

....TDC1016

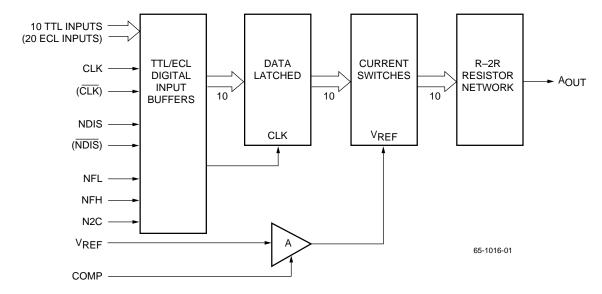
Video Speed D/A Converter 10-Bit, 20 Msps

Features

- 20 Msps conversion rate
- 8, 9, or 10-bit linearity
- · Voltage output, no amplifier required
- Single supply operation (-5.2V, ECL compatible)
- Dual supply operation (±5.0V, TTL compatible)
- Internal 10-bit latched data register
- · Low glitch energy
- Disabling controls, forcing full-scale, zero, and inverting input data
- Binary or two's complement input data formats
- Differential gain = 1.5%, differential phase = 1.0°

Applications

- Construction of video signals from digital data 3x or 4x NTSC or PAL color subcarrier frequency
- · CRT graphics displays, RGB, Raster, Vector
- · Waveform synthesis


Description

The TDC1016 is a bipolar monolithic digital-to-analog converter which can convert digital data into an analog voltage at rates up to 20 Msps (Megasamples Per Second). The device includes an input data register and operates without an external deglitcher or amplifier.

Operating the TDC1016 from a single -5.2V power supply will bias the digital inputs for ECL levels, while operating from a dual ±5V power supply will bias the digital inputs for TTL levels.

All versions of the TDC1016 are 10-bit digital-to-analog converters, but are available with linearity specifications of either 8, 9, or 10 bits. The TDC1016 is patented under U.S. patent number 3283120 with other patents pending.

Block Diagram

Functional Description

General Information

TTL/ECL buffers are used for all digital inputs to the TDC1016. Logic family compatibility depends upon the connection of power supplies. When single power supply (-5.2V) operation is employed, all data, clock, and disable inputs are compatible with differential ECL logic levels. All digital inputs become compatible with TTL levels when dual power supply (±5.0V) operation is used.

The internal 10-bit register latches data on the rising edge of the clock (CLK) pulse. Currents from the current sources are switched accordingly and combined in the resistor network to give an analog output voltage. The magnitude of the output voltage is directly proportional to the magnitude of the digital input word.

The NFL and NFH inputs can be used to simplify system calibration by forcing the analog output voltage to either its zero-scale or full-scale value. The TDC1016 can be operated in binary, inverse binary, two's complement or inverse two's complement input data formats.

Power

The TDC1016 can be operated from a single -5.2V power supply or from a dual ± 5.0 V power supply. For single power supply operation, V_{CC} is connected to D_{GND} and all inputs to the device become ECL compatible. When V_{CC} is tied to ± 5.0 V, the inputs are TTL compatible.

The return path for the output from the 10 current sources is AGND. The current return path for the digital section is DGND. DGND and AGND should be returned to system power supply ground by way of separate conductive paths to prevent digital ground noise from disturbing the analog circuitry of the TDC1016. All AGND pins must be connected to system analog ground.

Reference

The reference input is normally set to -1.0V with respect to AGND. Adjusting this voltage is equivalent to adjusting system gain The temperature stability of the TDC1016 analog output (AOUT) depends primarily upon the temperature stability of the applied reference voltage

The internal operational amplifier of the TDC1016 is frequency stabilized by an external 1 μ F tantalum capacitor connected between the COMP pin and VEE. A minimum of 1 μ F is adequate for most applications, but 10 microfarads or more is recommended for optimum performance. The negative side of this capacitor should be connected to VEE.

Controls

The NDIS inputs are used to disable the TDC1016 by forcing its output to the zero-scale value (current sources off). The NDIS inputs are asynchronous, active without regard to the CLK inputs. The other digital control inputs are synchronous, latched on the rising edge of the CLK pulse.

