

多系统多频导航定位模块 TAU1201 TAU1204

数据手册 V1.2

免责声明

本文档提供有关深圳华大北斗科技有限公司(以下简称"华大北斗")的产品信息,以支持客户使用华大北 斗产品进行产品设计开发与产品应用。在使用本文档前,请您务必仔细阅读并透彻理解本声明。您使用本文档 的行为将被视为对本声明全部内容的认可和接受。在法律允许的范围内,华大北斗对本文档所包含的信息、软 件、产品和服务不提供任何相关陈述、担保和承诺。所有此类信息、软件、产品和服务均按"原样"提供,并未附 加任何类型的陈述、担保或承诺,包括对于产品适销性、特定用途适用性、所有权和不侵权的所有默示担保和 承诺。

华大北斗将在任何情况下,都不对用户或者任何人士承担任何间接的、偶然的、附带的、特殊的、后果性(其中包括其他收入或利润损失),惩罚性的或惩戒性的损害赔偿责任或受公平或禁令救济(无论是基于违反合同、侵权、疏忽、严格责任或其他)所产生的任何责任或索赔。

本文档及其包含的所有内容为华大北斗所有,受中国法律及适用的国际公约中有关著作权法律的保护。未 经明确的书面授权,任何人不得以任何形式复制、转载、改动、散布或以其它方式使用本文档部分或全部内 容,违者将被依法追究责任。华大北斗拥有随时修改本文档的权利,本文档内容如有更改,恕不另行通知。

更多产品信息与文档更新,请访问 www.allystar.com。

版权所有©深圳华大北斗科技有限公司,2019年。保留所有权利。

目 录

1	产品	品概述	5
	1.1	产品简介	5
	1.2	产品特性	5
	1.3	产品图片	5
	1.4	系统框图	6
	1.5	性能指标	6
2	模块	块引脚定义	8
3	电	气特性	10
	3.1	极限条件	10
	3.2	IO 端口特性	10
		3.2.1 PRRSTX、PRTRG 端口特性	10
		3.2.2 USB 端口特性	11
		3.2.3 其他 IO 端口特性	11
	3.3	直流特性	12
		3.3.1 工作条件	12
		3.3.2 功耗	12
4	功能	能描述	13
	4.1	电源	13
	4.2	天线	13
	4.3	复位与工作模式控制	13
	4.4	串口通讯	14
5	机	戒规格	15
6	参	考设计	16

7	包制	麦与处	理	17
	7.1	包装		17
		7.1.1	包装须知	17
		7.1.2	模块包装	18
		7.1.3	运输包装	19
	7.2	存储		19
	7.3	处理		20
		7.3.1	ESD 注意事项	20
		7.3.2	ESD 防护措施	20
		7.3.3	湿敏等级	20
8	文村	当版本	记录	21

1 产品概述

1.1 产品简介

TAU1201/TAU1204 是一款高性能的双频 GNSS 定位模块,搭载了华大北斗的 CYNOSURE III GNSS SoC 芯片,该模块支持新一代北斗三号信号体制,同时支持全球所有民用导航卫星系统(包括 BDS、GPS、GLONASS、Galileo、IRNSS、QZSS 及 SBAS)。TAU1201/TAU1204 集成高效的电源管理架构,为 GNSS 导航应用提供高精度、高灵敏性、低功耗的解决方案。

1.2 产品特性

- 支持所有民用导航卫星系统,支持北斗三号信号体制(B1C、B2a)
- 同时接收 L1、L5 双频多模信号
- 显著提高卫星定位精度至亚米级,优异的抗多径干扰功能提升城市峡谷中场景下定位表现
- 高集成度表贴模块,最优性价比高精度定位方案
- 支持印度单 IRNSS 定位模式

