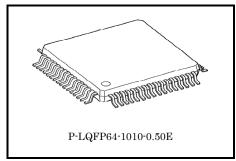
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC94A48FG

Single-chip Audio Digital Signal Processor

The TC94A48FG is a single-chip au dio Digital Signal Processor, incorporating two channels AD converter and six channels DA converter.

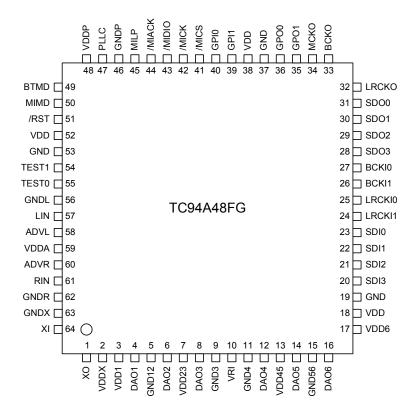

It can re alize m any a pplications, including s ound fi eld control, s uch as hall s imulation, di gital filters, such a s equalizers, surround sound, base boost and more.

Features

- Incorporates a 1-bit Σ-Δ AD converter (2 channels). THD+N: -78 dB (typ.), S/N ratio: 92 dB (typ.)
- Incorporates a multi-bit Σ-Δ DA converter (6 channels). THD+N: -88 dB (typ.), S/N ratio: 98 dB (typ.)
- Digital input/output ports
 - Four input ports (8 channels) Four output ports (8 channels)
- The DSP block specifications are as follows:

Data bus	: 24 bits
M ultiplier/adder	$: 24 \text{ bits} \times 24 \text{ bits} + 51 \text{ bits} \rightarrow 51 \text{ bits}$
Accumulator	: 51 bits (sign extension: 4 bits)
Program ROM	$: 3072 \text{ words} \times 16 \text{ bits}$
Program RAM	$: 1024 \text{ words} \times 16 \text{ bits}$
XRAM	$:4096$ words $\times 24$ bits
YRAM	$: 1024 \text{ words} \times 24 \text{ bits}$
CROM	$: 1024 \text{ words} \times 24 \text{ bits}$

- The microcontroller interface can be selected between serial mode and $I^2 C$ bus mode.
- Operating supply voltage: 3.3 V (some pins accept 5 V)
- CMOS silicon structure supports high speed.
- The package is a 64-pin LQFP (0.5-mm pitch) package.



Weight: 0.4 g (typ.)

Block Diagram

Pin Layout

Pin Function

Pin No.	Symbol I/O		Function	Remarks
1	ХО	0	Crystal oscillator connecting or clock output pin	
2 V	DDX	_	Power pin for oscillator circuit	
3	V _{DD1}	_	Analog power pin for DAC1	
4 D	AO1	0	DAC1 signal output pin	
5 G	ND12	-		
			Analog ground pin for DAC1/2	
6	DAO2	0	DAC2 signal output pin	
7 V	DD23	-	Analog power pin for DAC2/3	
8	DAO3	0	DAC3 signal output pin	
9 G	ND3	-	Analog power pin for DAC3	
10	VRI	Ι	Reference voltage pin for DAC	
11 G	ND4	_	Analog ground pin for DAC4	
12	DAO4	0	DAC4 signal output pin	
13 V		_	Analog power pin for DAC4/5	
	DD45			
14	DAO5	0	DAC5 signal output pin	
15 G	ND56	-	Analog ground pin for DAC5/6	
16	DAO6	0	DAC6 signal output pin	
17 V	DD6		Analog power pin for DAC6	
18 V	DD	Ι	Digital power pin	
19 G	ND	I	Digital ground pin	
20 S	D I3		Audio serial data input pin 3	Schmitt input
20.5	0 13	I	It connects to GND or V_{DD} pins when if it is unused this pin.	5V tolerant
21	SDI2	Ι	Audio serial data input pin 2	Schmitt input
			It connects to GND or V_{DD} pins when if it is unused this pin. Audio serial data input pin 1	5V tolerant Schmitt input
22	SDI1	I	It connects to GND or V_{DD} pins when if it is unused this pin.	5V tolerant
23	SDI0	1	Audio serial data input pin 0	Schmitt input
20	6010	1	It connects to GND or V_{DD} pins when if it is unused this pin.	5V tolerant
24	LRCKI1	Т	LR clock input pin 1 It connects to GND or V_{DD} pins when if it is unused this pin.	Schmitt input 5V tolerant
			LR clock input pin 0	Schmitt input
25	LRCKI0	Ι	It connects to GND or V _{DD} pins when if it is unused this pin.	5V tolerant
26	BCKI1	I	Bit clock input pin 1	Schmitt input
		-	It connects to GND or V _{DD} pins when if it is unused this pin.	5V tolerant
27	BCKI0	Т	Bit clock input pin 0 It connects to GND or V_{DD} pins when if it is unused this pin.	Schmitt input 5V tolerant
		-	Audio serial data output pin 3	
28	SDO3	0	It leaves to open when if it is unused.	Push-pull output
29 S	D O2	0	Audio serial data output pin 2	Push-pull output
			It leaves to open when if it is unused.	
30 S	D 01	0	Audio serial data output pin 1 It leaves to open when if it is unused.	Push-pull output
	D 00	~	Audio serial data output pin 0	
31 S	D 00	0	It leaves to open when if it is unused.	Push-pull output
32 L	R CKO	0	LR clock output pin It leaves to open when if it is unused.	Push-pull output
33 B	с ко	0	Bit clock output pin	Push-pull output
33 0		0	It leaves to open when if it is unused.	