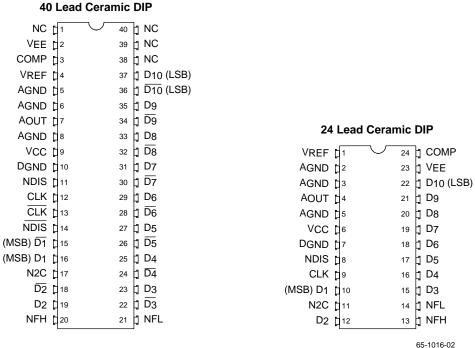
The rising edge of the CLK pulse transfers data from the input lines to the internal 10-bit register. In TTL mode, the inverted inputs for CLK, DATA, and NDIS are inactive and should be left open.

The Input Coding Table illustrates the function of the digital control inputs. A two's complement mode is created by activating N2C with a Logic 0 When NFH and NFL are both activated with a Logic 0 the input data to the 10-bit register is inverted.

Data Inputs

Data inputs are ECL compatible when single power supply operation is employed. The J5 and C2 packages allow for differential ECL inputs while the J7 and B7 packages have only single-ended inputs. When differential ECL data is used, any data input can be inverted simply by reversing the connections to the true and inverted data input pins. All inverted input pins should be left open if single-ended ECL or TTL modes are used. All data inputs have an internal $40~\mathrm{K}\Omega$ pullup resistor to VCC.

Analog Output


The analog output voltage is negative with respect to AGND and varies proportionally with the magnitude of the input data word. The output resistance at this point is 80Ω , nominally.

No Connects

There are several pins labeled no connect (NC) on the TDC1016 J5 and C2 packages, which have no connections to the chip. These pins should be left open.

Pin Assignments

www.DataSheet4U.com

Pin Descriptions

	Pin N	umber		
Pin Name	40-Lead	24-Lead	Value	Pin Function Description
Power				
Vcc	9	6	+5.0V	Positive Supply Voltage.
VEE	2	23	-5.0V	Negative Supply Voltage.
AGND	5, 6, 8	2, 3, 5	0.0V	Analog Ground.
DGND	10	7	0.0V	Digital Ground.
Reference				
VREF	4	1	-1.0V	Reference Voltage In.
COMP	3	24	1μF	Compensation.
Controls				
NDIS	11	8	TTL/ECL	Not Disable.
NDIS	14	_	ECL	Not Disable (Inv).
CLK	12	9	TTL/ECL	Clock.
CLK	13	_	ECL	Clock (Inv).
N2C	17	11	TTL/ECL	Not Two's Complement.
NFH	20	13	TTL/ECL	Not Force HIGH.
NFL	21	14	TTL/ECL	Not Force LOW.
Data Inputs				
D1-D10	16, 19, 23, 25, 27, 29, 31, 33, 35, 37	10, 12, 15–20, 27, 22	TTL/ECL	Data Bits 1–10. D ₁ is the MSB, D ₁₀ is the LSB.

Pin Descriptions (continued)

w.DataSheet4U	Pin Nu	Pin Number		
Pin Name	40-Lead	24-Lead	Value	Pin Function Description
<u>D</u> 1− <u>D</u> 10	15, 18, 22, 24, 26, 28, 30, 32, 34, 36	_	ECL	Data Bits 1–10 (Inv). \overline{D}_1 is the MSB, \overline{D}_{10} is the LSB.
Analog Out	put			
AOUT	7	4	0V-1V	Analog Output Voltage
No Connect	tion		•	
NC	1, 38–40	_	Open	No Connection

Absolute Maximum Ratings (beyond which the device wille be damaged)¹

Parameter	Min.	Max.	Unit
Supply Voltages	•		
VCC (measured to DGND)	-0.5	+7.0	V
VEE (measured to AGND)	-7.0	+0.5	V
AGND (measured to DGND)	-0.5	+0.5	V
Input Voltages			
Digital (measured to DGND)	-7.0	+7.0	V
Reference (measured to AGND)	-1.5	+0.5	V
Output			
Applied Voltage (measured to AGND) ²	-2.0	+2.0	V
Short-Circuit Duration		Indefinite	
Temperature	,		
Operating, Ambient		+125	°C
Operating, Junction		+175	°C
Lead, Soldering (10 seconds)		+300	°C
Storage	-65	+150	°C

Notes:

2. Applied voltage must be current limited to specified range.

^{1.} Absolute maximum ratings are limiting values applied individually while all other parameters are within specified operating conditions. Functional operation under any of these conditions is NOT implied.

