AF amplifier for use in radio and TV sets. Its wide supply voltage range allows manifold use. The amplifier has class-B push-pull output and is furnished in single-in-line package. The integrated shutdown protects the IC from overheating.

- Large supply voltage range: 4 V to 28 V
- High output power up to 8 W
- Large output current up to 2.5 A
- Simple Mounting

Туре	Ordering code
TDA 1037	Q67000-A1229

Package outlines

Plastic package Single-In-Line, 9 pins Cooling fin Weight approx. 1.9 g Dimensions in mm

Absolute maximum ratings

Supply voltage Output peak current (not periodical) Output current (periodical) Junction temperature Thermal resistance (system-case) Storage temperature	V _{cc} I _q I _g T _j Rthsc T _s	28 3.5 2.5 150 12 -40 to +125	V A \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
Range of operation Supply voltage	Vac	4 to 28	l v

cappi, totago	• cc	1 4 10 20	v
Ambient temperature in operation	\mathcal{T}_{amb}	-25 to +85	°C

Electrical characteristics (with reference to test circuit; $T_{amb} = 25^{\circ}$ C; $f_i = 1$ kHz)

		min	typ	max	
Output DC voltage $V_{cc} = 24 \text{ V}$	V2	11	12	13	v
$V_{\rm cc} = 18$ V	V_2	8	9	10	V
$V_{cc} = 14 \text{ V}$	V_2	6.4	7.2	8	V
Quiescent current consumption $V_{cc} = 24 V$	$I_{3} + I_{4}$		15	25	mA
$V_{cc} = 18 \text{ V}$ $V_{cc} = 14 \text{ V}$	$I_3 + I_4$ $I_3 + I_4$		13	22 20	mA mA
Input DC current	13 14			20	
$V_{\rm cc} = 24$ V	I ₈		1		μA
$V_{cc} = 18 V$ $V_{cc} = 14 V$	I ₈ I ₈		.6 .4		μΑ μΑ
Output power ($k = 10\%$)	_				
$V_{\rm oc} = 24 \text{ V}, R_{\rm L} = 16 \Omega$ $V_{\rm cc} = 18 \text{ V}, R_{\rm L} = 8 \Omega$	P _q P _q P _q		5.5 5.0		W
$V_{\infty}^{\rm cc} = 14 \text{ V}, R_{\rm L} = 4 \Omega$	P_q^q		5.0		Ŵ
Input sensitivity ($P_{\rm q} = 5$ W) $V_{\rm cc} = 24$ V, $R_{\rm l} = 16\Omega$	V,		150		
$V_{cc} = 18 \text{ V}, R_{L} = 8 \Omega$	V,		110		mV mV
$V_{\rm cc} = 14 \mathrm{V}, R_{\rm L} = 4 \Omega$	Vi		80		mV
Input impedance	R _i	1	5		MΩ
Frequency range (-3 dB)	f	35		20000	Hz
Total harmonic distortion ($P_q = .053$ W; $V_{cc} = 14$ V; $R_L = 4\Omega$)	THD		.3		%
Voltage gain	•				
with negative feedback without negative feedback	G, G,	33	36 70	39	dB dB
Mains hum suppression ($V_{cc} = 14 \text{ V}; R_{L} = 4\Omega; f_{hum} = 100 \text{ Hz}$)	a _{hum}		38		dB
Noise voltage acc. DIN 45405				10	μV
(with reference to input; $R_{g} = 100 \text{ k}\Omega$)					1

Circuit diagram -04 T₆ (1₈ 1, 122 R_{17} $\int R_{14}$ ы И И -03 R₁₅ []*R*5 I23 R₁₃ • 2 60 4k I15 R_{12} $D_3 \mathbf{T}$ $\overrightarrow{D_5}$ $\overrightarrow{D_6}$ $\overrightarrow{D_7}$ 70 (T₁₆ *R*_L R₁₁ 1₂ 1₅ T₂₄ 1,7 k 80 , R₁₀ -01 Tio Tg 50 ₽4 T3 $\prod R_3 \prod R_7$ []*R*₁₈ $\prod R_6$ R_{8} R_2 -09 90

Test and application circuit

90

TDA 1046 is a monolithic IC suitable for AM receivers up to 30 MHz in car radios as well as mains-operated radio sets. For the use in high-quality radio sets the TDA 1046 is preferred to the TCA 440. TDA 1046 contains a controlled RF pre and intermediate stage, a multiplicative push-pull mixer with separate oscillator, controlled IF amplifier, full-wave demodulator, active low pass, as well as an amplifier to directly feed a field-strength indicator instrument. By means of its amplitude-controlled oscillator, the TDA 1046 is particularly suited for applications with varicap diodes. The circuit is balanced.