Pin No.	Symbol I/O		Function	Remarks
34 N	1 СКО	0	System clock output pin It leaves to open when if it is unused.	Push-pull output
35 0	PO1	O General-purpose output pin 1 It leaves to open when if it is unused.		Open-drain output 5V tolerant
36 0	PO0	0	General-purpose output pin 0 It leaves to open when if it is unused.	Open-drain output 5V tolerant
37 6	S ND	_	Digital ground pin	
38 V	DD	-	Digital power pin	
39 0	PI 1	Ι	General-purpose input pin 1 It connects to GND or V_{DD} pins when if it is unused this pin.	Schmitt input 5V tolerant
40 0	PI 0	I	General-purpose input pin 0 It connects to GND or V _{DD} pins when if it is unused this pin.	Schmitt input 5V tolerant
41 /I	M ICS	Ι	Microcontroller interface: Chip select signal input pin	Schmitt input 5V tolerant
42 /	и іск	I	Microcontroller interface: Clock input pin	Schmitt input 5V tolerant
43	/MIDIO	I/O	Microcontroller interface: Data input/output pin	Schmitt input / Open-drain output, 5V tolerant
44	/MIACK	0	Microcontroller interface: Acknowledge signal output pin	Open-drain output 5V tolerant
45	MILP	I	Microcontroller interface: Latch pulse input pin	Schmitt input 5V tolerant
46 0	S NDP	-	Ground pin for PLL	
47	PLLC	Ι	Charge pump for PLL	
48 V	DDP	_	Power pin for PLL	
49 E	T MD	I	Boot mode setting pin It is s et to "L" when if s oftware s pecification do es not indicate since there is deference by each program ROMs.	Schmitt input 5V tolerant
50	MIMD	I	Microcontroller interface: Mode select input pin	Schmitt input 5V tolerant
51 /	RST	Ι	Reset input pin	Schmitt input 5V tolerant
52 V	DD	-	Digital power pin	
53 0	ND	-	Digital ground pin	
54 T	EST1	-	Test setting pin 1 Usually it connects to GND pins.	Schmitt input 5V intolerant
55 T	EST0	I	Test setting pin 0 Usually it connects to GND pins.	Schmitt input 5V intolerant
56 0	NDL	-	Ground pin for ADC-Lch	
57	LIN	Ι	ADC-Lch signal input pin	
58	AVDL	Ι	Reference voltage pin for ADC-Lch	
59 V	DDA	_	Analog power pin for ADC	
60	ADVR	Ι	Reference voltage pin for ADC-Rch	
61	RIN	Ι	ADC-Rch signal input pin	
62 0	NDR	-	Ground pin for ADC-Rch	
63 0	NDX	_	Ground pin for oscillator circuit	
64	XI	Ι	Crystal oscillator connecting or clock input pin	5V intolerant

Note 1: 5V tolerant pins can have voltage applied even when the power to the device is turned off.

Description of Operation

1. T iming System

The TC94A48FG uses pulses from the XI-XO pins as the reference clock. The system is divided into blocks that use the reference clock directly or by dividing its frequency and blocks that operate on a clock the PLL generates based on the crystal resonation clock. The analog and microcontroller interface blocks operate on the crystal resonation clock while the DSP block operates on the PLL-generated clock.

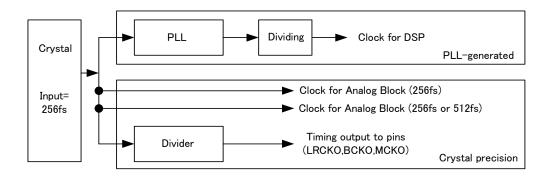


Figure 1 Timing System

The system can divide the clock from the crystal and provide three types of clock from output pins.

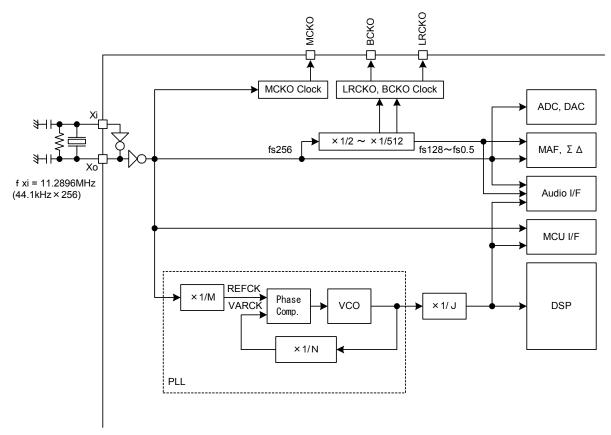


Figure 2 Block diagram of clock generator circuit

1.1 Timing register setting

[AIFA]

Bit	Default	Contents	
15-14		BCKi-1 clock frequency	
	*	00 32fs	
		01 48fs	
		10 64fs	
		11 64fs	
13-12		BCKi-0 clock frequency	
	*	00 32fs	
		01 48fs	
		10 64fs	
		11 64fs	
11		LRCKi-1 polarity	
	*	0 Lch=Low (interrupt by fall edge)	
		1 Lch=High (interrupt by rise edge)	
10		LRCKi-0 polarity	
	*	0 Lch=Low (interrupt by fall edge)	
		1 Lch=High (interrupt by rise edge)	
9		SDi clock select	
	*	0 LRCKi-0/BCKi-0	
		1 LRCKi-1/BCKi-1	
8		SDo clock select	
	*		
7.0		1 LRCKi-1/BCKi-1	
7-6	*	SDi input format	
	ጥ	00 LSB justified 01 MSB justified	
		10 I^2S	
		$10 13 11 1^2$ S	
5-4		SDi input bit clock	
5-4	*	00 16bit	
	-	01 18bit	
		10 20bit	
		11 24bit	
3-2		SDo output format	
	*	00 LSB justified	
		01 MSB justified	
		10 I ² S	
		11 l^2 S	
1-0		SDo output bit clock	
	*	00 16bit	
		01 18bit	
		10 20bit	
		11 24bit	

Note 2: In 48fs frequency setup of BCKi-1 and BCKi-0, LRCKi/BCKi coresponds only an input, and LRCKo / BCKo does not correspond.

[MOD_O]

Bit	Default	Contents	
15-12		Reserved	
		Fixed to "0"	
11		SDo3 is used as a general-purpose output Po5.	
	*	0 Disable	
		1 Enable	
10		SDo2 is used as a general-purpose output Po4.	
	*	0 Disable	
		1 Enable	
9		SDo1 is used as a general-purpose output Po3.	
	*	0 Disable	
		1 Enable	
8		SDo0 is used as a general-purpose output Po2.	
	*	0 Disable	
		1 Enable	
7		Reserved	
		Fixed to "0"	
6		Reserved	
5		Fixed to "1"	
Э	*	Synchronization of LRCKi and LRCKo 0 Disable	
	Ť	1 Enable	
4		BCCMP/BCJMP Enable	
-	*	0 Disable	
	-	1 Enable	
3		DAC Enable	
Ũ	*	0 Disable	
		1 Enable	
2		ADC Enable	
	*	0 Disable	
		1 Enable	
1		LRCKo is connected to LRCKi1.	
	*	0 It does not connect.	
		1 It connects.	
0		LRCKo is connected to LRCKi0.	
	*	0 It does not connect.	
		1 It connects.	

