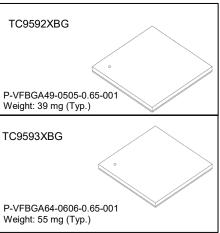


CMOS Digital Integrated Circuit Silicon Monolithic

C9592XBG/TC9593XBG

Automotive Peripheral Devices


Overview

The TC9592XBG/TC9593XBG Functional Specification defines operation of the DSISM to LVDS low power chip. TC9592XBG/TC9593XBG is the follow-up chip of TC358764XBG/ TC358765XBG, which:

- 1. Exhibit LVDS Tx block operates at 1.8V @135 MHz to reduce operation power
- 2. Update 4-lane DSI Rx max bit rate @ 1 Gbps/lane to support 1920×1200×24 @60fps
- 3. Add STBY pin with to enable turning on VDDIO power first before other power supplies.

The primary function of this chip is DSI-to-LVDS Bridge, enabling video streaming output over DSI link to drive LVDS-compatible

Weight: 55 mg (Typ.) display panels. The chip supports up to 1600×1200 24-bits per pixel resolution for single-link LVDS and up to WUXGA (1920×1200 24-bits pixels) resolution for dual-link LVDS. As a secondary function, the chip also supports an I²C Master which is controlled by the DSI link; this may be used as an interface to any other control functions through I²C.

Features

DSI Receiver

- ♦ Configurable 1- up to 4-Data-Lane DSI Link with bi-directional support on Data Lane 0
- ♦ Maximum bit rate of 1 Gbps/lane
- ♦ Video input data formats:
- RGB565 16-bits per pixel
- RGB666 18-bits per pixel
- RGB666 loosely packed 24-bits per pixel
- RGB888 24-bits per pixel
- ♦ Video frame size:
- Up to 1600×1200 24-bits per pixel resolution to single-link LVDS display panel, limited by 135 MHz LVDS speed
- Up to WUXGA resolutions (1920×1200 24-bits pixels) to dual-link LVDS display panel, limited by 4 Gbps DSI link speed
- ♦ Supports Video Stream packets for video data transmission.
- ♦ Supports generic long packets for accessing the chip's register set
- ♦ Supports the path for Host to control the on-chip I2C Master

LVDS FPD Link Transmitter

- ♦ Supports single-link or dual-link
- ♦ Maximum pixel clock frequency of 135 MHz.
- ♦ Maximum pixel clock speed of 135 MHz for singlelink or 270 MHz for dual-link

- ♦ Supports display up to 1600×1200 24-bits per pixel resolution for single-link, or up to 1920×1200 24-bits resolutions for dual-link
- Supports the following pixel formats:
- RGB666 18-bits per pixel
- RGB888 24-bits per pixel
- ♦ Features Toshiba Magic Square algorithm which enables a RGB666 display panel to produce a display quality almost equivalent to that of an RGB888 24-bits panel
- ♦ Flexible mapping of parallel data input bit ordering
- Supports programmable clock polarity
- Supports two power saving states
- Sleep state, when receiving DSI ULPS signaling
- Standby state, entered by STBY pin assertion

System Operation

- Host configures the chip through DSI link
- ♦ Through DSI link. Host accesses the chip register. set using Generic Write and Read packets. One Generic Long Write packet can write to multiple contiguous register addresses
- ♦ Includes an I²C Master function which is controlled by Host through DSI link (multi-master is not supported)
- ♦ Power management features to save power
- ♦ Configuration registers is also accessible through I2C Slave interface

Clock Source

- ♦ LVDS pixel clock source is either from external clock EXTCLK or derived from DSICLK.
- ♦ A built-in PLL generates the high-speed LVDS serializing clock requiring no external components

• Digital Input/Output Signals

- ♦ All Digital Input signals are 3.3V tolerant
- ♦ All Digital Output signals can output 1.8V or 3.3V depending on IO supply voltage

Power supply

- ♦ MIPI® DSI D-PHYSM: 1.2 V
- ♦ LVDS PHY: 1.2V and 1.8 V
- ♦ I/O: 1.8 V or 3.3V (all IO supply pins must be same level)
- ♦ Digital Core: 1.2 V

• Power Consumption

- ♦ Power Down State is achieved by:
 - 1. Reset asserted
 - 2. EXTCLK not toggling
 - 3. STBY = 0
 - 4. DSI in ULPS Drive

• Packaging Information

- ♦ TC9593XBG BGA64 (0.65mm ball pitch)
- Supports DSI-RX 4-data-lanes + Dual-Link LVDS-TX
- 6.0mm × 6.0mm × 1.0mm
- ♦ TC9592XBG BGA49 (0.65mm ball pitch)
- Supports DSI-RX 4-data-lanes + Single-Link LVDS-TX
- 5.0mm × 5.0mm × 1.0mm

Table of content

REFERENCE	7
1. Introduction	g
1.1. Scope	g
1.2. Purpose	g
2. Device Overview	10
3. Features	11
4. Pin Layout	13
4.1. TC9593XBG BGA64 Pin-out Description	14
4.2. TC9593XBG BGA64 Pin Count Summary	15
4.3. TC9592XBG BGA49 Pin-out Description	16
4.4. TC9592XBG BGA49 Pin Count Summary	17
5. Package	18
6. Electrical characteristics	20
6.1. Absolute Maximum Ratings	20
6.2. Operating Conditions	20
6.3. DC Electrical Specification	21
6.3.1. Normal CMOS I/Os DC Specifications	21
6.3.2. DSI Differential I/Os DC Specifications	21
6.3.2.1 LP Transmitter	21
6.3.2.2 HS Receiver	
6.3.2.3 LP Receiver.	
6.3.3. LVDS Transmitter DC Specifications	
7. Revision History	
RESTRICTIONS ON PRODUCT USE	24

