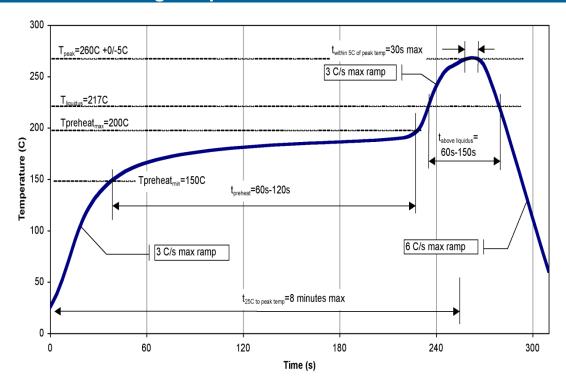
Materials:

Package Metal and Leads are NiPdAu Plated

Base: Cu alloy

Part is mold encapsulated

Marking:


2613: Part number

YY: Part Assembly year WW: Part Assembly week

XXXX: LOT NO.



## **Recommended Soldering Temperature Profile**







#### **Product Compliance Information**

#### **ESD Sensitivity Ratings**



Caution! ESD-Sensitive Device

ESD Rating: TBD Value: TBD

Test: Human Body Model (HBM)
Standard: JEDEC Standard JESD22-A114

#### **MSL** Rating

Level TBD at 260°C convection reflow
This part is rated Moisture Sensitivity Level TBD at TBD
°C per JEDEC standard IPC/JEDEC J-STD-020.

#### **ECCN**

US Department of Commerce: EAR99

#### **Solderability**

Compatible with the latest version of J-STD-020 Lead free solder, 260°C.

#### **RoHS Compliance**

This part is compliant with EU 2002/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C<sub>15</sub>H<sub>12</sub>Br<sub>4</sub>0<sub>2</sub>) Free
- PFOS Free
- SVHC Free

#### **Contact Information**

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

 Web:
 www.triquint.com
 Tel:
 +1.972.994.8465

 Email:
 info-sales@triquint.com
 Fax:
 +1.972.994.8504

For technical questions and application information: Email: info-products@triquint.com

### **Important Notice**

The information contained herein is believed to be reliable. TriQuint makes no warranties regarding the information contained herein. TriQuint assumes no responsibility or liability whatsoever for any of the information contained herein. TriQuint assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for TriQuint products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

TriQuint products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.