1.3 产品图片

图 1 TAU1201/TAU1204 产品图

1.4 系统框图

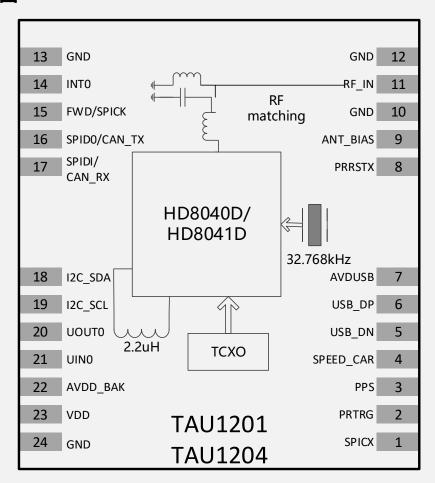


图 2 系统框图

1.5 性能指标

表格 1 性能指标

类别	性能指标	
GNSS 追踪通道	40	
		GPS/QZSS: L1C/A, L5C
		BDS: B1I, B2a
	TAU1201	GLONASS: L1OF
		Galileo: E1, E5a
刀目按收据机		SBAS: L1
卫星接收频段	TAU1204	GPS/QZSS: L1C/A, L5C
		BDS: B1I, B2a
		Galileo: E1, E5a
		IRNSS: L5
		SBAS: L1

类别	性能指标			
数据更新率	最大 10Hz			
定位精度[1]	GNSS	<1m CEP		
*************************************	GNSS	0.1m/s CEP		
速度及时间精度	1PPS	20ns		
*\ac\c\c\c\c\c	热启动	1s		
首次定位时间	冷启动	32s		
	冷启动	-148dBm		
司与	热启动	-155dBm		
灵敏度	重捕获	-158dBm		
	跟踪	-162dBm		
÷ m+7.70	速度	515m/s		
应用极限	高度	18,000m		
安全检测	内置天线开路检测,短路保护			
	USB	1		
+÷ 🗖	UART	1		
接口	SPI	1		
	I2C	1		
*6+0+42-+	NMEA 0183 协议	₹ Ver. 4.0/4.1		
数据格式	Cynosure GNSS	接收机协议		
	主电源电压	1.8 ~ 3.6V		
工作情况	I/O 电压	1.8 ~ 3.6V		
	备电电压	1.8 ~ 3.6V		
	\-Z-1++_1\	GPS+QZSS, L1 频段: 22mA@3.3V		
功耗	运行模式	GNSS, L1+L5 频段: 36mA@3.3V		
	待机模式	12uA		
工作温度	-40°C ~ +85°C			
储存温度	-40°C ~ +85°C			
封装尺寸	12.2 X 16.0 X 2.45mm 邮票孔封装			
符合标准	RoHS 及 REACH 标准			

^{* [1]} 开阔天空下双频卫星信号定位, 测试时需要使用高性能外部 LNA

2 模块引脚定义

13	GND	GND	12
14	INTO	RF_IN	11
15	FWD/SPICK	GND	10
16	SPIDO/CAN_TX	ANT_BIAS	9
17	SPIDI/ CAN_RX	PRRSTX	8
	TA	U1201	
	TA	U1204	
18	I2C_SDA	AVDUSB	7
19	I2C_SCL	USB_DP	6
20	UOUT0	USB_DN	5
21	UIN0	SPEED_CAR	4
22	AVDD_BAK	PPS	3
23	VDD	PRTRG	2
24	GND	SPICX	1