Table of Figures

Figure 5.1	TC9593XBG Chip Pin Layout (BGA64 – Top View)	13 18
	List of Tables	
Table 4-1	TC9593XBG BGA64 Pin Count Summary	15
Table 4-2	BGA49 Pin Count Summary	17
Table 5-1	Information Summary	19
Table 6-1	Absolute Maximum Ratings	20
Table 6-2	Operating Conditions	20
Table 6-3	Normal CMOS IOs DC Specifications	21
Table 6-4	DSI LP Transmitter DC Specifications	21
Table 6-5	DSI HS Receiver DC Specifications	22
Table 6-6	DSI LP Receiver DC Specifications	
Table 6-7		22
Table 7-1	Revision History	23

- MIPI® is a registered trademark of MIPI Alliance, Inc. DSISM and D-PHYSM are service marks of MIPI Alliance, Inc.
- Other company names, product names, and service names may be trademarks of their respective companies.

5 / 24 2020-06-05

1 NOTICE OF DISCLAIMER

- 2 The material contained herein is not a license, either expressly or impliedly, to any IPR owned or controlled
- 3 by any of the authors or developers of this material or MIPI. The material contained herein is provided on
- 4 an "AS IS" basis and to the maximum extent permitted by applicable law, this material is provided AS IS
- 5 AND WITH ALL FAULTS, and the authors and developers of this material and MIPI hereby disclaim all
- 6 other warranties and conditions, either express, implied or statutory, including, but not limited to, any (if
- 7 any) implied warranties, duties or conditions of merchantability, of fitness for a particular purpose, of
- 8 accuracy or completeness of responses, of results, of workmanlike effort, of lack of viruses, and of lack of
- 9 negligence.
- All materials contained herein are protected by copyright laws, and may not be reproduced, republished,
- distributed, transmitted, displayed, broadcast or otherwise exploited in any manner without the express
- prior written permission of MIPI Alliance. MIPI, MIPI Alliance and the dotted rainbow arch and all related
- trademarks, tradenames, and other intellectual property are the exclusive property of MIPI Alliance and
- cannot be used without its express prior written permission.
- 15 ALSO, THERE IS NO WARRANTY OF CONDITION OF TITLE, QUIET ENJOYMENT, QUIET
- 16 POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD
- 17 TO THIS MATERIAL OR THE CONTENTS OF THIS DOCUMENT. IN NO EVENT WILL ANY
- 18 AUTHOR OR DEVELOPER OF THIS MATERIAL OR THE CONTENTS OF THIS DOCUMENT OR
- 19 MIPI BE LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE
- 20 GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL,
- 21 CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER
- 22 CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR
- 23 ANY OTHER AGREEMENT, SPECIFICATION OR DOCUMENT RELATING TO THIS MATERIAL,
- 24 WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH
- 25 DAMAGES.
- Without limiting the generality of this Disclaimer stated above, the user of the contents of this Document is
- 27 further notified that MIPI: (a) does not evaluate, test or verify the accuracy, soundness or credibility of the
- 28 contents of this Document; (b) does not monitor or enforce compliance with the contents of this Document;
- and (c) does not certify, test, or in any manner investigate products or services or any claims of compliance
- 30 with the contents of this Document. The use or implementation of the contents of this Document may
- 31 involve or require the use of intellectual property rights ("IPR") including (but not limited to) patents,
- 32 patent applications, or copyrights owned by one or more parties, whether or not Members of MIPI. MIPI
- does not make any search or investigation for IPR, nor does MIPI require or request the disclosure of any
- 34 IPR or claims of IPR as respects the contents of this Document or otherwise.
- 35 Questions pertaining to this document, or the terms or conditions of its provision, should be addressed to:
- 36 MIPI Alliance, Inc.
- 37 c/o IEEE-ISTO
- 38 445 Hoes Lane
- 39 Piscataway, NJ 08854
- 40 Attn: Board Secretary

This Notice of Disclaimer applies to all DSI input and processing paths related descriptions throughout this document.

6 / 24 2020-06-05

REFERENCE

- 1. MIPI D-PHY, "MIPI_D-PHY_specification_v01-00-00, May 14, 2009"
- MIPI Alliance Specification for DSI version 1.01, Feb 2008
 MIPI Alliance Specification for DPI version 2.0, Sep, 2005

7 / 24 2020-06-05

Precautions and Usage Considerations Specific to Application Specific Standard Products and General-Purpose Linear Ics

1. A CAUTION

Use an appropriate power supply fuse to ensure that a large current does not continuously flow in case of over current and/or IC failure. The IC will fully break down when used under conditions that exceed its absolute maximum ratings, when the wiring is routed improperly or when an abnormal pulse noise occurs from the wiring or load, causing a large current to continuously flow and the breakdown can lead smoke or ignition. To minimize the effects of the flow of a large current in case of breakdown, appropriate settings, such as fuse capacity, fusing time and insertion circuit location, are required.

