
Preliminary TOSHIBA CCD Image SensorCCD (charge coupled device)

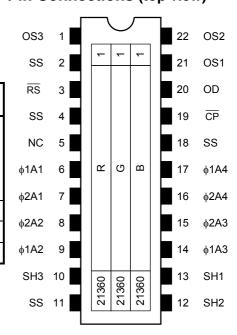
TCD2950D

The TCD2950D is a high sensitive and low dark current 10680 elements × 6 line CCD color image sensor which includes CCD drive circuit and clamp circuit. The sensor is designed for scanner.

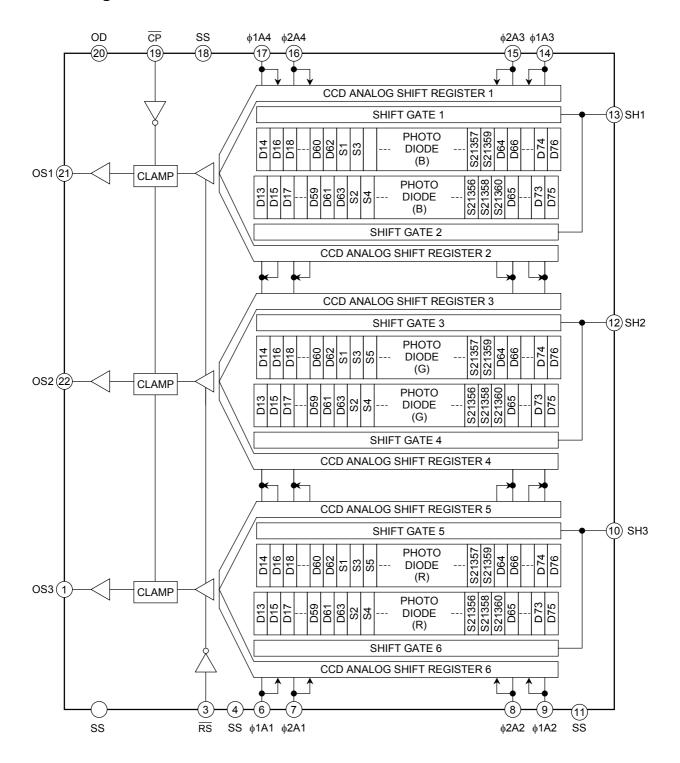
The device contains a row of 10680 elements × 6 line staggered photodiodes which provide a 96 lines/mm (2400DPI) across a A4 size paper. The device is operated by 5 V pulse, and 12 V power supply.

Weight: 5.2 g (typ.)

Features


- Number of image sensing elements: 10680 elements × 6 line
- Image sensing element size: 2.8 µm by 4 µm on 4 µm centers
- Photo sensing region: High sensitive and low dark current PN photodiode
- Distance between photodiode array: 64 µm (16 lines)
- Clock: 2 phase (5 V)
- Power supply: 12 V power supply voltage
- Internal circuit: Clamp circuit Package: 22 pin CERDIP package
- Color filter: Red, green, blue

Maximum Ratings (Note1)


Characteristics	Symbol	Rating	Unit	
Clock pulse voltage	V_{ϕ}		V	
Shift pulse voltage	V _{SH}	-0.3~8.0		
Reset pulse voltage	VRS	-0.5 0.0		
Clamp pulse voltage	VCP			
Power supply voltage	V _{OD}	-0.3~15	V	
Operating temperature	T _{opr}	0~60	°C	
Storage temperature	T _{stg}	-25~85	°C	

Note1: All voltage are with respect to SS terminals (ground).