[TMGA]

Bit	Default	Contents	
15-14		Reserved	
		Fixed to "0"	
13		DSP clock output select	
	*	0 Disable	
		1 Enable	
12-7		Reserved	
		Fixed to "0"	
6		MCKO clock output select	
	*	0 1/1 Xi clock	
		1 1/2 Xi clock	
5-3		Reserved	
		Fixed to "0"	
2-0		DSP clock divider setting (1/J)	
		000 1/1	
		001 1/2	
		010 1/4	
		011 1/8	
		100 1/16	
	*	<u>101</u> 1/3	
		<u>110</u> 1/6	
		111 Prohibit	

[TMGB]

F	Bit	Default		Contents
	5-14	Delault	LRCKo/BCKo clock select	
	- 1-	*	00	FS1/FS32(BCK=fs32)
		ጥ	00	FS1/FS64(BCK=fs64)
			10	FS2/FS64(BCK=fs32)
			11	FS2/FS128(BCK=fs64)
	13			CKo output clock select
		*	0	Disable
			1	Enable
1	2-8		Reference	e clock divider setting (1/M)
			00h	1/1
			01h	1/2
			•	
		*	09h	1/10
			•	
			1Fh	1/32
7	7-0			lock divider setting (1/N)
'	Ŭ		00h	1/1
			00h	1/2
			0111	172
				4/04
		*	3Fh	1/64
			•	
			FFh	1/256

1.2 Timing Output

LRCKO / BCKO Pin Output Settings

Mode	LRCKO Pin Output	BCKO Pin Output	Remarks
0	Fixed to GND	Fixed to ground	Initial Value
1 1fs		32fs	
2 1fs		64fs	
3 2fs		64fs	
4 2fs		128fs	

MCKO Pin Output Settings

Mode MC	KO Pin Output	Remarks
0	Fixed to GND	It can be initialized by reset.
1	XCKI (=XI)	Undefined until set by microcontroller or
2 0.	5 × XCKI	built-in DSP program

Note 3: A setup of a timing output is performed by the built-in firmware.

1.3 Example of oscillator circuit

The example of a circuit at the time of the crystal oscillator use in an oscillation part is shown in figure 3.

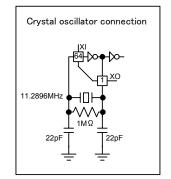


Figure 3 Example of oscillator circuit

1.4 Example of PLL circuit

A PLL circuit can consist of connecting LPF to a PLLC terminal easily. The example of a circuit is shown in figure 4.

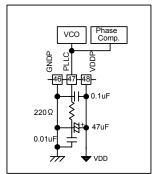


Figure 4 Example of PLL circuit

The above-mentioned external constant is a reference value. It may change with application.

1.5 A udio Input/Output Format

1.5.1 Audio Serial Data Input Format

The TC94A48FG supports MSB-first input only. In slave mode, it supports all setting formats for the number of bit clock slots. In master mode, it does not support 24 slots.

[M = MSB L = LSB don't care(invalid data, padded with "0" when read by DSF internal firmware)				ad by DSP			
MO DE	Number of Slots	Data Word Length (bit)	Format	Timing Chart	Remarks			
0	16 16	MSB- justified (LSB- justified)	Image: Second	Initial Value				
1			I ² S	Image: Constraint of the second sec				
2			MSB- justified					
3		16	LSB- justified					
4	24		I ² S		Unavailable in master mode(Note)			
5		24	24	24	24	MSB- justified (LSB- justified)		
6								I ² S
7			MSB- justified					
8		16	LSB- justified					
9	32		I ² S					
10	52		MSB- justified					
11	24	LSB- justified						
12			I ² S					

Note 4: These formats cannot be used in master mode (when LRCK and BCK are supplied to external devices).

1.5.2 Audio Serial Data Output Format

The valid part of data is the same as that for the input format. The TC94A48FG supports MSB-first output only. In slave mode, it supports all setting formats for the number of bit clock slots. In master mode, it does not support 24 slots.

Ν	□ =MS	BL]=LSB	=fixed to "0" (data sent from DSP is ignored)	
MO DE	Number of SLOT	Data Word Length (bits)	Format	Timing Chart	Remarks
0	16	16			Initial value
1	10	10	I ² S		
2					
3		16			
4	24		I ² S		Unavailable in master mode(Note)
5		24			
6	24	24	I ² S		
7					
8		16			
9	20		I ² S		
10	32				
11	24	24			
12			I ² S		

Note 5: These formats cannot be used in master mode (when LRCK and BCK are supplied to external devices).

The a udio i nput block and ou tput block support different clock settings. Input and output p ort settings are, however, shared as follows:

LR Clock Setting for Input Block

Mode S	ignal
Master Mode	Signal delivered to LRCKO pin (crystal resonation clock divided)
Slave Mode	LRCKI0 pin input
Slave Mode	LRCKI1 pin input

Bit Clock Setting for Input Block

Mode S	ignal
Master Mode	Signal delivered to BCKO pin (crystal resonation clock divided)
Slave Mode	BCKI0 pin input
Slave Mode	BCKI1 pin input

LR Clock Setting for Output Block

Mode S	ignal
Master Mode	Signal delivered to LRCKO pin (crystal resonation clock divided)
Slave Mode	LRCKI0 pin input
Slave Mode	LRCKI1 pin input

Bit Clock Setting for Input Block

Mode S	ignal
Master Mode	Signal delivered to BCKO pin (crystal resonation clock divided)
Slave Mode	BCKI0 pin input
Slave Mode	BCKI1 pin input

2. Microcontroller Interface

The T C94A48FG c an exchange data with a microcontroller in either no rmal transmission mode or I ²C mode. It uses the MIMD pin to select the mode and inputs/outputs data in MSB-first format. Table 1 shows the features supported and the pins used in each mode. Table 2 shows the bit composition of a 24-bit command.

Table 1 Pins Used and Features Supported in Normal Transmission Mode and I²C Mode

Transmission Mode		Normal Transmission Mode (MIMD=L)	I ² C Mode (MIMD=H)
Pin I	nput/Output	Function	Function
/MICS	Input	Chip select Input	Not used (fixed to "L")
MILP	Input	Latch pulse input	Not used (fixed to "L")
/MIDIO	Input Output (open-drain)	Data input / output	Data input / output (SDA)
/MICK	Input, Input / Output (I ² C mode)	Clock input	Clock input (SCL)
/MIACK	Output (open-drain)	Acknowledge output	Not used

Note 7: The input High voltage for these pins should be $V_{\text{DD}}\mbox{-}0.2$ V to 5.5V.

Note 8: The open-drain /MIDIO and /MIACK pins require external pull-up resistors.

In I²C mode, the /MICK pin also requires a pull-up resistor.

The pulled-up voltage for these pins should be V_{DD} -0.2V to 5.5V.

Note9: The I²C bus write address is 30 h and read address is 31h.

Bit F	unction	Remarks
23-8 16	-bit address	Refer to the command list in t he program explanation data sheet.
7	Not used	—
6	Start program RAM boot	"1" starts program RAM boot.
5	Specify soft reset	"1" triggers a soft reset.
4	Specify read or write (R/W)	"1" specifies a read.
3-0	Set t he number of words t o be transmitted	0h" ; 1word ↓ "7h" ; 8words

Table 2 Bit Composition of a 24-bit Command

Note 6: This data sheet shows general control methods. Refer to the separate program explanation data sheet for a complete command list or detailed description of control methods.