Operating Conditions

ww.batasnee	40.com			Те	mperat	ure Ran	ge		
				Standar	d	E	Extende	d	
Symbol	Parameter		Min.	Nom.	Max.	Min.	Nom.	Max.	Unit
Vcc	Positive Supply Voltage	TTL Mode	4.75	5.0	5.25	4.50	5.0	5.50	V
		ECL Mode	-0.25	0.0	0.25	-0.25	0.0	0.25	V
VEE	Negative Supply Voltage		-4.5	-5.0	-5.5	-4.5	-5.0	-5.5	V
VAGND	Analog Ground Voltage (Measured to DGND)		-0.1	0.0	0.1	-0.1	0.0	0.1	V
tPWL	CLK Pulse Width, LOW		15			20			ns
tpwH	CLK Pulse Width, HIGH		15			20			ns
ts	Input Register Set-up Time	TTL Mode	20			22			ns
		ECL Mode	25			27			ns
tH	Input Register Hold Time	•	2			2			ns
VIL	Logic 0	TTL Mode	DGND		0.8	DGND		0.8	V
		ECL Mode			-1.67			-1.67	V
VIH	Logic 1	TTL Mode	2.0		Vcc	2.0 ¹		Vcc	V
		ECL Mode	-1.0			-1.0			V
VREF	Reference Voltage		-0.8	-1.0	-1.2	-0.8	-1.0	1.2	V
ССОМР	Compensation Capacitor		1.0			1.0			μF
TA	Ambient Temperature		0		70				°C
Tc	Case Temperature					-55		125	°C

Note:

DC Electrical Characteristics

				Temperature Range			
			Stan	dard	Extended		
Symbol	Parameter	Test Conditions	Min.	Max.	Min.	Max.	Unit
Icc	Power Supply Current	TTL Mode, VCC = Max, VEE = Max		20		20	mA
IEE	Power Supply Current	TTL Mode, V _{CC} = Max, V _{EE} = Max ¹		-130		-150	mA
IREF	Reference Input Current	VEE = Max, VREF = -10V		10		10	μΑ
IIL	Logic 0 Input Current	TTL Mode, VCC = Max, VEE = Max		-1.0		-1.0	mA
		ECL Mode, VCC = 0.0, VEE = Max		-300		-300	μΑ
lн	Logic 1 Input Current	TTL Mode, VCC = Max, VEE = Max		75		75	μΑ
		ECL Mode, VCC = 0.0, VEE = Max		350		350	μΑ
Cout	Output Capacitance	AOUT to AGND (Figure 2)		10		10	pF
CIN	Digital Input Capacitance	Any Digital Input to DGND		35		35	pF
Rout	Output Resistance	AOUT to AGND (Figure 2)	70	95	70	95	Ω

Note:

^{1.} V_{IH}/NDIS = 2.2 Min.

^{1.} Return current from VEE flows through AGND.

AC Electrical Characteristics

w.batasneepo.com			Те				
			Stan	dard	Exte	nded	
Symbol	Parameter	Test Conditions	Min.	Max.	Min.	Max.	Unit
FC	Maximum Data Rate	TTL Mode Full-Scale Output Step	20		20		MSPS
		ECL Mode Full-Scale Output Step	17.8		17.8		MSPS
tDS	Data Turn on Delay	RL = 75 Ohms		30		30	ns
tSET	Settling Time	TDC1016-8 to 0.2%		30		30	ns
		TDC1016-9 to 0.1%		35		35	ns
		TDC1016-10 to .05%		40		40	ns
tRV	Output 10% to 90% Risetime	V_{EE} = Nom., RL = 75Ω , Full-Scale Step		5.5		5.5	ns