Pin Connections (top view)

Circuit Diagram

Optical/Electrical Characteristics

(Ta = 25°C, V_{OD} = 12 V, V_{ϕ} = V_{SH} = $V_{\overline{RS}}$ = $V_{\overline{CP}}$ = 5 V (pulse), f_{ϕ} = 1 MHz, $f_{\overline{RS}}$ = 2 MHz, t_{INT} = 11 ms, LIGHT SOURCE = A LIGHT SOURCE + CM500S FILTER (t = 1 mm), LOAD RESISTANCE = 100 k Ω)

Characteristics		Symbol	Min	Тур.	Max	Unit	Note
Sensitivity	Red	R _(R)	0.9	1.4	1.9		
	Green	R _(G)	1.3	1.9	2.5	V/lx·s	(Note 2)
	Blue	R _(B)	0.9	1.3	1.7		
Dhata raspansa nan uniformitu		PRNU (1)	_	15	20	%	(Note 3)
Photo response non uniformity		PRNU (3)	_	3	12	mV	(Note 4)
Register imbalance		RI	_	1	_	%	(Note 5)
Saturation Output Voltage		V _{SAT}	2.9	3.5	_	V	(Note 6)
Saturation Exposure		SE	1.16	1.84	_	lx·s	(Note 7)
Dark signal Voltage		V _{DRK}	_	0.5	2.0	mV	(Note 8)
Dark Signal Non Uniformity		DSNU	_	2.0	7.0	mV	(Note 8)
DC Power Dissipation		P _D	_	420	585	mW	_
Total Transfer Efficiency		TTE	92	98	_	%	_
Output Impedance		Z _O	_	0.3	1.0	kΩ	_
DC Compensation Output Voltage		Vos	5.0	6.0	7.0	V	(Note 9)
Random Noise		N _{Dσ}	_	0.8	_	mV	(Note 10)
Reset Noise		V _{RSN}	_	0.3	1.0	V	(Note 9)
Masking Noise		V _{MS}	_	0.2	1.0	V	(Note 9)

Note 2: Sensitivity is defined for each color of signal outputs average when the photosensitive surface is applied with the light of uniform illumination and uniform color temperature.

Note 3: PRNU (1) is defined for each color on a single chip by the expressions below when the photosensitive surface is applied with the light of uniform illumination and uniform color temperature.

PRNU (1) =
$$\frac{\Delta x}{\bar{x}} \times 100 \, (\%)$$

Where \bar{x} is average of total signal output and ΔX is the maximum deviation from \bar{x} . The amount of incident light is shown below.

 $Red = 1/2 \cdot SE$

Green = 1/2·SE

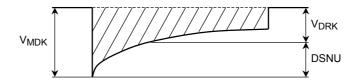
Blue = $1/4 \cdot SE$

Note 4: PRNU (3) is defined as maximum voltage with next pixels, where measured at 5% of SE (typ.).

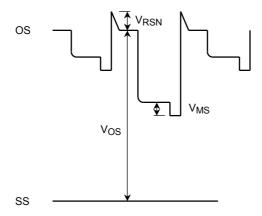
3

Note 5: Register imbalance is defined as follows.

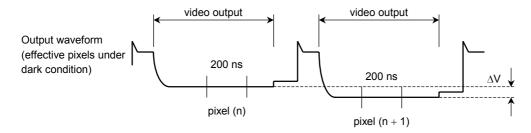
$$RI = \frac{\sum_{n=1}^{21359} |xn - x(n+1)|}{21359 \times \overline{x}} \times 100 (\%)$$


Note 6: VSAT is defined as minimum saturation output of all effective pixels.

Note 7: Definition of SE


$$SE = \frac{V_{SAT}}{R_{G}} (Ix \cdot s)$$

Note 8: V_{DRK} is defined as average dark signal voltage of all effective pixels.


DSNU is defined as different voltage between V_{DRK} and V_{MDK} when V_{MDK} is maximum dark signal voltage.

Note 9: DC signal output voltage is defined as follows. Reset noise voltage is defined as follows. Masking noise voltage is defined as follows.

Note 10: Random noise is defined as the standard deviation (sigma) of the output level difference between two adjacent effective pixels under no illumination (i.e. darkconditions) calculated by the following procedure.