2.1 N ormal Transmission Mode

2.1.1 Data Transfer Format in Normal Transmission Mode

Figure 1 shows the data transfer format in normal transmission mode. In normal transmission mode, the system first drives /MICS low and then checks that /MIACK is low before transferring a 24-bit command MSB first. It cannot transfer data if /MIACK is high. The system then reads or writes as many 24-bit data words (one to eight) as specified with the 24-bit command and finally drives / MICS high. For a read, it should also make sure that /MIACK is low after transferring a 24-bit command because /MIACK becomes high temporarily after the command is transferred.

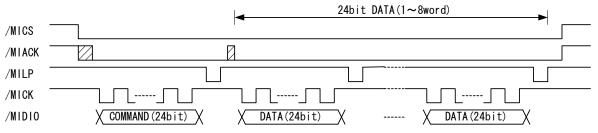


Figure 5(a) Data Transfer Format in Normal Transmission Mode

2.1.2 Data Transfer Method in Normal Transmission Mode

(1) Program boot and program start

The TC94A48FG has 1k-word RAM assigned to program addresses 000h to 3FFh, in which 000h to 003h are interrupt vector addresses. To enable the TC94A48FG to operate, a program must be booted to an interrupt vector address. If you want to store a program in the area from 004h to 3FFh, a program loading process must follow the interrupt vector address. For a program boot, the 24-bit command transferred upon a reset must have the program RAM boot start bit and soft reset bit set to "1" (command = xxxx60h).

The command must be followed by 16-bit program data, set in lower bits in 24-bit data.

The write address is automatically incremented (by one) from the command (000h). The program boot completes once /MICS is driven high upon transferring the required number of words.

The write address for a program boot always starts from the command (000h). To start the program, transfer a 24-bit command with the soft reset bit cleared and then drive /MIC S high without transferring data.

Figure 6 shows the program boot and program start procedure.

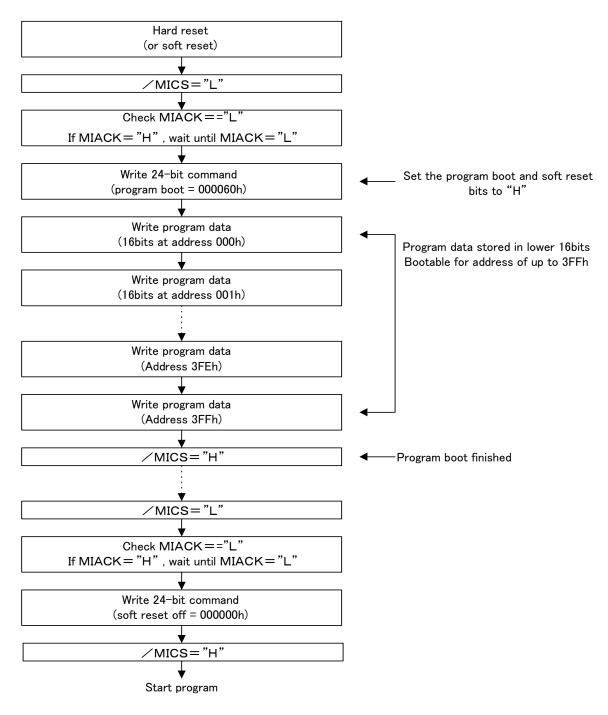
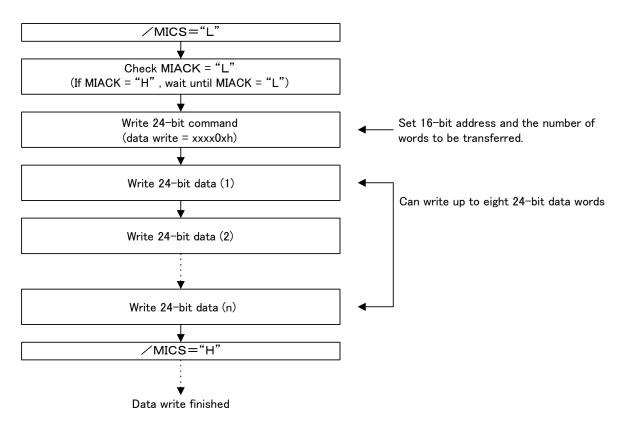


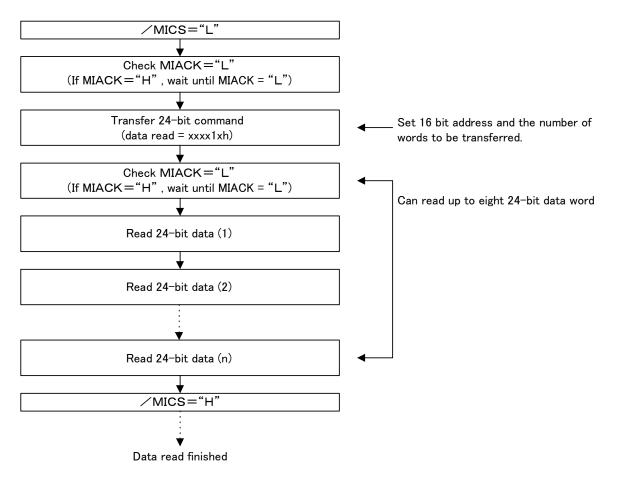
Figure 6 Pr ogram Boot and Program Start Procedure

(2) W riting 24-bit data

When the host microcontroller writes data to the TC94A48FG during the execution of a program, it sets a 16-bit address in a 24-bit command as well as sets its R/W bit to "0" and sets the number of words to be written. Then, it transfers the 24-bit command, followed by a required number of 24-bit data words.

Figure 7 shows the 24 bit data write procedure.




Figure 7 shows the 24-bit data write procedure.

(3) Read ing 24-bit data

When the host microcontroller reads data from the TC94A48FG during the execution of a program, it sets a 16-bit address in a 24-bit command as well as sets its R/W bit to "1" and sets the number of words to be read. Then, it transfers the 24-bit command, c heck t hat / MIACK = "L", and r ead a required number of 24-bit data words.

The host microcontroller should check that /MIACK = "L" because it has to wait until the data to be read is set in the data buffer.

Figure 8 shows the 24 bit data read procedure.

Figure 8 shows the 24-bit data read procedure.

(4) Triggering and terminating a soft reset

A soft reset is required before the system can start a program after $p \ rogram$ boot or restart a program.

A 24-bit command with its soft reset bit set to "1" triggers a soft reset and a command with the bit cleared terminates a soft reset.

When trigging or terminating a soft reset, drive /MICS high after transferring the 24-bit command because no data needs to follow the command.

Figure 9 shows the procedure for trigging or terminating a soft reset.