Timing Diagram

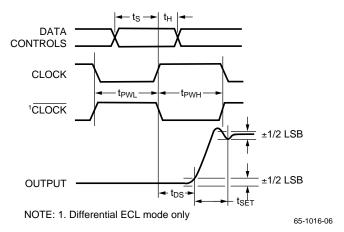
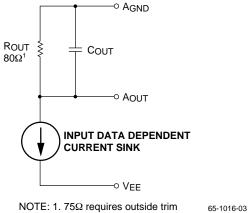
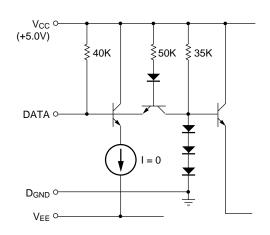


Figure 1. Timing Diagram


System Performance Characteristics

			Те	mperati	ure Rar	nge	
			Stan	dard	Exte	nded	
Parameter	•	Test Conditions	Min.	Max.	Min.	Max.	Unit
RES	Resolution	All TDC1016 Devices		10		10	Bits
ELI, ELD	Linearity Error Integral and	TDC1016-8		0.2		0.2	% FS
	Differential, Independent Based	TDC1016-9		0.1		0.1	% FS
	Daseu	TDC1016-10		0.075			% FS
VOFS	Full-Scale Output Voltage	$VEE = Nom, RL \ge 10k\Omega,$ $VREF = -1.000V$	-0.95	-1.05	-0.95	-1.05	V
Vozs	Zero-Scale Output Voltage	$VEE = Nom, RL \ge 10 \text{ k}\Omega,$ $VREF = -1.000V$		±15		±15	mV
DP	Differential Phase	NTSC 4x Subcarrier ¹		1.0		1.0	Degrees
DG	Differential Gain	NTSC 4x subcarrier ¹		1.5		1.5	%
GE	Glitch Energy (Area)	RL = 50Ω , Midscale		125		125	pV-sec
GV	Glitch Voltage	RL = 50Ω, Midscale		35		35	mV

Note:


^{1.} In excess of theoretical DP and DG due to quantizing error.

Equivalent Circuits

NOTE: 1. 75Ω requires outside trim

Figure 2. Analog Output Equivalent Circuit, TTL and ECL Mode

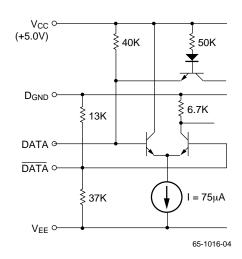


Figure 3. Digital Input Equivalent Circuit, TTL Mode

Figure 4. Digital Input Equivalent Circuit, ECL Mode

Input Coding Table

NDIS	N2C	NFH	NFL	Data	Output	Description
0	х	х	х	xxxxxxxxx	0.0	Output Disabled
1	1	1	1	1111111111	0.0	Binary (Default State for TTL Mode
1	1	1	1	0000000000	-1.0	Control) Inputs Open
1	1	0	0	1111111111	-1.0	Inverse Binary
1	1	0	0	0000000000	0.0	
1	0	1	1	0111111111	0.0	Two's Complement
1	0	1	1	1000000000	-1.0	
1	0	0	0	0111111111	-1.0	Inverse Two's Complement
1	0	0	0	1000000000	0.0	·
1	Х	0	1	xxxxxxxxx	0.0	Force HIGH
1	х	1	0	xxxxxxxxx	-1.0	Force LOW

Notes:

- 1. For TTL, $0.0 < V_{IL} < +0.8V$ is Logic 0.
- 2. For TTL, $+2.0 < V_{IH} < +5.0V$ is Logic 1.
- 3. For ECL, $-1.85 < V_{IL} < -1.67V$ is Logic 0.
- 4. For ECL, $-1.0 < V_{IH} < -0.8V$ is Logic 1.
- 5. x = don't care.

Applications Discussion

Calibration

The TDC1016 is calibrated by adjusting the voltage reference to give the desired full-scale output voltage. The current switches can be turned on either by loading the data register with full-scale data or by bringing the NFH input to a logic zero. Note that all 10 current switches are activated by the NFH input and the resulting full-scale output voltage will be greater than if the system used only eight or nine bits for full-scale data.