图 3 引脚定义图

表格 2 引脚定义说明

功能	管脚名称	管脚编号	信号类型	描述
	VDD	23	Power	主电源输入
	GND	10,12,13,24	VSS	地
电源	AVDD_BAK	22	Power	备用电源输入,不能悬空
	AVDUSB	7	Power	USB 电源输入,当使用 USB 功能时接电源,不使用时保持悬空。
	RF_IN	11	1	天线输入,阻抗 50Ω
天线	ANT_BIAS	9	0	天线偏置电压输出,可供外部有源天线电源使用。 有源天线电流不能超过 25mA。
—	UOUT0	20	0	UART 输出
串口	UIN0	21	I	UART 输入
	USB_DN	5	I/O	
USB	USB_DP	6	I/O	USB 数据输入/输出,如未使用保持悬空。
	SPICX	1	0	SPI 片选,如未使用保持悬空。
SPI	FWD/SPICK	15	0	SPI 时钟输出,如未使用保持悬空。
SPI	SPIDO /CAN_TX	16	0	SPI 或 CAN 数据输出,如未使用保持悬空。
	SPIDI/CAN_RX	17	I	SPI 或 CAN 数据输入,如未使用保持悬空。
I2C	I2C_SDA	18	I/O	I ² C 数据
120	I2C_SCL	19	0	I ² C 时钟
	PRTRG	2	I	工作模式选择,或唤醒信号输入。
	PRRSTX	8	I	外部复位信号输入,低电平有效。
	PPS	3	0	秒脉冲信号。
其他	SPEED_CAR	4	I	车辆速度脉冲中断输入,如未使用保持悬空。默认为 GPIO 输入。
	INT0	14	0	外部中断输入,如未使用保持悬空。默认为 GPIO 输入。

3 电气特性

3.1 极限条件

表格 3 极限条件

符号	参 数	最小值	最大值	单 位
VDD	主电源电压	-0.5	3.63	V
AVDUSB	USB 输入电压	-0.5	3.63	V
AVDD_BAK	备份电源电压	-0.5	3.63	V
VI _{max}	I/O 引脚输入电压	-0.5	3.63	V
$T_{storage}$	存储温度	-40	85	°C
T _{solder}	回流焊温度		260	°C
Ta	环境温度	-40	85	°C

3.2 IO 端口特性

3.2.1 PRRSTX、PRTRG 端口特性

表格 4 PRRSTX、PRTRG 端口特性

符号	参 数	条件	最小值	典型值	最大值	单 位
I _{IZ}	漏电流输入				+/-1	uA
V _{IH}	高电平输入电压		AVDD_BAK *0. 7		AVDD_BAK	V
VIL	低电平输入电压		0		AVDD_BAK *0.3	V
Ci	输入电容				10	pF
R _{PU}	上拉电阻		18		84	kΩ

3.2.2 USB 端口特性

表格 5 USB 端口特性

符号	参 数	条 件	最小值	典型值	最大值	单 位
I _{IZ}	漏电流输入				+/-10	uA
V _{IH}	高电平输入电压		AVDUSB *0.9		AVDUSB	V
VIL	低电平输入电压		0		AVDUSB *0.1	V
V _{OH}	高电平输出电压	I _{OH} =10 mA, AVDUSB=3.3V	2.35			V
VoL	低电平输出电压	I _{OL} =10 mA, AVDUSB=3.3V			0.5	V
R _{PUIDEL}	上拉电阻 , 空闲状态		0.9		1.575	kΩ
R _{PUACTIVE}	上拉电阻 , 活动状态		1.425		3.09	kΩ

3.2.3 其他 IO 端口特性

表格 6 其他 IO 端口特性

符号	参 数	条件	最小值	典型值	最大值	单 位
l _{IZ}	漏电流输入				+/-1	uA
V _{IH}	高电平输入电压		VDD*0.7		AVDUSB	V
V _{IL}	低电平输入电压		0		VDD*0.3	V
W	V _{OH} 高电平输出电压	I _{OH} =11.9 mA, VDD=3.3V	2.64			V
V _{OH}		I _{OH} =2.8 mA, VDD=1.8V	1.53			V
V	低电平输出电压	I _{OL} =7.9 mA, VDD=3.3V			0.4	V
Vol		I _{OL} =3.9 mA, VDD=1.8V			0.45	V
Ci	输入电容				11	pF
R _{PU}	上拉电阻		35		84	kΩ