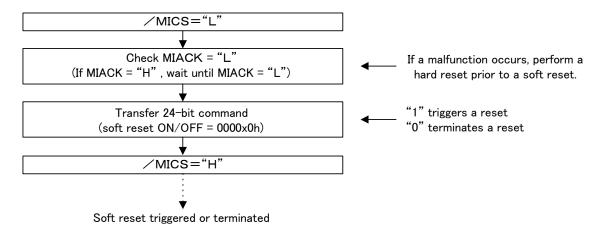


Figure 9 Procedure for Trigging or Terminating a Soft Reset

2.2 I²C Bus Mode

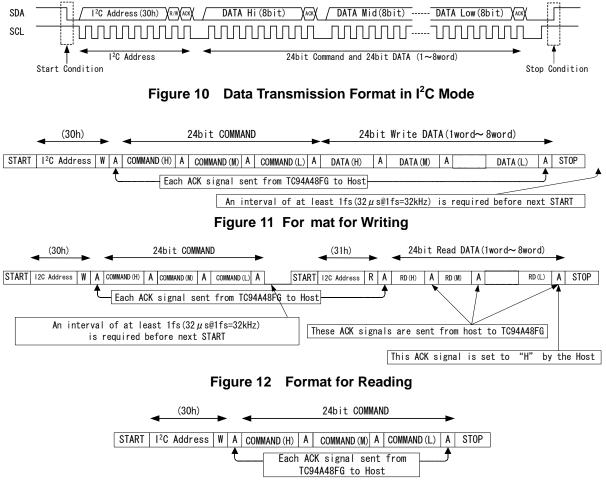

2.2.1 Data Transfer Format in I²C Bus Mode

Figure 10 shows the data transfer format in I²C bus mode.

In I²C bus mode, the host microcontroller first transfers an I²C address (write = 30h) and then checks that the ACK bit is low. If the ACK bit is high, it retransmits a start condition (without transmitting a stop condition) and then transfers an I²C address of 30h. After transferring an I²C address, the host microcontroller transfers a 24 -bit comma nd. When t he host microcontroller writes da ta to the TC94A48FG, it writes as many 24-bit data words as specified with the 24-bit command (1 to 8 words) and then transfers an end condition.

When the host microcontroller reads data from the TC94A48FG, it transfers a 2 4-bit command and then, without transmitting an end condition, transfers an I²C address (read =31h) and check that the ACK bit is low. If the ACK bit is high, the host microcontroller retransmits a start condition (without transmitting a stop condition) and then transfers an I²C address of 31h. After checking that the ACK bit is low, the host microcontroller reads as many 2 4-bit data words as specified with the 24-bit command (1 to 8 words). During a read, the host microcontroller sets the ACK bit to low after reading every eight bits. The ACK bit accompanying the last eight bits must be set to high, after which the host microcontroller transmits a s top condition. When transferring only a 24-bit command without reading or writing data, transmit an end condition after transferring the command.

Figures 11 to 13 show the data transfer formats for writing, reading, and transferring a c ommand only.

2.2.2 Data Transfer Method in I²C Mode

(1) Program boot and program start

The TC94A48FG has 1k-word RAM assigned to program addresses 000h to 3FFh, in which 000h to 003h are interrupt vector addresses. To enable the TC94A48FG to operate, a program must be booted to an interrupt vector address. If you want to store a program in the area from 004h to 3FFh, a program loading process must follow the interrupt vector address. For a program boot, the 24-bit command transferred upon a reset must have the program RAM boot start bit and soft reset bit set to "1" (command = xxxx60h).

The command must be followed by 16-bit program data, set in lower bits in 24-bit data.

The write address is automatically incremented (by one) from the command (000h). The program boot completes once an end condition is transmitted upon transferring the required number of words. The write a ddress for a program boot al ways starts from the command (000h). To start the program, transfer a 24-bit command with the soft reset bit cleared and then transmit an end condition without transferring data.

Figure 14 shows the program boot and program start procedure.

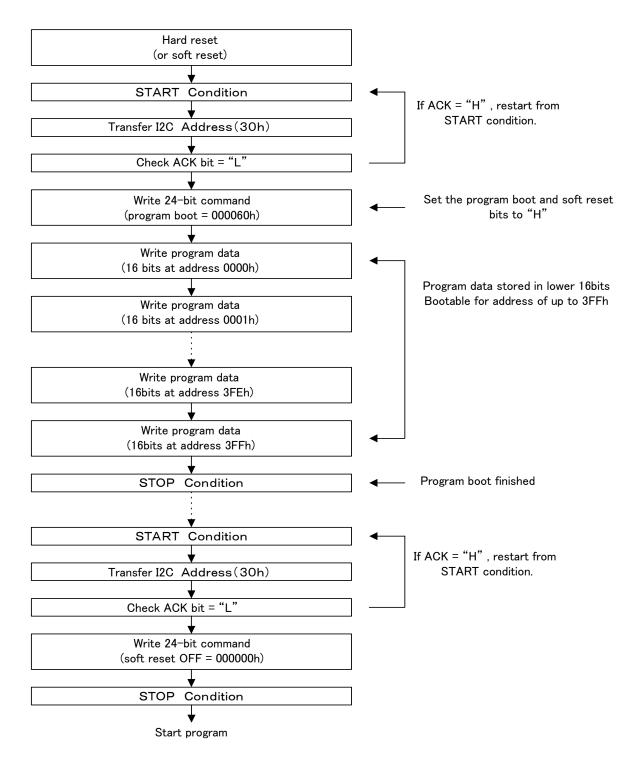


Figure 14 Program Boot and Program Start Procedure

(2) Writing 24-bit data

When the host microcontroller writes data to the TC94A48FG during the execution of a program, it sets a 16-bit address in a 24-bit command as well as sets its R/W bit to "0" and sets the number of words to be written. Then, it transfers the 24-bit command, followed by a required number of 24-bit data words.

An interval of at least 1fs (32 μ s@1fs=32kHz) is required before next started. Figure 15 shows the 24 bit data write procedure.

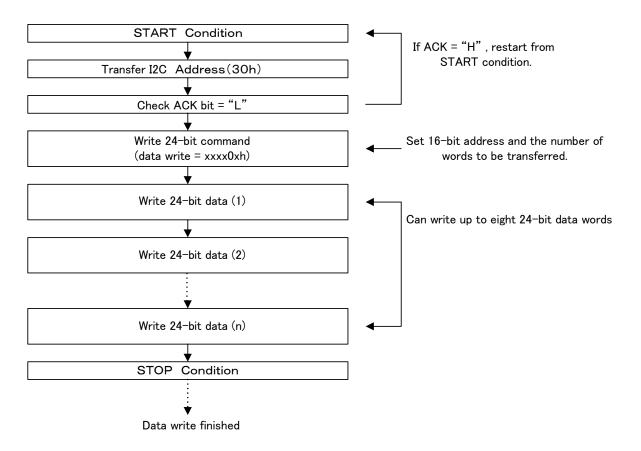


Figure 15 shows the 24-bit Data Write Procedure.