- a. If your design includes an inductive load such as a motor coil, incorporate a protection circuit into the design to prevent device malfunction or breakdown caused by the current resulting from the inrush current at power ON or the negative current resulting from the back electromotive force at power OFF. For details on how to connect a protection circuit such as a current limiting resistor or back electromotive force adsorption diode, refer to individual IC datasheets or the IC databook. IC breakdown may cause injury, smoke or ignition.
- b. Use a stable power supply with ICs with built-in protection functions. If the power supply is unstable, the protection function may not operate, causing IC breakdown. IC breakdown may cause injury, smoke or ignition.
- c. Carefully select external components (such as inputs and negative feedback capacitors) and load components (such as speakers), for example, power amp and regulator. If there is a large amount of leakage current such as input or negative feedback condenser, the IC output DC voltage will increase. If this output voltage is connected to a speaker with low input withstand voltage, overcurrent or IC failure can cause smoke or ignition. (The over current can cause smoke or ignition from the IC itself.) In particular, please pay attention when using a Bridge Tied Load (BTL) connection type IC that inputs output DC voltage to a speaker directly.

2. Over current Protection Circuit

Over current protection circuits (referred to as current limiter circuits) do not necessarily protect ICs under all circumstances. If the Over current protection circuits operate against the over current, clear the over current status immediately.

Depending on the method of use and usage conditions, such as exceeding absolute maximum ratings can cause the over current protection circuit to not operate properly or IC breakdown before operation. In addition, depending on the method of use and usage conditions, if over current continues to flow for a long time after operation, the IC may generate heat resulting in breakdown.

3. Thermal Shutdown Circuit

Thermal shutdown circuits do not necessarily protect ICs under all circumstances. If the Thermal shutdown circuits operate against the over temperature, clear the heat generation status immediately.

Depending on the method of use and usage conditions, such as exceeding absolute maximum ratings can cause the thermal shutdown circuit to not operate properly or IC breakdown before operation.

4. Heat Radiation Design

When using an IC with large current flow such as power amp, regulator or driver, please design the device so that heat is appropriately radiated, not to exceed the specified junction temperature (T_J) at any time and condition. These ICs generate heat even during normal use. An inadequate IC heat radiation design can lead to decrease in IC life, deterioration of IC characteristics or IC breakdown. In addition, please design the device taking into considerate the effect of IC heat radiation with peripheral components.

a. Mounting

5. Installation to Heat Sink

Please install the power IC to the heat sink not to apply excessive mechanical stress to the IC. Excessive mechanical stress can lead to package cracks, resulting in a reduction in reliability or breakdown of internal IC chip. In addition, depending on the IC, the use of silicon rubber may be prohibited. Check whether the use of silicon rubber is prohibited for the IC you intend to use, or not. For details of power IC heat radiation design and heat sink installation, refer to individual technical datasheets or IC databooks.

a. Also please refer to "RESTRICTIONS ON PRODUCT USE".

8 / 24 2020-06-05

1. Introduction

The TC9592XBG/TC9593XBG Functional Specification defines operation of the DSI TO LVDS low power chip. TC9592XBG/TC9593XBG is the follow-up chip of TC358764XBG/ TC358765XBG, which:

- 1. Exhibit LVDS Tx block operates at 1.8V @135 MHz to reduce operation power
- 2. Update 4-lane DSI Rx max bit rate @ 1 Gbps/lane to support 1920 × 1200 × 24 @60fps
- 3. Add STBY pin with to enable turning on VDDIO power first before other power supplies.

The primary function of this chip is DSI-to-LVDS Bridge, enabling video streaming output over DSI link to drive LVDS-compatible display panels. The chip supports up to 1600×1200 24-bits per pixel resolution for single-link LVDS and up to WUXGA (1920×1200 24-bits pixels) resolution for dual-link LVDS. As a secondary function, the chip also supports an I²C Master which is controlled by the DSI link; this may be used as an interface to any other control functions through I²C.

The chip can be configured through the DSI link by sending write register commands through DSI Generic Long Write-packets. It can also be configured through the I^2C Slave interface. I^2C slave address of TC9592XBG/TC9593XBG is 8'b0001_111X, where X = 0/1 for write/read to/from TC9593XBG operation.

This specification provides description of two product versions:

TC9592XBG:

In BGA49 package, it supports DSI-RX with up to 4 data lanes, and outputs to Single-Link LVDS.

TC9593XBG:

In BGA64 package, it supports DSI-RX with up to 4 data lanes, and outputs to Dual-Link LVDS.

1.1. Scope

This document details the operation of the chip, description of each major function that the chip supports, description of the configuration register set, and includes pinout, package, and electrical characteristics information.

1.2. Purpose

This document serves as the vehicle for exchanging detailed technical information of the TC9592XBG/TC9593XBG chip and its usage within the target application systems at the customer side. It also serves as the chip functional specification for design implementation and verification.

2. Device Overview

The TC9592XBG/TC9593XBG chip functions primarily as a DSI-to-LVDS communication protocol bridge, enabling video streaming from a Host processor over DSI link to drive LVDS-compatible display panels. In other words, the chip receives video stream input through its DSI receiver (DSI-RX), buffers the received pixel data in a buffer, and then re-transmits the video stream out through the LVDS transmitter.

As a secondary function, the chip also ports an I²C Master which is controlled by the DSI link; this may be used as a programming interface to other peripherals in the system.

The chip is configured through the DSI link. Alternatively, it can optionally be configured through the I²C Slave interface; in such case, the I²C Master function would be disabled.

The reference video pixel clock for the LVDS link is sourced either from an external clock via input pin EXTCLK or derived from DSICLK. The chip integrates a PLL which synthesizes the high-speed clock for use solely to serialize video data over the LVDS link.

The DSI-RX receiver supports from 1- to 4-Lane configurations at bit rate up to 1 Gbps per lane. Host can transmit video in video mode. In video mode, Host controls video timing by sending video frame and line sync events together with video pixel data; video data transmission can be burst or non-burst. Since the chip integrates only 1024-pixel of video buffer, Host still has to take care of transmitting pixel data at appropriate video line time in order to avoid buffer overflow (or underflow).