Typical Application

The Typical Interface Circuit (Figure 5) shows the TDC1016 in a typical application, reconstructing video signals from digital data. Television timing signals, SYNC and BLANKING, are added by injecting current from the Wilson current source into a resistor divider circuit at the output of the TDC1016.

The TDC1016 output and currents from the SYNC and BLANKING inputs are summed and amplified by the HA2539 wide-band operational amplifier. Note the careful power supply decoupling at the power input pins of the amplifier. The output of the circuit is a composite video signal with SYNC and BLANKING levels coming from external sources. This technique allows the TDC1016 to use its entire dynamic range for the video information while pulses are added by other means.

The reference for the TDC1016 is generated by dividing the output voltage from a two-terminal band-gap voltage reference. System gain is calibrated by adjusting variable resistor R1. Analog and digital grounds should be routed back to system power supply ground by separate paths.

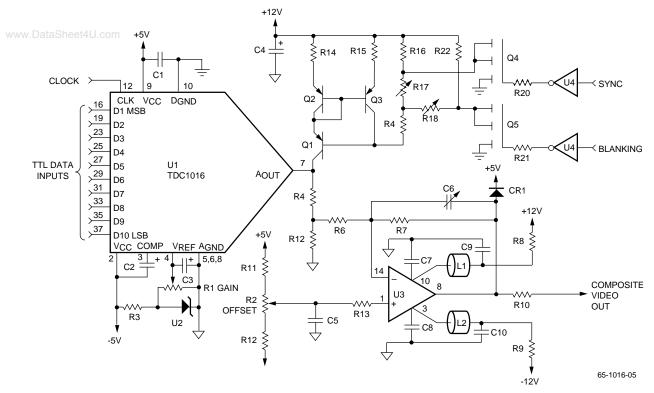


Figure 5. Typical Interface Circuit

Table 1. Bill of Materials

Resistors			
R1	5K	1/4W	10-turn
R2	1K	1/4W	10-tum
R3	1K	1/4W	5%
R4	43	1/4W	5%
R5	33	1/4W	5%
R6	330	1/4W	5%
R7	750	1/4W	5%
R8, R9	10	1/4W	5%
R10	75	1/4W	2%
R11, R12	10K	1/4W	5%
R13	220	1/4W	5%
R14, R15	100	1/4W	5%
R16, R22	390	1/4W	5%
R17, R18	2K	1/4W	10-turn
R19	1K	1/4W	5%
R20, R21	1K	1/4W	5%

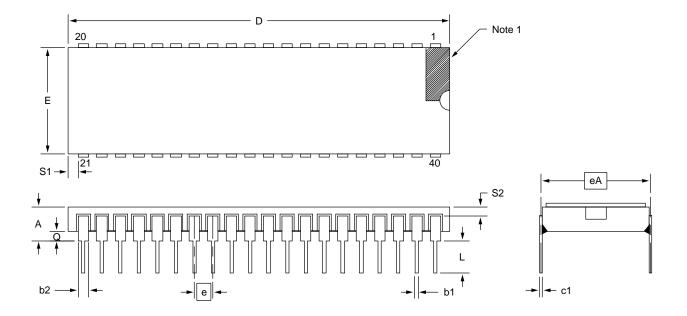
Capacitors					
C1	0.01μF	50V			
C2	1.0μF	10V			
C3	1.0μF	10V			
C4	2.2μF	25V			
C5	0.1μF	50V			
C6	2–5pF	50V			
C7	0.1μF	50V			
C8	0.1μF	50V			
C9	0.1μF	50V			
C10	0.1μF	50V			

