
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC7WG74FC

D-Type Flip Flop with Preset and Clear

Features

- High-speed f_{MAX} = 246 MHz (typ.) at V_{CC} = 3V, C_L = 15pF
- High-level output current: : ±8 mA (min) at V_{CC} = 3V
- Operation voltage range : V_{CC} = 0.9 to 3.6V
- 5.5-V tolerant inputs
- 3.6-V power down protection outputs

Weight: 0.002g (typ.)

Absolute Maximum Ratings (Ta = 25°C)

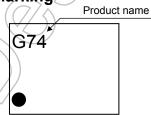
Characteristic	Symbol	Rating	Unit
Supply voltage	V _{CC}	-0.5 to 4.6	\v
DC input voltage	V _{IN}	-0.5 to 7.0	V
DC output voltage	V _{OUT}	-0.5 to 4.6 (Note 1)	^ V
DO Odipat Voltage	VOU1	-0.5 to $V_{CC} + 0.5$ (Note 2)	
Input diode current	I _{IK}	-20	mA
Output diode current	lok	-20 (Note 3)	mΑ
DC output current	lout	±25	mA
DC V _{CC} /GND current	Icc	±100	mA
Power dissipation	P_{D}	150 (Note 4)	mW
Storage temperature	T _{stg}	-65 to 150	°C

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

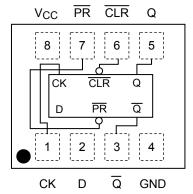
Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 1: V_{CC} = 0V

Note 2: High or Low State.


IOUT absolute maximum rating must be observed.

Note 3: V_{OUT} < GND

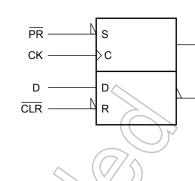

Note 4: Mounted on an FR4 board.

 $(25.4 \text{ mm} \times 25.4 \text{ mm} \times 1.6 \text{ t}, \text{ Cu Pad: } 11.56 \text{ mm}^2)$

Marking

Pin Assignment (top view)

Start of commercial production 2006-01


Q

- Q

Truth Table

IEC Logic Symbol

	Inp	uts		Out	puts	Function
CLR	PR	D	CK	Q	Q	Function
L	Н	Х	Х	L	Н	Clear
Н	L	X	Х	Н	L	Preset
L	L	X	Х	Н	Н	l
Н	Η	L		L	Н	l
Н	Н	Н		Н	L	
Н	Н	Х	7	Qn	Qn	No Change

X : Don't Care

Operating Ranges

Characteristic	Symbol	Rating	Unit
Supply voltage	V _{CC}	0.9 to 3.6	V
Input voltage	V _{IN}	0 to 5.5	V
Output voltage	Vour	0 to 3.6 (Note 4)	
Output voltage	Vout	0 to V _{CC} (Note 5)	
		±8.0 (Note 7)	
		±4.0 (Note 8)	77/^
Output Current		±3.0 (Note 9)	(mA
Output Current	I _{OH} /I _{OL}	±1.7 (Note 10)	ЛИА
		±0.3 (Note 11)	7
		±0.02 (Note 12)	
Operating temperature	T _{opr}	-40 to 85	°C ,
Input rise and fall time	dt/dv	0 to 10 (Note 13)	ns/V

Note 5: $V_{CC} = 0V$

Note 6: High or Low state.