(3) Reading 24-bit data

When the host microcontroller reads data from the TC94A48FG during the execution of a program, it sets a 16-bit address in a 24-bit command as well as sets its R/W bit to "1" and sets the number of words to be read. Then, it transfers the 24-bit command, waits about 1fs, and then transfers an I2C address of 31h, followed by a start condition. Finally, it reads a required number of 24-bit data words. During a read, the host microcontroller should set the ACK bits to low but the ACK bit accompanying the last eight bits of data must be high, thus causing the TC94A48FG to relinquish the SDA bus line so that the host microcontroller can transmit a stop condition.

The host microcontroller should wait about 1 fs after transferring a command because it has to wait until the data to be read is set in the data buffer of the TC94A48FG.

Figure 16 shows the 24-bit data read procedure.

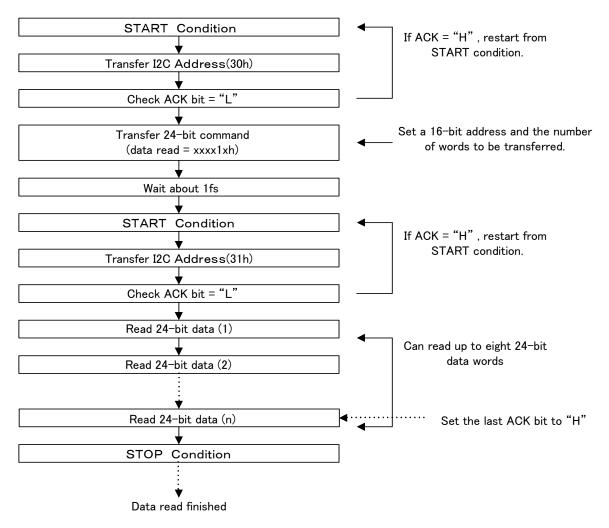
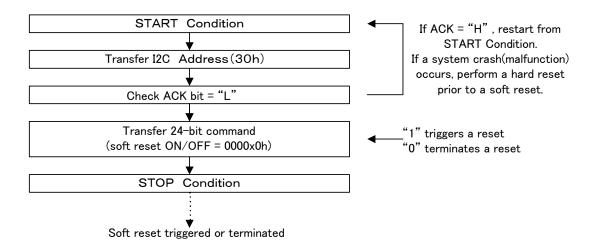


Figure 16 shows the 24-bit Data Read Procedure


(4) Triggering and terminating a soft reset

A soft reset is required b efore the system can start a program after p rogram b oot or re start a program.

A 24-bit command with its soft reset bit set to "1" triggers a soft reset and a command with the bit cleared terminates a soft reset.

When trigging or terminating a s oft reset, transmit a stop condition after transferring the 24-bit command because no data needs to follow the command.

Figure 17 shows the procedure for triggering or terminating a soft reset.

Figure 17 Procedure for Triggering or Terminating a Soft Reset

3. Write and Read Commands

The specifications of write and read commands depend on the built-in program. For details, refer to the program explanation data sheet.

Maximum Ratings (Ta = 25°C)

Characteristics	Symbol	Rating	Unit
Supply Voltage	V _{DD}	-0.3~4.0	V
Input voltage 1	V _{in1}	$-0.3 \sim V_{DD} + 0.1$	V
Input voltage 2 (Note10)	V _{in2}	-0.3~+ 5.5	V
Power dissipation	PD	400	mW
Operating temperature	T _{opr}	-40~+85	°C
Storage temperature	T _{stg}	-55~+150	°C

Note10: SDI0~3, LRCKI0~1, BCKI0~1, GPI0~1, /MICS, /MICK, /MIDIO, MILP, BTMD, MIMD, /RST

Electrical Characteristics (u nless otherwise specified, Ta = 25°C, $V_{DD} = V_{DDX} = V_{DD12} = V_{DD3} = V_{DD45} = V_{DD6} = V_{DDP} = V_{DDA} = 3.3V$)

DC Characteristics

Characteristics Sy	mbol	Test circuit	Test Condition	Min.	Тур.	Max.	Unit
Operating supply voltage	V _{DD}	_	Ta = -40~85°C	3.0	3.3	3.6	V
Operating frequency range	f _{opr}	_	Using PLL for DSP clock	30	_	75	MHz
PLL clock frequency range	f _{plo}			90	_	225	MHz
Operating supply current	I _{DD}	_	fopr =75MHz (75MIPS)		90	100	mA

Clock pins (XI,XO)

Character	istics Sy	mbol	Test circuit	Test Condition		Min.	Тур.	Max.	Unit
Input voltage(1)	"H" level	V _{IH1} 2.	—×I	pin		8	_	_	V
Input voltage(1) "	"L" level	V _{IL1}				_	0 .	5	v
Output voltage(1)	"H" level	I _{OH1}		$V_{OH} = 2.8 V$	XO pin		_	-2.5	mA
	"L" level	I _{OL1}		$V_{OL} = 0.5 V$		3.0	_	_	mA

Input pins

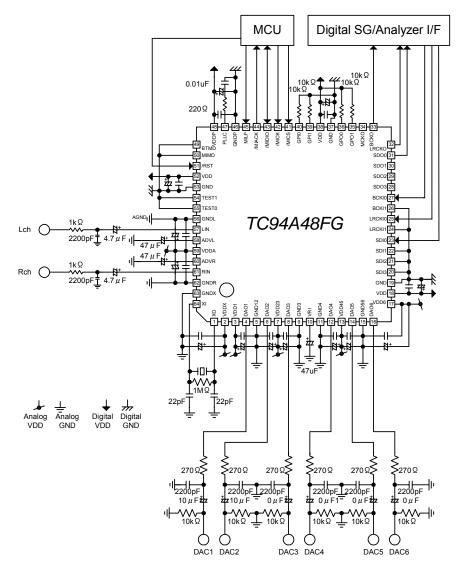
Characteristics Sy		mbol	Test circuit	Test Condition		Min.	Тур.	Max.	Unit
Input voltage(2)	"H" level	V _{IH2}	— (N	ote 11)		2.8	_	_	V
input voltage(z)	"L" level	V _{IL2}	(N	ole II)		_	— 0 .	5	v
Input leakage	"H" level	I _{IH2}		$V_{IN} = V_{DD}$	(Note 11),	_	— 10		μA
current	"L" level	I _{IL2}		$V_{IN} = 0 V$	(Note 12)	-10	_		μΛ