3.3 直流特性

3.3.1 工作条件

表格 7 工作条件

符号	参数	最小值	典型值	最大值	单 位
VDD	主电源电压	1.8	3.3	3.6	V
AVDUSB	USB 输入电压	3.0	3.3	3.6	V
AVDD_BAK	备份电源电压	1.8	3.3	3.6	V
ICC _{max}	VDD 上最大操作电流			200	mA
T _{env}	工作环境温度	-40		85	°C
$T_{storage}$	存储温度	-40		85	°C

3.3.2 功耗

表格 8 功耗

符号	参数	测量引脚	典型值	单 位
I _{CCRX1} [1]	运行模式 (GPS+QZSS , L1)	VDD [3]	22	mA
I _{CCRX2} [2]	运行模式 (GNSS, L1+L5)	VDD [3]	36	mA
I _{CCDBM}	待机模式	AVDD_BAK [4]	12	uA
I _{CCRTCM}	RTC 模式	AVDD_BAK [4]	1.8	uA

^{* [1]} 开阔天空下,GPS+QZSS,L1 频段,跟踪 16 颗卫星,定位成功

^{* [2]} 开阔天空下,GNSS,L1 + L5 频段,跟踪 32 颗卫星,定位成功

^{* [3]} 条件: VDD=3.3V, 室内温度, 全部引脚悬空

^{* [4]} 条件: AVDD_BAK = 3.3V, 室内温度, 全部引脚悬空

4 功能描述

4.1 电源

为了保证定位的性能,应尽量控制模块电源的纹波,建议使用最大输出电流大于 100mA 的 LDO 供电。

备用电源作用于模块的基本电源管理系统,并让模块能在主电切断后保持用于热启动的星历数据。备用电源可接电池、超级电容或其他电源,如无需热启动,备用电源应接到模块的主电上,不能悬空。

4.2 天线

本模块外部可连接有源天线或无源天线,天线输入阻抗是50Ω。

当连接有源天线时,天线的增益应在 20dB 以下。模块通过 ANT_BIAS 向外给有源天线供电,并通过检测 ANT_BIAS 的电流来实现有源天线检测与天线过流保护功能,可以检测有源天线正常连接、开路和短路的状态,并在 NMEA 数据发出天线状态提示信息。ANT_BIAS 提供的最大电流是25mA。

4.3 复位与工作模式控制

本模块的工作模式由 PRRSTX (nRESET)和 PRTRG(BOOT)两个引脚共同控制。模块上电或 PRRSTX 接受上升沿时,模块将复位(如果 AVD_BAK 不断电,该复位将不会影响备电区的星历数 据)。如果在模块产生复位时 PRTRG 检测到低电平输入,模块将在 PRTRG 的低电平释放到悬空状态 时进入升级模式,接受升级指令;如果在模块产生复位时 PRTRG 保持悬空,模块将进入正常工作模式。

PRRSTX 和 PRTRG 在与主控系统 IO 连接时,应禁用 IO 的上拉电阻和下拉电阻。模块在正常工作模式时,应保持 PRRSTX 和 PRTRG 在悬空状态。

4.4 串口通讯

本模块提供一路 TTL 电平的通用异步收发器(UART),数据格式为:1 位起始位、8 位数据位、1 位停止位、无校验位,默认波特率为 115200。模块正常上电后,串口自动发送 NMEA 数据,上位机可以通过串口进行设置模块工作模式、波特率等操作。

模块应用于具体系统时,可能会出于省电策略而关闭模块的主电,此时为了进一步降低功耗,并且避免系统串口线的高电平影响模块的工作状态,建议关闭模块主电的同时,将串口线一同切断,也可以将串口线设置为输入态+下拉电阻的状态,或者高阻+下拉电阻状态。