The LVDS transmitter supports a clock frequency of up to 135 MHz for either single- or dual-link.

The chip supports power management to conserve power when its functions are not in use. Host manages the chip's power consumption states by using ULPS signaling over DSI link and/or STBY pin.

3. Features

DSI Receiver

- ♦ Configurable 1- up to 4-Data-Lane DSI Link with bi-directional support on Data Lane 0
- ♦ Maximum bit rate of 1 Gbps/lane
- ♦ Video input data formats:
 - RGB565 16-bits per pixel
 - RGB666 18-bits per pixel
 - RGB666 loosely packed 24-bits per pixel
 - RGB888 24-bits per pixel
- ♦ Video frame size:
 - Up to 1600×1200 24-bits per pixel resolution to single-link LVDS display panel, limited by 135 MHz LVDS speed
 - Up to WUXGA resolutions (1920×1200 24-bits pixels) to dual-link LVDS display panel, limited by 4 Gbps DSI link speed
- ♦ Supports Video Stream packets for video data transmission
- ♦ Supports generic long packets for accessing the chip's register set
- ♦ Supports the path for Host to control the on-chip I²C Master

• LVDS FPD Link Transmitter

- ♦ Supports single-link or dual-link
- ♦ Maximum pixel clock frequency of 135 MHz.
- ♦ Maximum pixel clock speed of 135 MHz for single-link or 270 MHz for dual-link
- ♦ Supports display up to 1600×1200 24-bits per pixel resolution for single-link, or up to 1920×1200 24-bits resolutions for dual-link
- ♦ Supports the following pixel formats:
 - RGB666 18-bits per pixel
 - RGB888 24-bits per pixel
- ♦ Features Toshiba Magic Square algorithm which enables a RGB666 display panel to produce a display quality almost equivalent to that of an RGB888 24-bits panel
- ♦ Flexible mapping of parallel data input bit ordering
- ♦ Supports programmable clock polarity
- ♦ Supports two power saving states
 - Sleep state, when receiving DSI ULPS signaling
 - Standby state, entered by STBY pin assertion

• System Operation

- ♦ Host configures the chip through DSI link.
- ♦ Through DSI link, Host accesses the chip register set using Generic Write and Read packets. One Generic Long Write packet can write to multiple contiguous register addresses.
- ♦ Includes an I²C Master function which is controlled by Host through DSI link (multi-master is not supported)
- ♦ Power management features to save power
- ♦ Configuration registers is also accessible through I²C Slave interface.

Clock Source

- ♦ LVDS pixel clock source is either from external clock EXTCLK or derived from DSICLK.
- ♦ A built-in PLL generates the high-speed LVDS serializing clock requiring no external components

• Digital Input/Output Signals

- ♦ All Digital Input signals are 3.3V tolerant.
- ♦ All Digital Output signals can output 1.8V or 3.3V depending on IO supply voltage.

Power supply

♦ MIPI DSI D-PHY: 1.2 V

♦ LVDS PHY: 1.2V and 1.8 V

♦ I/O: 1.8 V or 3.3V (all IO supply pins must be same level)

♦ Digital Core: 1.2 V

• Power Consumption

♦ Power Down State is achieved by:

1. Reset asserted

2. EXTCLK not toggling

3. STBY = 0

4. DSI in ULPS Drive

		R	educed	Mode			
	VDDC	VDDS	DSI	LVDS		TOTAL	Unit
	VDDC	VDDIO	VDD1	LVDS1.2	LVDS1.8	Power	Ullit
	1.2	1.8	1.2	1.2	1.8		V
720×480×18	8.60	0.11	8.40	3.60	10.00		mA
@26 MHz	10.32	0.20	10.08	4.32	18.00	42.92	mW
1366×768×18	17.2	0.13	14.6	8.3	11.1		mA
@85 MHz	20.64	0.23	17.52	9.96	19.98	68.33	mW
1920×1080×18 Dual Link	18.57	0.092	19.77	8.123	22.4		mA
@74MHz	22.28	0.17	23.72	9.75	40.32	96.24	mW
Power Down	0.03	0.01	0.02	0.01	0.02		mA
Power Down	0.04	0.02	0.02	0.01	0.04	0.09	mW

• Packaging Information

- ♦ TC9593XBG BGA64 (0.65 mm ball pitch)
 - Supports DSI-RX 4-data-lanes + Dual-Link LVDS-TX
 - 6.0 mm × 6.0 mm × 1.0 mm
- ♦ TC9594XBG BGA49 (0.65 mm ball pitch)
 - Supports DSI-RX 4-data-lanes + Single-Link LVDS-TX
 - 5.0 mm × 5.0 mm × 1.0 mm