Note 11: SDI0~3, LRCKI0~1, BCKI0~1, GPI0~1, /MICS, /MICK, /MIDIO, MILP, BTMD, MIMD, /RST, TEST0~1, PLLC Note 12 : XI

Output pins

Characteristics Sy		mbol	Test circuit	Test Condition		Min.	Тур.	Max.	Unit
Output current(2)	"H" level	I _{OH2} V	V _{OH} = 2.8 V	(Note 13)	_	_	-5		
Output current(2)	"L" level	I _{OL2}		$V_{OL} = 0.5 V$	(Note 13)	5	_	_	
Output current(3)	"H" level	I _{OH3}		V _{OH} = 2.8 V	(Note 14)	_	_	-3	mA
Output current(3)	"L" level	I _{OL3}		$V_{OL} = 0.5 V$	(Note 14)	3	_	_	
Output current(4)	"L" level	I _{OL4}	_	$V_{OL} = 0.5 \ V$	(Note 15)	5	_	_	
Output-off leakage current		I _{OZ5}	_	$V_{OH} = V_{DD}$	(Note 15)			±10	μA

Note 13: SDO0~3, LRCKO, BCKO (push-pull output)


Note 14: MCKO (push-pull output)

Note 15: GPO0~1, /MIDIO, /MIACK (open-drain output)

AC Characteristics

<Common test conditions unless otherwise specified>

- The gain through the firmware is 0 dB (pass-through), except for +2 dB for DC-cut-HPF.
- VDD (for all power supplies) = 3.3V, Ta = 25°C
- Test circuit

AD Conv erter: LIN and RIN pin input, V in_ref: 1 kHz, 800 m Vrms (unless oth erwise specified), SDO0 pin output monitored

Characteristics	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Maximum input signal	Vin	Input level t hat dri ves ADC output to 800		0	mVrms	
Input impedance	Zin	Each of LIN and RIN pins	20	27	34	kΩ
S/N ratio	S/Na	A-Weight, Input AC shorted, Crystal: 11.2896 MHz	87 93			
THD + N	THDa	20 kHz LPF, Crystal: 11.2896 MHz	—	-83	-77	
Crosstalk C	Та	20 kHz LPF, Lch to Rch/ Rch to Lch, Crystal: 11.2896 MHz	—	-85	-78	dB
Dynamic range	DRa	A-Weight, -60dB for Vin_ref input, Crystal: 11.2896 MHz	87 93		_	
L to R gain error	Vdlr		-0.5	0	0.5	

DA Converter: S DO0 to SDO3 pin input, SDI0_r ef = 0 dBFS, 1 kH z (un less o therwise specified), DAO1 to DAO6 pin output monitored.

Characteristics Sy	mbol	Test Condition	Min.	Тур.	Max.	Unit
Output signal level	Ao	Output voltage at digital full-scale input	790	830	870	mVrms
S/N ratio	S/Nd	A-Weight, Crystal: 11.2896 MHz	90 98		_	
THD + N	THDd	20 kHz LPF Crystal: 11.2896 MHz		-88	-75	
Crosstalk C	Td	20 kHz LPF, Crystal: 11.2896 MHz		-90	-83	dB
Dynamic range	DRd	A-Weight Crystal: 11.2896 MHz	88 95		_	
Channel-to-channel gain error	Vddo	DAO1~DAO6 pin output monitored.	-0.5 0		0.5	

Timing

Clock input pin (XI)

Characteristics Sy	mbol	Test Condition	Min.	Тур.	Max.	Unit
Clock cycle	t _{XI}	fs=32kHz~48kHz, 256fs input	80.0	88.6	124.0	
Clock "H" duration	t _{XIH}	— 4	0.0	44.3	62.0	ns
Clock "L" duration	t _{XIL}	— 4	0.0	44.3	62.0	

Reset pin (/RST)

Characteristics Sy	mbol	Test Condition	Min.	Тур.	Max.	Unit
Standby time	t _{RRS}	— 10		_	_	ms
Reset pulse width	twrs	— 1 .	0			μS

Note 16: The /RST pin must be driven low at power-on.

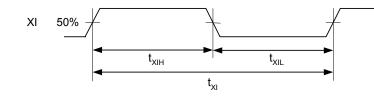
Audio Serial Interface (BCKI0~1, BCKO, LRCKI0~1, LRCKO, SDI0~3, SDO0~3)

Characteristics Sy	mbol	Test Condition	Min.	Тур.	Max.	Unit
LRCKIx setup time	t _{LBS}	CL = 30 pF	75	_	_	
LRCKIx hold time	t _{LBH}	fs = 48 kHz or lower BCKI0 and BCKI1 input: 64 fs or lower	-75	_	75	
SDIx setup time	t _{SDI}		50	_	_	
SDIx hold time	t _{HDI} 50			_	_	
BCKIx clock cycle	t _{BCK} 3		00	_	_	ns
BCKIx clock "H" duration	t _{BCH}		150	_	_	115
BCKIx clock "L" duration	t _{BCL}		150	_	_	
SDOx output delay(1)	t _{DO1} C	L = 30 pF	_	— 60		
SDOx output delay(2)	t _{DO2}	$C_L = 30 \text{ pF}$		_	60	
LRCKO output delay	t _{DCLR} C	_L = 30 pF		— 40		

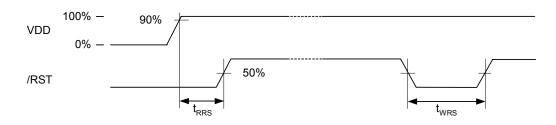
Microcontroller Interface

Normal Transmission Mode (/MICS, /MICK, /MIDIO, MILP, /MIACK)

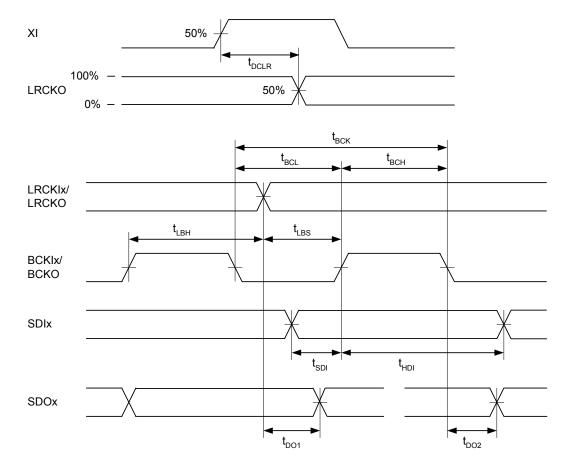
Characteristics Sy	mbol	Test Condition	Min.	Тур.	Max.	Unit
Standby time	t _{STB}	— 20			— ms	
/MICS fall to /MICK rise setup time	t ₁	— 0 .	5			
/MIACK fall to /MICK rise setup time	t ₂	— 0 .	5			
/MICK clock cycle	t ₃	<u> </u>	0			
/MICK "L" duration	t ₄	0 .	5			
/MICK "H" duration	t ₅	— 0 .	5		_	
/MICK rise to /MILP fall setup time	t ₆	— 0 .	5			
MILP "L" duration	t7	— 0 .	5		_	μS
/MIDIO input data setup time	t ₈	— 0 .	5			
/MIDIO input data hold time	t9	— 0 .	5			
/MIDIO output data delay	t ₁₀		_		0.5	
/MICS "H" duration	t ₁₁	—	0.5		_	
/MIACK output delay	t ₁₂	—			1.0	
MILP rise to /MICS rise setup time	t ₁₃	—	0.5		_	


Note 17: The /MIACK output timing and /MIACK "H" duration vary with the firmware.