5 机械规格

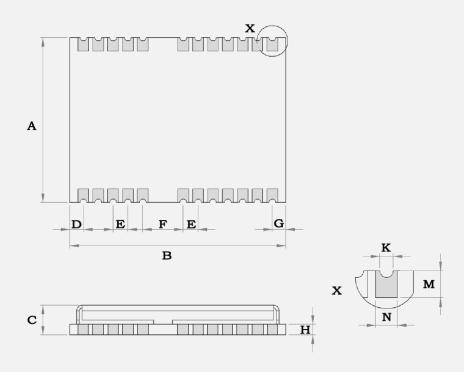


图 4 模块机械尺寸图

表格 9尺寸

编号	最小值(毫米)	典型值(毫米)	最大值 (毫米)
Α	12.1	12.2	12.3
В	15.9	16.0	16.3
С	2.4	2.45	2.5
D	0.9	1.0	1.3
E	1.0	1.1	1.2
F	2.9	3.0	3.1
G	0.9	1.0	1.3
Н		0.8	
K	0.4	0.5	0.6
М	0.8	0.9	1.0
N	0.7	0.8	0.9

6 参考设计

TAU1201/TAU1204 GNSS 定位模块的参考设计如下图所示。当需要使用有源天线连接时,请保证 39nH 电感处于贴片状态,用于给有源天线供电。当使用无源天线连接时,39nH 电感可以不需要贴片。请保证从 RF_IN 端口到天线接口处的射频线的共面波导阻抗为 50Ω。

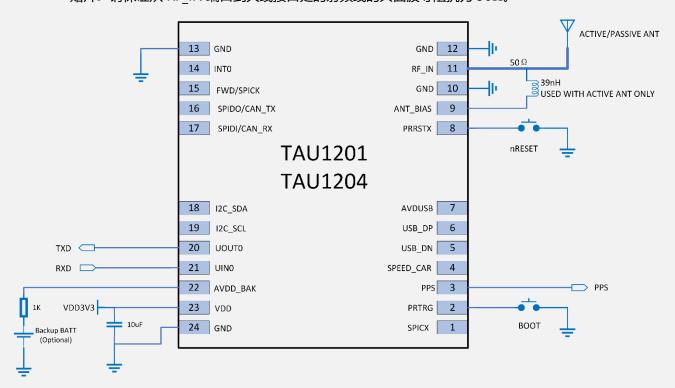


图 5 参考设计原理图

7 包装与处理

7.1 包装

7.1.1 包装须知

TAU1201/TAU1204 GNSS 定位模块是湿度、静电均敏感设备。在产品的包装和运输过程中,请务必遵循相关处理要求,并采取相应的预防措施以减少产品损坏。下表展示了产品运输的标准包装结构。

表格 10 包装结构

产品	卷轴	密封的包装袋	装运纸箱

注意:本包装信息不适用于非标准数量的订单。非标准数量的订单包装信息此处不作赘述,请以 实际收发为参考。

7.1.2 模块包装

TAU1201/TAU1204 GNSS 定位模块采用卷轴(由卷带和卷盘组成)的方式,并使用具有防静电效果的密封袋进行包装,以满足客户高效生产、批量安装和拆卸的需求。下图为卷带的尺寸细节图。

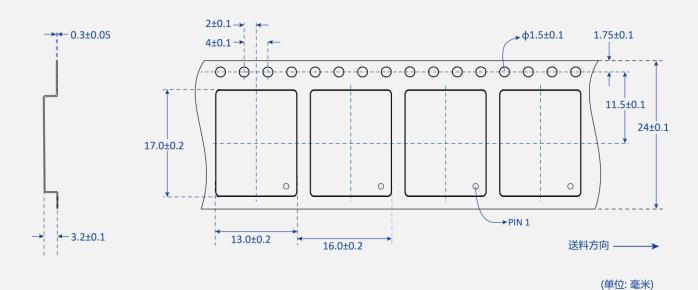


图 6卷带

每卷轴可承装 1000 片模块,下图为卷盘的尺寸细节图:

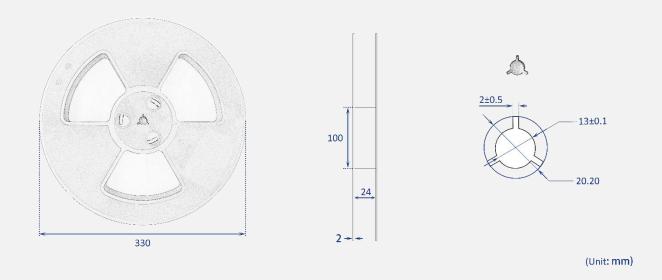


图 7卷盘

7.1.3 运输包装

由于产品的湿度敏感和静电敏感特性,需使用防静电的密封袋对卷轴进行密封包装,并以纸箱进行运输。运输包装规格如下表:

表格 11 包装规格汇总

类型	规格
卷轴	1000 片/卷
密封袋	1 卷/袋
运输纸箱	5 袋/箱

7.2 存储

为防止产品受潮和静电放电,产品密封包装袋内附有干燥剂和湿度指示卡,用户可通过湿度指示卡了解产品所处环境的湿度状况。

7.3 处理

7.3.1 ESD 注意事项

GNSS 定位模块包含高度敏感的电子线路,属于静电敏感器件(ESD)。请注意下面的操作事项,若未按照下述预防措施操作,可能会对模块造成严重损坏!

- 天线贴片前,请先接地。
- 在引出 RF 引脚时,请不要接触任何带电电容和其他器件(例如,天线贴片~10 pF;同轴电缆~50- 80 pF/m;焊接烙铁)
- 为防止静电放电,请勿将天线区域暴露在外;若因设计原因暴露在外,请采取适当的 ESD 防护措施。
- 在焊接 RF 连接器和天线贴片时,请确保使用 ESD 安全烙铁。

7.3.2 ESD 防护措施

GNSS 定位模块为静电敏感器件。在操作使用接收机时,必须特别小心,以减少静电的危险。除了标准的 ESD 安全措施外,还需考虑如下措施:

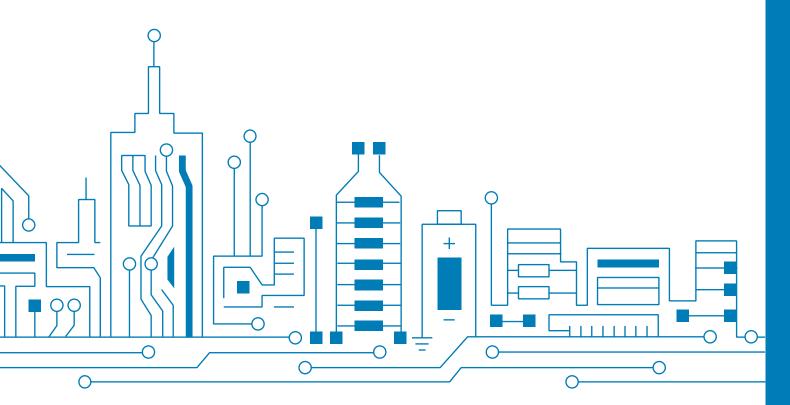
- 在射频输入部分加入 ESD 二极管, 防止静电放电
- 切勿触摸任何暴露的天线区域
- 将 ESD 二极管添加到 UART 接口

7.3.3 湿敏等级

GNSS 定位模块的湿敏等级为 MSL3。

8 文档版本记录

版本号	发布日期	撰写人	更新记录
V1.0	2019-05-17	Daisy	正式发布
V1.1	2019-07-26	吴小宇	(1) 更新冷启动时间和参考设计图,及少许措辞; (2) 更新天线安全管理信息(短路开路检测,短路保护) (3) 删除 CAN 描述; (4) 添加参考设计的概述内容; (5) 更新 4.3 关于复位的操作描述及其他; (6) 更新产品图片; (7) 添加包装信息;
V1.2	2019-09-17	吴小宇	(1) 更新 1.4 系统框图;(2) 更新 1.5 性能指标中的封装尺寸;


www.allystar.com

info.gnss@allystar.com

广东省深圳市龙岗区坂田街道发达路 3 号云里智能园四栋 5 楼