4. Pin Layout

A1	A2	А3	A4	A 5	A6	A7	A8
VSS_LVDS2_12	LVTX2AN	LVTX2BN	LVTX2CN	LVTX2DN	LVTX2EN	VSS_LVDS2_18	VSS_LVDS1_12
B1	B2	В3	В4	B5	В6	В7	B8
VDD_LVDS2_12	LVTX2AP	LVTX2BP	LVTX2CP	LVTX2DP	LVTX2EP	VDD_LVDS2_18	VDD_LVDS1_12
C1	C2	C 3	C4	C 5	C6	C 7	C8
VSSIO	VDDIO	STBY	GPIO3	VDD_LVDS2_18	VSS_LVDS2_18	LVTX1AP	LVTX1AN
D1	D2	D3	D4	D5	D6	D7	D8
EXTCLK	GPIO2	GPIO1	RESX	TM	VDD_LVDS1_18	LVTX1BP	LVTX1BN
E1	E2	E3	E4	E5	E6	E7	E8
VSSC	VDDC	GPIO0	VDDC	VSSC	VSS_LVDS1_18	LVTX1CP	LVTX1CN
F1	F2	F3	F4	F5	F6	F7	F8
VSSIO	VDDIO	VDD_MIPI	VSS_MIPI	VSS_MIPI	VDD_MIPI	LVTX1DP	LVTX1DN
G1	G2	G 3	G4	G5	G6	G 7	G8
I2C_SCL	DSRXD0P	DSRXD1P	DSRXCP	DSRXD2P	DSRXD3P	LVTX1EP	LVTX1EN
H1	H2	Н3	H4	H5	Н6	H7	Н8
I2C_SDA	DSRXD0M	DSRXD1M	DSRXCM	DSRXD2M	DSRXD3M	VDD_LVDS1_18	VSS_LVDS1_18

Figure 4.1 TC9593XBG Chip Pin Layout (BGA64 – Top View)

A1	A2	A3	A4	A5	A6	A7
VSSIO	VDDIO	RESX	GPIO0	VSSC	VDDC	VSSC
B1	B2	В3	В4	B5	В6	В7
EXTCLK	VDDC	VSSC	TM	VDD_LVDS1_12	LVTX1AP	LVTX1AN
C1	C2	С3	C4	C 5	C6	C 7
I2C_SDA	GPIO3	GPIO2	GPIO1	VSS_LVDS1_12	LVTX1BP	LVTX1BN
D1	D2	D 3	D4	D5	D6	D7
I2C_SCL	STBY	VSS_MIPI	VDD_MIPI	VSS_LVDS1_18	LVTX1CP	LVTX1CN
E1	E2	E 3	E4	E 5	E6	E7
VDDIO	VSSIO	VSS_MIPI	VDD_MIPI	VDD_LVDS1_18	LVTX1DP	LVTX1DN
F1	F2	F3	F4	F5	F6	F7
DSRXD0P	DSRXD1P	DSRXCP	DSRXD2P	DSRXD3P	LVTX1EP	LVTX1EN
G 1	G2	G3	G4	G 5	G6	G7
DSRXD0M	DSRXD1M	DSRXCM	DSRXD2M	DSRXD3M	VDD_LVDS1_18	VSS_LVDS1_18

Figure 4.2 TC9592XBG Chip Pin Layout (BGA49 – Top View)

4.1. TC9593XBG BGA64 Pin-out Description

Group	Pin Name	IO Type	Pin Cnt.	Description	Power Supply Voltage
	DSRXCP	DSI-PHY	1	DSI clock signal - positive	1.2 V
	DSRXCM	DSI-PHY	1	DSI clock signal - negative	1.2 V
	DSRXD0P	DSI-PHY	1	DSI data lane 0 - positive	1.2 V
	DSRXD0M	DSI-PHY	1	DSI data lane 0 - negative	1.2 V
	DSRXD1P	DSI-PHY	1	DSI data lane 1 - positive	1.2 V
DSI-RX IF	DSRXD1M	DSI-PHY	1	DSI data lane 1 - negative	1.2 V
DSI-KX IF	DSRXD2P	DSI-PHY	1	DSI data lane 2 - positive	1.2 V
	DSRXD2M	DSI-PHY	1	DSI data lane 2 - negative	1.2 V
	DSRXD3P	DSI-PHY	1	DSI data lane 3 - positive	1.2 V
	DSRXD3M	DSI-PHY	1	DSI data lane 3 - negative	1.2 V
	VDD_MIPI	Power	2	MIPI Analog Power Supply	1.2 V
	VSS MIPI	Ground	2	MIPI Analog Ground	GND
	LVTX1AP	LVDS-PHY	1	LVDS first-link data channel A - positive	1.8 V
	LVTX1AN	LVDS-PHY	1	LVDS first-link data channel A - negative	1.8 V
	LVTX1BP	LVDS-PHY	1	LVDS first-link data channel B - positive	1.8 V
	LVTX1BN	LVDS-PHY	1	LVDS first-link data channel B - negative	1.8 V
	LVTX1CP	LVDS-PHY	1	LVDS first-link data channel C - positive	1.8 V
	LVTX1CN	LVDS-PHY	1	LVDS first-link data channel C - negative	1.8 V
1st-Link	LVTX1DP	LVDS-PHY	1	LVDS first-link data channel D (Clock) - positive	1.8 V
LVDS-TX	LVTX1DN	LVDS-PHY	1	LVDS first-link data channel D (Clock) - positive	1.8 V
IF	LVTX1EP	LVDS-PHY	1	LVDS first-link data channel E - positive	1.8 V
	LVTX1EN	LVDS-PHY	1	LVDS first-link data channel E - negative	1.8 V
	VDD LVDS1 18	Power	2	First-link LVDS 1.8V Power Supply	1.8 V
	VSS LVDS1_18	Ground	2	First-link LVDS 1.8V Ground	GND
	VDD LVDS1 12	Power	1	First-link LVDS 1.2V Power Supply	1.2 V
	VSS_LVDS1_12	Ground	1	First-link LVDS 1.2V Ground	GND
	LVTX2AP	LVDS-PHY	1	LVDS second-link data channel A - positive	1.8 V
	LVTX2AN	LVDS-PHY	1	LVDS second-link data channel A - negative	1.8 V
	LVTX2BP	LVDS-PHY	1	LVDS second-link data channel B - positive	1.8 V
	LVTX2BN	LVDS-PHY	1	LVDS second-link data channel B - negative	1.8 V
	LVTX2CP	LVDS-PHY	1	LVDS second-link data channel C - positive	1.8 V
	LVTX2CN	LVDS-PHY	1	LVDS second-link data channel C - positive	1.8 V
2nd-Link	LVTX2CN LVTX2DP	LVDS-PHY	1	LVDS second-link data channel D (Clock) - positive	1.8 V
LVDS-TX	LVTX2DI LVTX2DN	LVDS-PHY	1	LVDS second-link data channel D (Clock) - positive	1.8 V
IF	LVTX2EP	LVDS-PHY	1	LVDS second-link data channel E - positive	1.8 V
	LVTX2EP LVTX2EN	LVDS-PHY	1	LVDS second-link data channel E - positive	1.8 V
	VDD LVDS2 18	Power	2	Second-link LVDS 1.8V Power Supply	1.8 V
	VSS LVDS2_18	Ground	2	Second-link LVDS 1.8V Ground	GND
	VDD LVDS2_16	Power	1	Second-link LVDS 1.6V Ground Second-link LVDS 1.2V Power Supply	1.2 V
	VSS LVDS2_12	Ground	1	Second-link LVDS 1.2V Fower Supply Second-link LVDS 1.2V Ground	GND
	I2C SCL	S-OD		I ² C Master or Slave interface clock signal	
I2C IF	I2C_SCL I2C SDA	S-OD S-OD	1	I ² C Master or Slave interface clock signal	1.8V or 3.3V 1.8V or 3.3V
GPIO	_	N-PD	4	GPIO bits 3-0	
GFIU	GPIO[3:0]	N-PD N-PD		Hardware reset, low active	1.8V or 3.3V
	RESX		1		1.8V or 3.3V
	EXTCLK STBY	N-PD	1	External pixel clock source	1.8V or 3.3V
		N DD	1	Standby pin, low active	1.8V or 3.3V
SYSTEM	TM	N-PD	1	Test mode select	1.8V or 3.3V
	VDDIO	Power	2	IO Power Supply	1.8V or 3.3V
	VSSIO	Ground	2	IO Ground	GND
	VDDC	Power	2	Digital Core Power Supply	1.2 V
	VSSC	Ground	2	Digital Core Ground	GND