- Provision of internal AGC-voltage
- · High capability for large signals
- Internal demodulator
- Internal AF filtering
- Direct feed of a logarithmical field strength indicator (range 90 dB)
- High AF output voltage with low distortion factor
- Minimisation of external components
- Provisions for additional RF-circuit

Туре	Ordering code
TD 4 4040	0.07000 4.4000

TDA 1046	ļ	Q6/000-A1092

Package dimensions

Ŕ

Plastic plug-in package 20 A 16 DIN 41866 16 pins, dual-in-line Weight approx. 1.2 g Dimensions in mm

Absolute maximum ratings

20-02

Operating voltage Thermal resistance Junction temperature Storage temperature	V ₇ R _{thsa} T _j T _s	│ 18 │ 120 │ 150 │ −40 to +125	∨ ₭/₩ ℃
Range of operation			
Operating voltage	V ₇	8 to 18	V
Oscillator frequency	fosc	.5 to 31	MHz
Input frequency RF part	f _{iBE}	0 to 30	MHz
IF part	f _{ilF}	.2 to 1	MHz
Ambient temperature in operation	\mathcal{T}_{amb}	│ −15 to +85	l °C

Electrical characteristics ($V_7 = 10$ V, $T_{amb} = 25$ °C, $f_{mod} = 1$ kHz, $f_{iRF} = 1000$ kHz)	
according to application circuit	

Current consumption	Icc	18	mA
AF output voltage and distortion factor $m = 80\%$; $V_{iRF} = 2.5 \text{ mV}_{eff}$		800 .8	mV _{eff}
$m = 80\%; V_{IRF} = 25 \text{ mV}_{eff}$	THD _{typ} V _{AF} THD _{max}	.8 800 1.5	mV _{eff} %
$m = 30\%; V_{IRF} = 2.5 \text{ mV}_{eff}$	V _{AF} THD _{typ}	280 .6	mV _{eff} %
$m = 30\%; V_{IRF} = 45 \text{ mV}_{eff}$	V _{AF} THD _{max}	300 .9	mV _{eff} %
Total range of AGC (variation of AF voltage⊿V ₆ <6 dB)	⊿G _{Vtyp}	85	dB
Input voltage for AGC triggering with tuned LC circuit with wide-band circuit	V _{i 9-10} V _{i 9-10}	19 28	μV μV
Input sensitivity (measured at 60 $\Omega; m = 30\%/0\%$)			
at signal-to-noise ratio $\frac{S + N}{N} = 6 dB$	V _{iRF}	2.5	μV
$\frac{S+N}{N} = 26 \text{ dB}$	V _{iRF}	14	μV
$\frac{S+N}{N} = 53 \text{ dB}$	V _{iRF}	1	mV
Instrument current ($V_{cc} = 15$ V; at G_{min} ; $V_{11} \le V_7 - 3$ V)	I ₁₁	1.5	mA
AF output impedance	R ₆	3	kΩ

Electrical characteristics RF stage $(V_7 = 10 \text{ V}, T_{amb} = 25 \text{ °C}, f_{iRF} = 1000 \text{ kHz}, f_{mod} = 1 \text{ kHz}, m = 95\%, f_{iF} = 450 \text{ kHz})$

according to test circuit 1

Oscillator voltage ($f_{osc} = 1.45 \text{ MHz}$)	V ₁₅	600	∣ mV _{ss}
AGC range of RF prestage	⊿G _v	40	dB
Voltage gain	Gv	40	dB
Voltage gain of RF stage	$G_{v \ 13-9/10}$	20	dB
Input impedance	$Z_{i,9-1} = Z_{i,10-1}$	2/5	kΩ/pF
	Z_{19-10}	4/5	kΩ/pF
Input voltage for prestage AGC-triggering	$V_{i 9-10}$	1	mV _{eff}
Input voltage for overload ($THD_{mod} = 10\%$)	$V_{i 9-10}$	2	V _{ss} V
Reference voltage ($I_{16} \le 1 \text{ mA}$)	V ₁₆	3.3	V

Electrical characteristics IF stage ($V_7 = 10 \text{ V}, T_{amb} = 25 \text{ °C}, f_{IF} = 450 \text{ kHz}, f_{mod} = 1 \text{ kHz}, m = 95\%$)

according to test circuit 2

AGC range at 450 kHz	⊿G	45	dB
Input voltage for overload (THD = 10 %)	V ₃	120	mV _{eff}
AGC-triggerring-level at 450 kHz	V_3	.6	mV _{eff}
Input impedance	Z_3	3.3/3	kΩ/pF
AF output voltage ($V_3 = 10 m V_{eff}, m = 50\%$)	VAF	360	mV _{eff}

TDA 1046

Test circuit 1 – RF 115 türns 0....300pF 330pF 100 nF H _22kΩ 2 4 ILIN 22 -p+1/cc 4 C 14 22µF TDA 1046 9 V_{iRF} 0-100nF 13 10 8 4.7 kΩ 60Ω 4 100 n F 120 pF 70:26 turns Q₀ = 100 Vq 1,5 nF 3.3kΩ

94

TDA 1046

Prestage control

according to test circuit 1

 $V_{cc} = 10 \text{ V}; T_{amb} = 25 \text{ °C}; f_{iRF} = 1000 \text{ kHz}; f_{mod} = 1 \text{ kHz}; m = 80\%; V_{iF} = V_q = \text{const.}$

IF-stage control according to test circuit 2

 $V_{oc} = 10$ V; $T_{amb} = 25$ °C; $f_{IIF} = 450$ kHz; $f_{mod} = 1$ kHz; $V_{AF} = V_6 = \text{const.}$

AF output voltage, total harmonic distortion, instrument voltage versus RF input voltage $V_{cc} = 15$ V, Coupling with wide-band circuit