- (1) Two adjacent pixels (pixel n and n + 1) in one reading are fixed as measurement points.
- (2) Each of the output level at video output periods averaged over 200 ns period to get V (n) and V (n + 1).
- (3) V(n + 1) is subtracted from V(n) to get ΔV .

$$\Delta V = V(n) - V(n+1)$$

(4) The standard deviation of ΔV is calculated after procedure (2) and (3) are repeated 30 times (30 readings).

$$\overline{\Delta V} = \frac{1}{30} \sum_{i=1}^{30} |\Delta Vi|$$

$$\sigma = \sqrt{\frac{1}{30} \sum_{i=1}^{30} (|\Delta V_i| - \overline{\Delta V})^2}$$

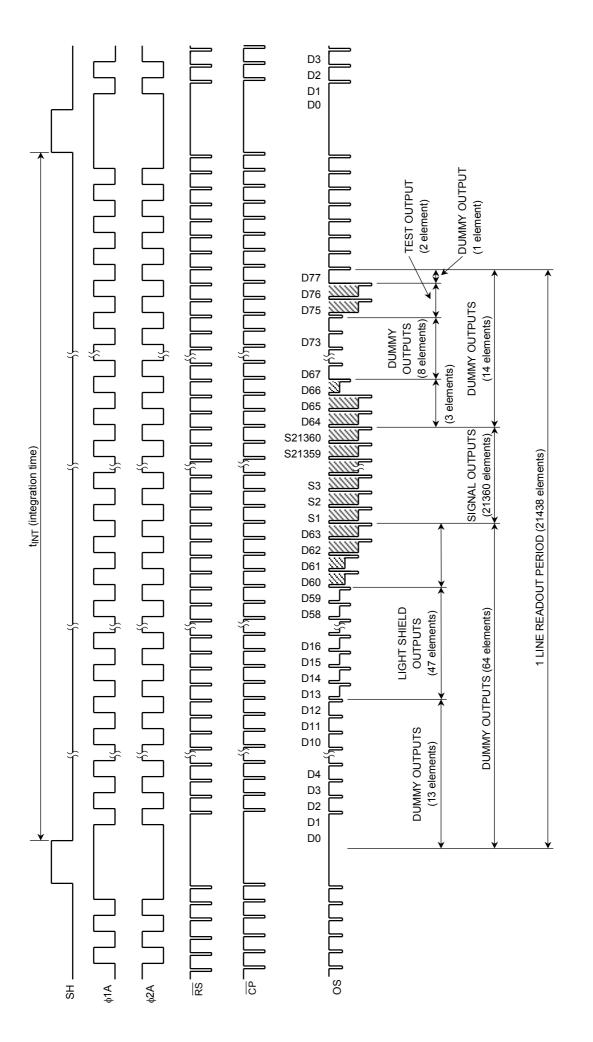
- (5) Procedure (2), (3) and (4) are repeated 10 times to get sigma value.
- (6) 10 sigma values are averaged.

$$\overline{\sigma} = \frac{1}{10} \sum_{j=1}^{10} \sigma_j$$

(7) σ value calculated using the above procedure is observed $\sqrt{2}$ times larger than that measured relative to the ground level. So we specify random noise as follows.