Note 7: $V_{CC} = 3.0 \text{ to } 3.6 \text{ V}$

Note 8: $V_{CC} = 2.3 \text{ to } 2.7 \text{ V}$

Note 9: $V_{CC} = 1.65 \text{ to } 1.95 \text{ V}$

Note 10: $V_{CC} = 1.4$ to 1.6 V

Note 11: $V_{CC} = 1.1 \text{ to } 1.3 \text{ V}$

Note 12: $V_{CC} = 0.9 \text{ V}$

Note 13: $V_{IN} = 0.8$ to 2.0 V, $V_{CC} = 3.0$ V

DC Electrical Characteristics

Characteristic	Symbol	Toet	: Condition			Га = 25°C)	Ta = -40	to 85°C	Unit									
Orialacteristic	Symbol	1030	Condition	V _{CC} (V)	Min	Тур.	Max	Min	Max	Offic									
				0.9	V _{CC}	_		V _{CC}											
				1.1 to 1.3	V _{CC} × 0.7	_	_<	V _{CC} × 0.7											
High-level VIH		_	1.4 to 1.6	V _{CC} × 0.65		- (V _{CC} × 0.65		٧										
input voltage				1.65 to 1.95	V _{CC} × 0.65			V _{CC} × 0.65	_										
				2.3 to 2.7	1.7	$\langle - \rangle$	(V))1.7	_										
				3.0 to 3.6	2.0	7	1	2.0	_										
				0.9	_	+	GND	_	GND										
				1.1 to 1.3	-<		V _{CC} × 0.3	- <	V _{CC} × 0.3	>									
Low-level input voltage	V _{IL}		_	1.4 to 1.6			$\begin{array}{c} V_{CC} \\ \times \ 0.35 \end{array}$	8	V _{CC} × 0.35	V									
input voitage			1.65 to 1.95))_	V _{CC} × 0.35		V _{CC} × 0.35											
			2.3 to 2.7	\rightarrow	_	0.7		0.7											
				3.0 to 3.6	<u>></u> _	_	0.8	$\bigcirc)$	8.0										
		V _{IN} = V _{IH} or V _{IL}	I _{OH} =-0.02 mA	0.9	0.75	-0	77/	0.75	_										
			$I_{OH} = -0.3 \text{ mA}$	1.1 to 1.3	V _{CC} × 0.75			V _{CC} × 0.75		ļ									
High-level output voltage	V _{OH}		$I_{OH} = -1.7 \text{ mA}$	1.4 to 1.6	V _{CC} × 0.75	$\left(-\right) $) —	V _{CC} × 0.75		V									
output voltage				$I_{OH} = -3.0 \text{ mA}$	1.65 to 1.95	V _{CC} -0.45			V _{CC} -0.45										
														$I_{OH} = -4.0 \text{ mA}$	2.3 to 2.7	2.0	_	_	2.0
		6	$I_{OH} = -8.0 \text{ mA}$	3.0 to 3.6	2.48	_	_	2.48	_										
			$I_{OL} = 0.02 \text{ mA}$	0.9	<i>**</i>	_	0.1	_	0.1										
			I _{OL} = 0.3 mA	1.1,to/1.3	_	_	V _{CC} × 0.25	_	V _{CC} × 0.25										
Low-level output voltage	V _{OL}	V _{IN} = V _{IH} or V _{IL}	I _{OL} = 1.7 mA	1.4 to 1.6	_	_	V _{CC} × 0.25	_	V _{CC} × 0.25	٧									
<u> </u>			$I_{OL} = 3.0 \text{ mA}$	1.65 to 1.95	-	_	0.45	_	0.45										
7			$I_{OL} = 4.0 \text{ mA}$	2.3 to 2.7	-	_	0.4	_	0.4										
		/	$I_{OL} = 8.0 \text{ mA}$	3.0 to 3.6	_	_	0.4	_	0.4										
Input leakage current)IX	$V_{IN} = 0$ to	V _{IN} = 0 to 5:5V			_	±0.1	_	±1.0	μА									
Power off leakage current	loff	$V_{IN} = 0 \text{ to } \cdot V_{OUT} = 0 \text{ to } V_{OUT} =$		0.0		_	1.0	_	10.0	μΑ									
Quiescent supply current	Icc	V _{IN} = V _{CC}	or GND	3.6	_	_	1.0	_	10.0	μΑ									

Timing Requirements (Input: $t_r = t_f = 3 \text{ ns}$)