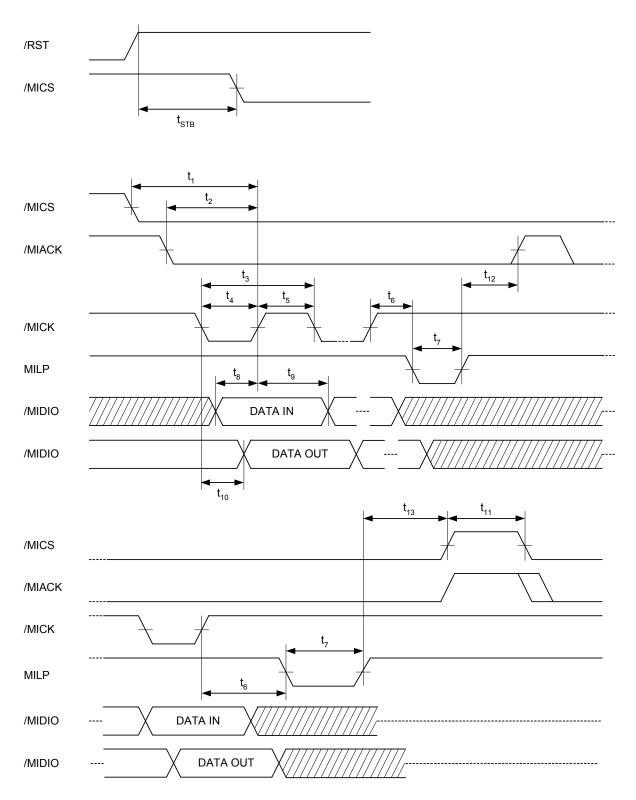
I²C Mode (/MICK, /MIDIO)


Characteristics Sy	mbol	Test Condition	Min.	Тур.	Max.	Unit
/MICK clock frequency	fIFCK	$C_L = 400 \text{ pF}$	0	_	400	kHz
/MICK "H" duration	t _H	$C_L = 400 \text{ pF}$	0.6			
/MICK "L" duration	tL	$C_L = 400 \text{ pF}$	1.3			
Data setup time	t _{DS}	$C_L = 400 \text{ pF}$	0.2			
Data hold time	tDH	$C_L = 400 \text{ pF}$	0		0.9	
Transmission start condition hold time	t _{SCH}	$C_L = 400 \text{ pF}$	0.6			
Repeated transmission start condition setup time	tscs	C _L = 400 pF	0.6	_	_	μS
Transmission end condition setup time	t _{ECS} C	L = 400 pF	0.6	_	_	
Data transmission interval	t _{BUF}	$C_L = 400 \text{ pF}$	1.3			
I ² C rise time	t _R	$C_L = 400 \text{ pF}$			0.3	
I ² C fall time	t _F	$C_L = 400 \text{ pF}$			0.3	

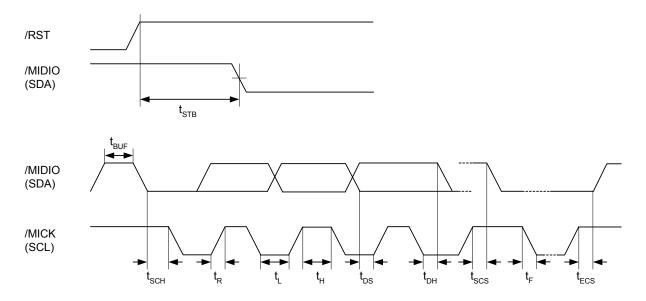
AC Characteristics Measurement Points


1. Cl ock Pin (XI)

2. Reset Pin (/RST)



3. Audio Serial Interface (LRCKIx, BCKIx, SDIx, LRCKO, BCKO, SDOx, MCKO)



4. Micr ocontroller Interface

4-1. Serial Mode (/MICS, /MICK, /MIDIO, MILP, /MIACK)

4-2. I²C Mode (/MICK, /MIDIO)

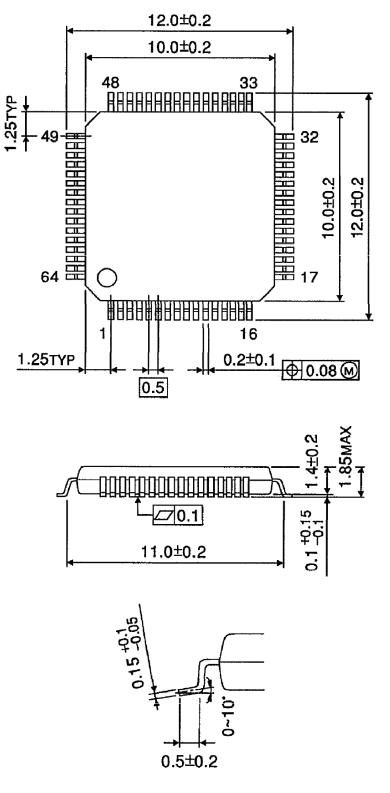
Equivalent Circuit Diagrams

Туре	Equivalent Circuit Diagram	Description
A		Schmitt Input
В		Schmitt Input. 5V tolerant. A voltage can be applied to this pin even when the power supply pin of the TC94A48FG is driven to 0V.
С		Push-pull output. The am plitude is 3 .3 V. If external de vices require 5V amplitude, perform a level conversion.
D		Open-drain output This pin must be pulled up to VDD or 5V externally.
E		Schmitt input and open-drain output This pin m ust be pulled u p to V DD or 5V ex ternally. A voltage can be applied to this pin e ven when the power supply pin of the TC94A48FG is driven to 0V. [Caution] When u sing the p in f or input, c onnect it to an open-drain output pin of an external device.

Type A: TEST0, TEST1

Type B: SDI0~3, LRCKI0~1, BCKI0~1, GPI0~1, BTMD, MILP, /MICK, /MICS, MIMD, /RST

Type C: SDO0~3, MCKO, BCKO, LRCKO


Type D: GPO0~1, /MIACK

Type E: /MIDIO

Package Dimensions

LQFP64-P-1010-0.50E

Unit: mm

(Note) Palladium plate

Weight: 0.4g (typ.)

RESTRICTIONS ON PRODUCT USE

030619EBA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
 devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
 stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety
 in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such
 TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.