Buffer Type Abbreviation:

N: Normal IO

N-PD: Normal IO with Pull Down

S-OD: Pseudo open-drain output, Schmitt input

DSI-PHY: front-end analog IO for DSI LVDS-PHY: front-end analog IO for LVDS

4.2. TC9593XBG BGA64 Pin Count Summary

Table 4-1 TC9593XBG BGA64 Pin Count Summary

Group Name	Pin Count	Note
DSI-RX IF	14	Include DSI Power & Ground
1st Link/2nd Link LVDS-TX IF	32	Include LVDS Power & Ground
I ² C IF	2	-
GPIO	4	-
SYSTEM	12	-
Total Pin Count	64	

4.3. TC9592XBG BGA49 Pin-out Description

Group	Pin Name	IO Type	Pin Cnt.	Description	Power Supply Voltage
	DSRXCP	DSI-PHY	1	DSI clock signal - positive	1.2 V
	DSRXCM	DSI-PHY	1	DSI clock signal - negative	1.2 V
	DSRXD0P	DSI-PHY	1	DSI data lane 0 - positive	1.2 V
	DSRXD0M	DSI-PHY	1	DSI data lane 0 - negative	1.2 V
	DSRXD1P	DSI-PHY	1	DSI data lane 1 - positive	1.2 V
DCI DV IE	DSRXD1M	DSI-PHY	1	DSI data lane 1 - negative	1.2 V
DSI-RX IF	DSRXD2P	DSI-PHY	1	DSI data lane 2 - positive	1.2 V
	DSRXD2M	DSI-PHY	1	DSI data lane 2 - negative	1.2 V
	DSRXD3P	DSI-PHY	1	DSI data lane 3 - positive	1.2 V
	DSRXD3M	DSI-PHY	1	DSI data lane 3 - negative	1.2 V
	VDD_MIPI	Power	2	MIPI Analog Power Supply	1.2 V
	VSS_MIPI	Ground	2	MIPI Analog Ground	GND
	LVTX1AP	LVDS-PHY	1	LVDS first-link data channel A - positive	1.8 V
	LVTX1AN	LVDS-PHY	1	LVDS first-link data channel A - negative	1.8 V
	LVTX1BP	LVDS-PHY	1	LVDS first-link data channel B - positive	1.8 V
	LVTX1BN	LVDS-PHY	1	LVDS first-link data channel B - negative	1.8 V
	LVTX1CP	LVDS-PHY	1	LVDS first-link data channel C - positive	1.8 V
	LVTX1CN	LVDS-PHY	1	LVDS first-link data channel C - negative	1.8 V
LVDS-TX	LVTX1DP	LVDS-PHY	1	LVDS first-link data channel D (Clock) - positive	1.8 V
IF	LVTX1DN	LVDS-PHY	1	LVDS first-link data channel D (Clock) - negative	1.8 V
	LVTX1EP	LVDS-PHY	1	LVDS first-link data channel E - positive	1.8 V
	LVTX1EN	LVDS-PHY	1	LVDS first-link data channel E - negative	1.8 V
	VDD_LVDS1_18	Power	2	First-link LVDS 1.8V Power Supply	1.8 V
	VSS_LVDS1_18	Ground	2	First-link LVDS 1.8V Ground	GND
	VDD_LVDS1_12	Power	1	First-link LVDS 1.2V Power Supply	1.2 V
	VSS_LVDS1_12	Ground	1	First-link LVDS 1.2V Ground	GND
I2C IF	I2C_SCL	S-OD	1	I ² C Master or Slave interface clock signal	1.8V or 3.3V
IZC IF	I2C_SDA	S-OD	1	I ² C Master or Slave interface data signal	1.8V or 3.3V
GPIO	GPIO[3:0]	N-PD	4	GPIO bits 3-0	1.8V or 3.3V
	RESX	N-PD	1	Hardware reset, low active	1.8V or 3.3V
	EXTCLK	N-PD	1	External pixel clock source	1.8V or 3.3V
	STBY	N	1	Standby pin, low active	1.8V or 3.3V
SYSTEM	TM	N-PD	1	Test mode select	1.8V or 3.3V
SISIEW	VDDIO	Power	2	IO Power Supply	1.8V or 3.3V
	VSSIO	Ground	2	IO Ground	GND
	VDDC	Power	2	Digital Core Power Supply	1.2 V
	VSSC	Ground	3	Digital Core Ground	GND