$$ND\sigma = \frac{1}{\sqrt{2}} \frac{-}{\sigma}$$

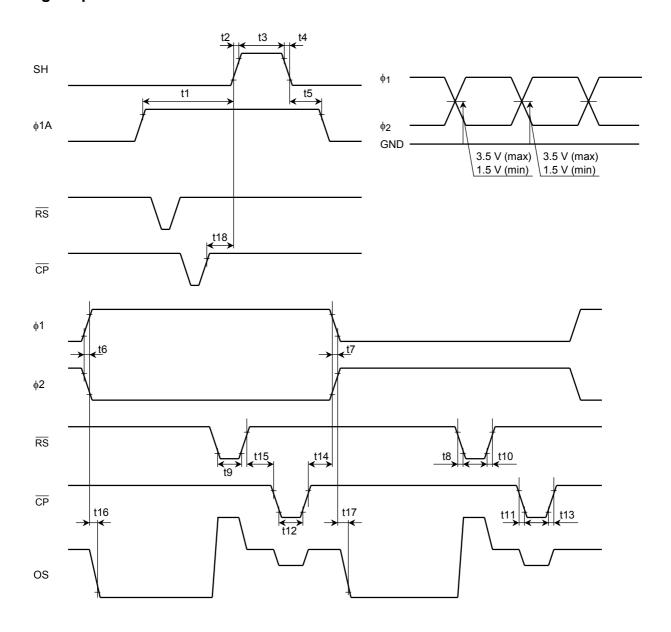
Operating Condition


Characteristics		Symbol	Min	Тур.	Max	Unit	Note
Clock pulse voltage	"H" level	V	4.5	5.0	5.5	V	
	"L" level	$V_{\phi A}$	0	_	0.3	v	
Shift pulse voltage	"H" level	V _{SH}	4.5	5.0	5.5	V	
	"L" level		0	_	0.5	V	
Booot nuleo voltago	"H" level	VRS	4.5	5.0	5.5	V	
Reset pulse voltage	"L" level		0	_	0.5	V	
Clamp pulse voltage	"H" level	.,—	4.5	5.0	5.5	V	
	"L" level	VCP	0	_	0.5	ľ	
Power supply voltage		V _{OD}	11.4	12.0	13.0	V	

Clock Characteristics (Ta = 25°C)

Characteristics	Symbol	Min	Тур.	Max	Unit
Clock pulse frequency	$f_{\phi A}$	0.15	1.0	10	MHz
Reset pulse frequency	fRS	0.3	2.0	10	MHz
Clamp pulse frequency	fCP	0.3	2.0	10	MHz
Clock capacitance (Note 11)	$C_{\phi A}$	_	400	_	pF
Shift gate capacitance	C _{SH}	_	50	_	pF
Reset gate capacitance	CRS	_	10	_	pF
Clamp gate capacitance	CCP	_	10	_	pF

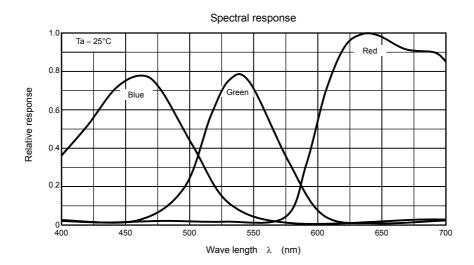
Note 11: V_{OD} = 12 V


Timing Chart (bit clamp mode)