RF Chokes					
L1, L2	Ferrite Beads				

Diodes	
CR1	1N4001

Transistors			
2N2907			
2N2907			
2N2907			
2N6660			
2N6660			

Integrated Circuits			
U1	TDC1016		
U2	LM113		
U3	HA2539		
U4	SN7404		

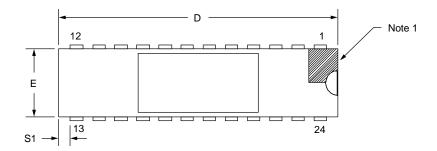

Mechanical Dimensions

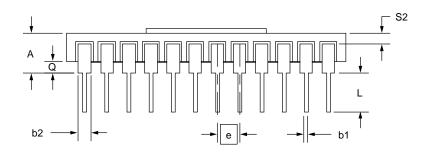
40 Lead Sidebrazed Ceramic DIP

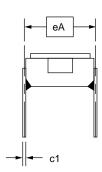
Symbol	Inc	hes	Millin	neters	N-4
	Min.	Max.	Min.	Max.	Notes
Α	.120	.175	3.05	4.44	
b1	.014	.023	.360	.580	7
b2	.040	.065	1.02	1.65	2
c1	.008	.015	.200	.380	7
D	1.970	2.030	50.04	51.56	
Е	.575	.610	14.60	15.49	
е	.100 BSC		2.54 BSC		4, 8
eA	.600 BSC		15.24 BSC		6
L	.125	.200	3.18	5.08	
Q	.025	.060	.63	1.52	3
S1	.005	_	.13	_	5
S2	.005	_	.13	_	

Notes:

- Index area: a notch or a pin one identification mark shall be located adjacent to pin one. The manufacturer's identification shall not be used as pin one identification mark.
- 2. The minimum limit for dimension "b2" may be .023(.58mm) for leads number 1, 20, 21, and 40 only.
- 3. Dimension "Q" shall be measured from the seating plane to the base plane.
- The basic pin spacing is .100 (2.54mm) between centerlines. Each pin centerline shall be located within ±.010 (.25mm) of its exact longitudinal position relative to pins 1 and 40.
- 5. Applies to all four corners (leads number 1, 20, 21, and 40).
- 6. "eA" shall be measured at the centerline of the leads.
- All leads Increase maximum limit by .003(.08mm) measured at the center of the flat when lead finish is applied.
- 8. Thirty-eight spaces.


Mechanical Dimensions (continued)


24 Lead Sidebrazed Ceramic DIP


Symbol	Inc	hes	Millim	neters	N
	Min.	Max.	Min.	Max.	Notes
Α	.120	.175	3.05	4.44	
b1	.014	.023	.360	.580	7
b2	.040	.065	1.02	1.65	2
c1	.008	.015	.200	.380	7
D	1.180	1.220	29.97	30.99	
E	.575	.610	14.60	15.49	
е	.100 BSC		2.54 BSC		4, 8
eA	.600 BSC		15.24 BSC		7
L	.125	.200	3.18	5.08	
Q	.025	.060	.630	1.52	3
S1	.005	_	.13	_	5
S2	.005	_	.13	_	

Notes:

- Index area: a notch or a pin one identification mark shall be located adjacent to pin one. The manufacturer's identification shall not be used as pin one identification mark.
- 2. The minimum limit for dimension "b2" may be .023(.58mm) for leads number 1, 12, 13, and 24 only.
- 3. Dimension "Q" shall be measured from the seating plane to the base plane.
- The basic pin spacing is .100 (2.54mm) between centerlines. Each pin centerline shall be located within ±.010 (.25mm) of its exact longitudinal position relative to pins 1 and 24.
- 5. Applies to all four corners (leads number 1, 12, 13, and 24).
- 6. "eA" shall be measured at the centerline of the leads.
- All leads Increase maximum limit by .003(.08mm) measured at the center of the flat when lead finish is applied.
- 8. Twenty-two spaces.

Ordering Information

Product Number	Temperature Range	Screening	Package	Package Marking
TDC1016J5CX	$STD - T_A = 0^{\circ}C$ to $70^{\circ}C$	Commercial	40 Pin Ceramic	1016J5CX
TDC1016J5AX	EXT – T_C = -55°C to 125°C	High Reliability	40 Pin Ceramic	1016J5AX
TDC1016J7CX	$STD - T_A = 0^{\circ}C$ to $70^{\circ}C$	Commercial	24 Pin Ceramic	1016J7CX
TDC1016J7AX	EXT – Tc = -55°C to 125°C	High Reliability	24 Pin Ceramic	1016J7AX

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com