Buffer Type Abbreviation:

N: Normal IO N-PD: Normal IO

S-OD: Pseudo open-drain output, Schmitt input

DSI-PHY: front-end analog IO for DSI LVDS-PHY: front-end analog IO for LVDS

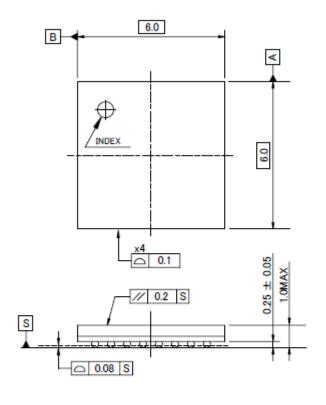
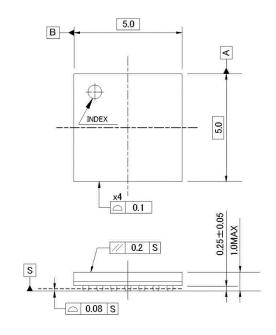

4.4. TC9592XBG BGA49 Pin Count Summary

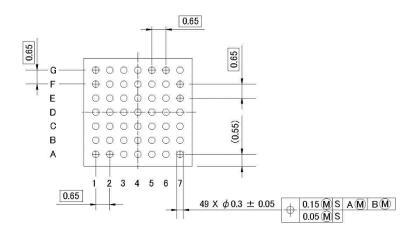

Table 4-2 BGA49 Pin Count Summary

Group Name	Pin Count	Note
DSI-RX IF	14	Include DSI Power & Ground
LVDS-TX IF	16	Include LVDS Power & Ground
I ² C IF	2	-
GPIO	4	-
SYSTEM	13	-
Total Pin Count	49	

5. Package

P-VFBGA64-0606-0.65-001 "Unit:mm"


Weight: 55 mg (Typ.)


Figure 5.1 P-VFBGA64-0606-0.65-001 (TC9593XBG) Package Drawing

P-VFBGA49-0505-0.65-001

" Unit: mm "

Weight: 39mg (Typ.)

Figure 5.2 P-VFBGA49-0505-0.65-001 (TC9592XBG) Package Drawing

Table 5-1 Information Summary

	TC9593XBG Package	TC9592XBG Package
Package Type	VFBGA	VFBGA
Ball Diameter	0.3 mm	0.3 mm
Ball Pitch (e)	0.65 mm	0.65 mm
Edge Ball center to center	4.55 mm × 4.55 mm	3.90 mm × 3.90 mm
Body Size	6 mm × 6 mm	5 mm × 5 mm
Thickness	1 mm	1 mm

6. Electrical characteristics

6.1. Absolute Maximum Ratings

Operating ambient Temperature range: Ta = -40°C to +85°C

All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.

Table 6-1 Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage (1.8V – Digital IO)	VDDIO	-0.3 to +3.9	V
Supply voltage (1.2V – Digital Core)	VDDC	-0.3 to +1.8	V
Supply voltage (1.2V – MIPI DSI PHY)	VDD_MIPI	-0.3 to +1.8	V
Supply voltage (1.8V – LVDS PHY)	VDD_LVDS1_18, VDD_LVDS2_18	-0.3 to VDD_LVDS_18+0.3	V
Supply voltage (1.2V – LVDS PHY)	VDD_LVDS1_12 VDD_LVDS2_12	-0.3 to +1.8	V
Input voltage (DSI I/O)	V _{IN_DSI}	-0.3 to VDD_MIPI+0.3	V
Output voltage (DSI I/O)	V _{OUT_DSI}	-0.3 to VDD_MIPI+0.3	V
Input voltage (Digital IO)	V _{IN_IO}	-0.3 to VDDIO+0.3	V
Output voltage (Digital IO)	V _{OUT_IO}	-0.3 to VDDIO+0.3	V
Output voltage (LVDS Driver)	V _{OUT_LVDS}	-0.3 to VDD_LVDS_18+0.3	V

6.2. Operating Conditions

Table 6-2 Operating Conditions

Parameter	Symbol	Min	Тур.	Max	Unit
Supply voltage (1.8V – Digital IO)	VDDIO	1.7	1.8	1.9	V
Supply voltage (3.3V – Digital IO)	VDDIO	3.0	3.3	3.6	V
Supply voltage (1.2V – Digital Core)	VDDC	1.1	1.2	1.3	V
Supply voltage (1.2V – LVDS PHY)	VDD_LVDS_12	1.1	1.2	1.3	V
Supply voltage (1.8V – LVDS PHY)	VDD_LVDS_18	1.7	1.8	1.9	V
Supply voltage (1.2V – MIPI-DSI PHY)	VDD_MIPI	1.1	1.2	1.3	V
Operating temperature (ambient temperature with voltage applied)	Ta	-40	+25	+85	°C

6.3. DC Electrical Specification

All typical values are at normal operating conditions unless otherwise specified.