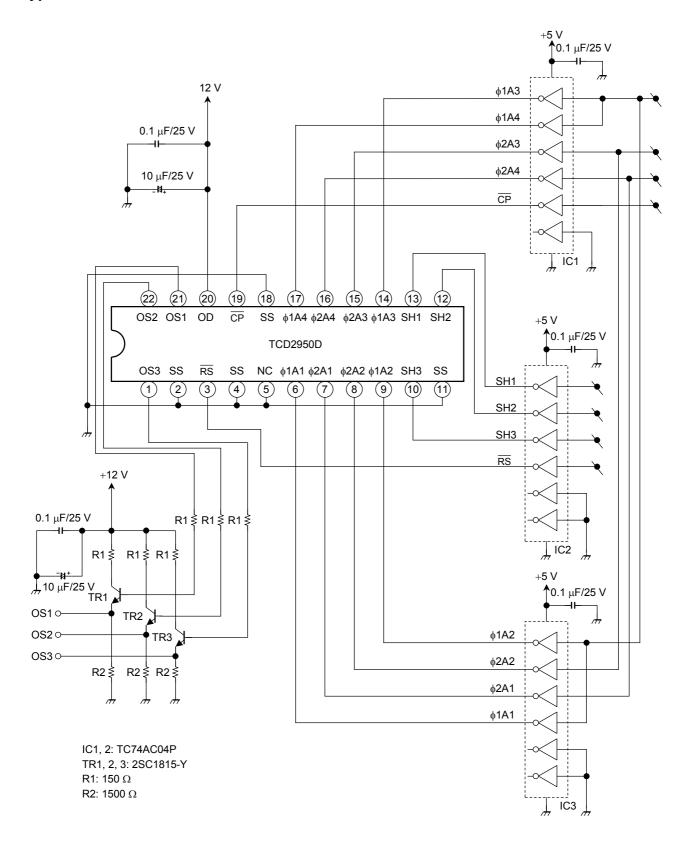
2002-01-31

ဖ

Timing Requirements


Timing Requirements

Characteristics	Symbol	Min	Typ. (Note11)	Max	Unit
Pulse timing of SH and φ1A	t1	110	1000	_	ns
Fuise tilling of STT and \$TA	t5	200	1000	_	115
SH pulse rise time, fall time	t2, t4	0	50	_	ns
SH pulse width	t3	1000	2000	_	ns
φ1, φ2 pulse rise time, fall time	t6, t7	0	50	_	ns
RS pulse rise time, fall time	t8, t10	0	20	_	ns
RS pulse width (Note 12)	t9	15	100	_	ns
CP pulse rise time, fall time	t11, t13	0	20	_	ns
CP pulse width	t12	20	100	_	ns
Pulse timing of ϕ_{1A} , ϕ_{2A} and \overline{CP}	t14	10	40	_	ns
Pulse timing of RS and CP	t15	0	100	_	ns
Video data delay time (Note 13)	t16, t17	_	15	_	ns
Pulse timing of SH and CP	t18	0	500	_	ns


Note 12: TYP is the case of $f_{\overline{RS}} = 2.0 \text{ MHz}.$

Note 13: Load resistance is 100 k Ω .

Typical Spectral Response

Typical Drive Circuit

Caution

1. Window Glass

The dust and stain on the glass window of the package degrade optical performance of CCD sensor. Keep the glass window clean by saturating a cotton swab in alcohol and lightly wiping the surface, and allow the glass to dry, by blowing with filtered dry N2. Care should be taken to avoid mechanical or thermal shock because the glass window is easily to damage.

2. Electrostatic Breakdown

Store in shorting clip or in conductive foam to avoid electrostatic breakdown.

CCD Image Sensor is protected against static electricity, but interior puncture mode device due to static electricity is sometimes detected. In handing the device, it is necessary to execute the following static electricity preventive measures, in order to prevent the trouble rate increase of the manufacturing system due to static electricity.

- a. Prevent the generation of static electricity due to friction by making the work with bare hands or by putting on cotton gloves and non-charging working clothes.
- b. Discharge the static electricity by providing earth plate or earth wire on the floor, door or stand of the work room.
- c. Ground the tools such as soldering iron, radio cutting pliers of or pincer.
 It is not necessarily required to execute all precaution items for static electricity.
 It is all right to mitigate the precautions by confirming that the trouble rate within the prescribed range.

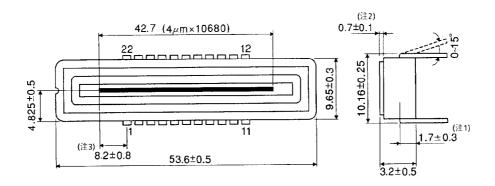
3. Incident Light

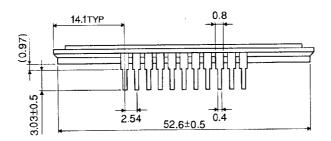
CCD sensor is sensitive to infrared light. Note that infrared light component degrades resolution and PRNU of CCD sensor.

4. Lead Frame Forming

Since this package is not strong against mechanical stress, you should not reform the lead frame. We recommend to use a IC-inserter when you assemble to PCB.

5. Soldering


Soldering by the solder flow method cannot be guaranteed because this method may have deleterious effects on prevention of window glass soiling and heat resistance.


Using a soldering iron, complete soldering within ten seconds for lead temperatures of up to 260°C, or within three seconds for lead temperatures of up to 350°C.

Package Dimensions

WDIP22-G-400-2.54D (D)

Unit: mm

(Note1): TOP OF CHIP TO BOTTOM OF PACKAGE

(Note2): GLASS THICKNESS (n = 1.5)

(Note3): No.1 SENSOR ELEMENT (S1) TO CENTER OF No.1 PIN.

Weight: 5.2 g (typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.