Characteristic	Comple ed	Test cor	ndision	Т	Ta = 25°C			Ta = -40 to 85°C		
Characteristic	Symbol		V _{CC} (V)	Min	Тур.	Max	Min	Max	Unit	
			0.9	_	26.4	_	_	_		
			1.1 to 1.3	12.4	_	<u> </u>	22.7	_		
Pulse width	$t_{W(L)}$		1.4 to 1.6	5.5	_		6.7	_		
(CK)	t _{W(H)}		1.65 to 1.95	4.3	_	(4.7	_		
			2.3 to 2.7	3.5	-(-		3.5	_		
			3.0 to 3.6	3.2	(+(\	$\left(-\frac{1}{2}\right)$	3.2	_		
			0.9	-	22.8)	_			
			1.1 to 1.3	11.6	$\left(-\right)$	>_	20.4			
Pulse width	twa >		1.4 to 1.6	5.3			6.5	_		
(CLR , PR)	t _{W(L)}		1.65 to 1.95	4.2	\searrow	_	4.6	\rightarrow		
			2.3 to 2.7	3.3	_		3.3	> -		
			3.0 to 3.6	3.2	-<	> - (3,2) —		
	t _s		0.9	_	31.9	4	740	/ _		
		^(1.1 to 1.3	14.4	-/	7_	21.7	_		
Set-up time			1.4 to 1.6	6.4			7.2	_	ns	
Cot up time			1.65 to 1.95	4.4	(7)		4.8	_		
			2.3 to 2.7	2.5	(Y	/)—	2.9	_		
			3.0 to 3.6	1.9	<u> </u>	_	2.3	_		
	(0.9	_	0.5	—	_	_		
			1.1 to 1.3	0.1	/_	_	0.1	_		
Hold time	(th		1.4 to 1.6	0.1	_	_	0.1	_		
	(II)		1.65 to 1.95	0.1	_	_	0.1	_		
	0/0		2.3 to 2.7	0.1	_	_	0.1	_		
		6	3.0 to 3.6	0.1	—	_	0.1	_		
			0.9	_	17.9	_	_	_		
	_		1.1 to 1.3	8.6	_	_	13	_		
Removal time	t _{rem}		7 1.4 to 1.6	3.9	_	_	4.4	_		
(CLR, PR)	чет		1.65 to 1.95	2.6	_	_	3.1	_		
	$\langle \rangle$		2.3 to 2.7	1.5	_	_	1.9	_		
	41		3.0 to 3.6	1.2	_	_	1.5	_		

AC Electrical Characteristics (unless otherwise specified, Input : $t_{\rm r}$ = $t_{\rm f}$ = 3 ns)

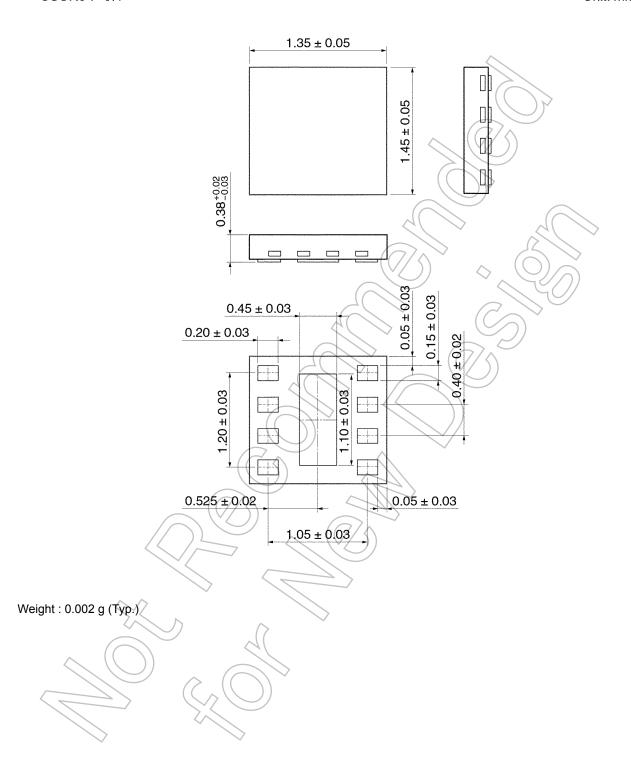
		Test co	ondition		Га = 25°()	Ta = -40	to 85°C	
Characteristic	Symbol		V _{CC} (V)	Min	Тур.	Max	Min	Max	Unit
			0.9	_	36.6	—	1.0	_	
			1.1 to 1.3	_	15.7	23.2	1.0	34.6	
		OL 40 E	1.4 to 1.6	_	8.0	10.5	1.0	11.5	
		CL = 10 pF	1.65 to 1.95	_	5.9	7.4	1.0	7.9	
			2.3 to 2.7	_	3.8	4.7	1.0	5.1	
			3.0 to 3.6	4	3.0	3.8	1.0	4.2	
			0.9	7	40.8	_	1.0		
			1.1 to 1.3	_//	17.1	25.3	1.0	38.5	
Propagation deley time	t _{pLH}	CL = 15 pF	1.4 to 1.6	7	8.8	11.5	1.0	12.7	ns
$(CK - Q, \overline{Q})$	t _{pHL}	CL = 15 pr	1.65 to 1.95	<u>_</u>	6.4	8.1	1.0	8.6	115
			2.3 to 2.7		4.1	5.1	1.0	5.5	
			3.0 to 3.6	/)—	3.3	4.1	1.0	4.5	
			0.9	_	54.8		1.0		
		CL = 30 pF	1.1 to 1.3	—	22.6	34.7	1.0	54.4	-
			1.4 to 1.6		11.4	1 5.0	1.0	16.8	
			1.65 to 1.95	- (8.2	10.3	1.0	10.8	
			2.3 to 2.7		5.2	6.3	1.0	6.6	
			3.0 to 3.6	-/	4.1	5.0	1.0	5.3	
			0.9		46.9	_	1.0		
		CL = 10 pF	1.1 to 1.3		18.8	27.8	1.0	45.2	
			1.4 to 1.6	_	9.5	12.4	1.0	14.0	
			1.65 to 1.95	_	6.9	8.7	1.0	9.1	
			2.3 to 2.7	_	4.3	5.3	1.0	5.7	
		~ ((3.0 to 3.6	_	3.3	4.2	1.0	4.6	
	7		0.9	_	50.1	_	1.0	_	
Propagation deley time	<		1.1 to 1.3	_	20.2	29.8	1.0	49.4	
(CLR, PR – Q, Q)	t _{pLH}	CL = 15 pF	1.4 to 1.6	_	10.1	13.2	1.0	15.1	ns
(OLIK, FIX G, G)	t _{pHL}		1.65 to 1.95	_	7.3	9.2	1.0	9.7	
			2.3 to 2.7	_	4.5	5.6	1.0	6.2	
			3.0 to 3.6	_	3.6	4.5	1.0	4.9	
		V	0.9	_	64.4		1.0	_	
			1.1 to 1.3	_	25.6	39.2	1.0	64.6	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		CL = 30 pF	1.4 to 1.6	_	12.6	16.8	1.0	19.1	
	\checkmark		1.65 to 1.95	_	9.0	11.3	1.0	11.8	
			2.3 to 2.7	_	5.6	6.8	1.0	7.1	
			3.0 to 3.6	—	4.4	5.3	1.0	5.6	