6.3.1. Normal CMOS I/Os DC Specifications

Table 6-3 Normal CMOS IOs DC Specifications

Parameter – CMOS I/Os	Symbol	Conditions	Min	Тур.	Max	Unit
Input voltage, High level Input Note1	V _{IH}	-	0.7 VDDIO	-	VDDIO	V
Input voltage, Low level Input Note1	V _{IL}	-	0	-	0.3 VDDIO	V
Input voltage High level CMOS Schmitt Trigger Note 1, 2	V _{IHS}	-	0.7 VDDIO	-	VDDIO	V
Input voltage Low level CMOS Schmitt Trigger Note 1, 2	V _{ILS}	-	0	-	0.3 VDDIO	V
Output voltage, Low level	V _{OL}	I _{OL} = 2mA	0	-	0.2 VDDIO	٧
Input leakage current, High level on Normal pin	I _{ILH1} (Note3)	V _{IN} = VDDIO, VDDIO = 3.6V	-10	-	10	μA
Input leakage current, High level on Pull-down I/O pin	I _{ILH2} (Note3)	V _{IN} = VDDIO, VDDIO = 3.6V	-	-	100	μΑ
Input leakage current, Low level On Normal pin or Pull-down I/O pin	I _{ILL1} (Note4)	V _{IN} = 0V, VDDIO = 3.6V	-10	-	10	μA

Note1: Each power source is operating within operating condition.

Note2: Current output value is specified to each IO buffer individually. Output voltage changes with

output current value.

Note3: Normal I/O pin applied VDDIO supply voltage to Vin (input voltage).

Note4: Normal pin, or Pull-down I/O pin applied VSSIO (0V) to Vin (input voltage).

6.3.2. DSI Differential I/Os DC Specifications

6.3.2.1 LP Transmitter

The low power transmitter is used for driving the lines in all low-power operating modes. The DC characteristics of the LP transmitter are given below.

Table 6-4 DSI LP Transmitter DC Specifications

Parameter	Symbol	Min	Тур.	Max	Unit
Thevenin output low level	V _{OL}	-50	-	50	mV
Output impedance of the LP transmitter	Z _{OLP}	110	-	-	Ω

21 / 24 2020-06-05

6.3.2.2 HS Receiver

The high-speed receiver is a differential line receiver with a switchable parallel input termination. It is used to receive data during high speed transmission from the host. The DC characteristics of the HS receiver are given below.

Table 6-5 DSI HS Receiver DC Specifications

Parameter	Symbol	Min	Тур.	Max	Unit
Common-mode voltage HS receive mode	V _{CMRX(DC)}	70	-	330	mV
Differential input high threshold	V_{IDTH}	-	-	70	mV
Differential input low threshold	V_{IDTL}	-70	-	-	mV
Single-ended input high voltage	V _{IHHS}	-	-	460	mV
Single-ended input low voltage	V _{ILHS}	-40	-	-	mV
Single-ended threshold for HS termination enable	V _{TERM-EN}	-	-	450	mV
Differential input impedance	Z _{ID}	80	100	125	Ω

6.3.2.3 LP Receiver

The low-power receiver is used to detect the Low-Power state on each pin. It is used to receive data during low speed transmission from the host. The DC characteristics of the LP receiver are given below.

Table 6-6 DSI LP Receiver DC Specifications

Parameter	Symbol	Min	Тур.	Max	Unit
Logic 1 input voltage	V _{IH}	880	-	-	mV
Logic 0 input voltage	V _{IL}	-	-	550	mV

6.3.3. LVDS Transmitter DC Specifications

Table 6-7 LVDS Transmitter DC Specifications

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Output differential voltage Normal	V _{OD}	RLOAD = 100Ω±1%	150	300	450	mV
Output differential voltage Reduced	V _{OD}	RLOAD = 100Ω±1%	115	180	300	mV
Change in VOD between "0"and "1"	ΔV_{OD}	RLOAD = 100Ω±1%	-	-	30	mV
Output offset voltage	Vos	RLOAD = $100\Omega \pm 1\%$	800	900	1000	mV
Change in VOS between "0"and "1"	ΔVos	RLOAD = $100\Omega \pm 1\%$	-	-	25	mV
Output current	I _{sab}	Driver shorted together	-	-	12	mA
Output current	I _{sab,} I _{sb}	Driver shorted to ground	-	-	30	mA

7. Revision History

Table 7-1 Revision History

Revision	Date	Description
1.0	2020-06-05	Newly released

RESTRICTIONS ON PRODUCT USE

Toshiba Corporation and its subsidiaries and affiliates are collectively referred to as "TOSHIBA". Hardware, software and systems described in this document are collectively referred to as "Product".

- TOSHIBA reserves the right to make changes to the information in this document and related Product without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE
 EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH
 MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT
 ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without
 limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, and lifesaving and/or life supporting
 medical equipment. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For
 details, please contact your TOSHIBA sales representative or contact us via our website.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE
 FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY
 WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR
 LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND
 LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO
 SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS
 FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of
 Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled
 substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES
 OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION

https://toshiba.semicon-storage.com/