6 2014-03-01

AC Electrical Characteristics (unless otherwise specified, Input: $t_r = t_f = 3$ ns)

		Test condition		٦	Га = 25°С		Ta = -40~85°C		
Characteristic	Symbol		V _{CC} (V)	Min	Тур.	Max	Min	Max	Unit
			0.9	_	14	_	_	_	
			1.1 to 1.3	22	35 <	1	14	_	
		CL = 10 pF	1.4 to 1.6	57	75	\rightarrow	51	_	
		OE 10 pi	1.65 to 1.95	90	111	(-)	84	_	
			2.3 to 2.7	169	194		145	_	
			3.0 to 3.6	233	254	/ })	200	_	- MH _Z
	f _{MAX}	CL = 15 pF	0.9	-	13		_	_	
			1.1 to 1.3	20 (32	<u> </u>	13	_	
Clask fraguesa			1.4 to 1.6	59)4		48		
Clock frequency			1.65 to 1.95 <	84	104		80	4	
			2.3 to 2.7	156	179	_	139	_	
			3.0 to 3.6	225	246	4	189	_	
			99		14		4	/ _	
			1.1 to 1.3	17	30/	7	⇒ 11	_	
		CL = 30 pF	1.4 to 1.6	45	63		39		
		CL = 30 pi	1.65 to 1.95	71	91/)	68		
			2.3 to 2.7	135	159) —	120	_	
			3.0 to 3.6	189	214		163	_	
Input capacitance	C _{IN}		3.6)) 3	_	_	_	pF
Power dissipation capacitanse	C _{PD}	(Note 14)	0.9 to 3.6	7	/ 14		_	_	pF

Note 14 : C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.


Average operating current can be obtained by the equation:

2014-03-01

Package Dimensions

CSON8-P-0.4 Unit: mm

8 2014-03-01

RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE
 EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH
 MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT
 ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without
 limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for
 automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions,
 safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE
 PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your
 TOSHIBA sales representative.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any
 applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE
 FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY
 WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR
 LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND
 LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO
 SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS
 FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without
 limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile
 technology products (mass destruction weapons). Product and related software and technology may be controlled under the
 applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the
 U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited
 except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.
 Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU ROHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES
 OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.

9