TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA8479F

3 PHASE FULL WAVE BRUSHLESS DC MOTOR DRIVER IC FOR VIDEO CAMERA

TA8479F is a capstan / cylinder motor 1-chip driver IC for video camera. Enclosing the capstan and cylinder sections in one package saves space and makes patterning the set board easier.

FEATURES

- Capstan / Cylinder Motor Driver in 1 Chip
- 3 Phase Full Wave Drive~Voltage Control / Voltage Drive Mode
- Package: QFP44
- Built-in Thermal Shutdown Circuit
 - <Capstan section>
 - \bullet Soft switching drive
 - Bi-direction drive
 - Built–in standby circuit
 - <Cylinder section>
 - \bullet Hard switching drive
 - \bullet One direction drive

Weight : 1.15 g (Typ.)

TA8479F

TOSHIBA

BLOCK DIAGRAM

PIN FUNCTION

PIN No.	SYMBOL	FUNCTION	PIN No.	SYMBOL	FUNCTION
1	YHu⁺	u-phase Hall amp positive input pin	23	CLc	c-phase drive output pin
2	YHu	u-phase Hall amp negative input pin	24	CANG	Hall amp gain control pin
3	YHv⁺	v-phase Hall amp positive input pin	25	CHc⁻	c-phase Hall amp negative input pin
4	YHv ⁻	v-phase Hall amp negative input pin	26	CHc⁺	c-phase Hall amp positive input pin
5	YHw ⁺	w-phase Hall amp positive input pin	27	CHb⁻	b-phase Hall amp negative input pin
6	YHw ⁻	w-phase Hall amp negative input pin	28	CHb⁺	b-phase Hall amp positive input pin
7	CSG	Small signal section GND	29	CHa⁻	a-phase Hall amp negative input pin
8	CV _{CC}	Small signal supply voltage input pin	30	CHa⁺	a-phase Hall amp positive input pin
9	CSB	Standby pin	31	YSG	Small signal section GND
10	CFR	Forward / reverse switching pin	32	YV _{CC}	Small signal section supply voltage input pin
11	CVM	Output section drive voltage input pin	33	YVM	Output section drive voltage input pin
12	NC		34	YLw	w-phase drive output pin
13	CLa	a-phase drive output pin	35	NC	
14	NC		36	NC	
15	CPG	Output section GND	37	YPG	Output section GND
16	CLb	b-phase drive output pin	38	NC	
17	GND	GND pin	39	YLv	v-phase drive output pin
18	NC		40	NC	
19	CPG	Output section GND	41	YPG	Output section GND
20	NC		42	NC	
21	NC		43	YLu	u-phase drive output pin
22	NC		44	NC	

EXPLANATION OF SECTIONS

<Capstan section>

• Hall amp circuit

The Hall amp is a differential amp, and the common-phase input voltage range is $CV_{CMR} = 1.4 \sim 2.8$ [V]. For signals from Hall elements, input sinusoidal waves. Noise, etc. which causes malfunctions when found in signals, must be prevented by a condenser.

Grounding the CANG pin with a resistor makes it possible to change the input / output gains in the Hall amp. Determine the resistance value within 1 k Ω ~several k Ω .

• Standby circuit

A standby state turns off all circuits in the capstan section except for the standby circuit.

H: Start

L: Standby

• FR circuit

- H: Reverse rotation
- L: Forward rotation

In an open state, the circuit causes the motor to rotate forward.

• Output circuit

This IC uses an amplitude control mode to control output currents by changing output amplitude.

<Cylinder section>

• Hall amp circuit

The Hall amp is a differential amp, and the common-phase input voltage range is $YV_{CMR} = 1.3 \sim YV_{CC} - 1.3$ [V]. For signals from Hall elements, input sinusoidal waves. Noise, etc., which causes malfunction when found in signals, must be prevented by a condenser.

This circuit has a high gain amp at the latter stage, making the input sensitivity as high as about 20 mV_{p-p} (Typ.).

• Output circuit

This circuit uses a hard switching drive mode and controls output currents by changing the emitter-collector voltage of the Pw Tr.

• Thermal shutdown circuit

When the temperature exceeds $T_j = 170^{\circ}C$ (Typ.) (design target value), the output circuits in the capstan and cylinder sections are turned off. This circuit has an approximately 30°C Hysteresis, and the recovery temperature is $T_j = 140^{\circ}C$ (Typ.) (design target value).

TRUTH TABLE / TIMING CHART <Capstan section>

СНа	CHb	CHc	CLa	CLb	CLc	
L	н	L	Н	L	М	
Н	н	L	М	L	н	(Forward Rotation)
Н	L	L	L	М	н	CLa = -(CHa - CHb) $CLb = -(CHb - CHc)$
Н	L	н	L	н	М	CLc = -(CHc - CHa)
L	L	Н	М	н	L	CFR =" L "
L	н	Н	Н	М	L	
н	L	L	н	М	L	
Н	н	L	М	н	L	(Reverse Rotation)
L	н	L	L	н	М	CLa = CHa - CHb CLb = CHb - CHc
L	н	Н	L	М	н	CLc = CHc - CHa
L	L	Н	М	L	Н	CFR =" H "
Н	L	н	н	L	М	

(Forward rotation)

(Reverse rotation)

<Cylinder section>

YHu	YHv	YHw	YLu	YLv	YLw	
Н	L	L	Н	М	L	
Н	Н	L	М	н	L	
L	Н	L	L	Н	М	YLu = YHu - YHv
L	Н	Н	L	М	н	YLw = YHw - YHu
L	L	Н	М	L	н	
Н	L	Н	Н	L	М	

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING				
CHARACTERISTIC	STIMBOL	CAPSTAN SECTION	CYLINDER SECTION	UNIT		
Small Signal Section Supply Voltage	V _{CC}	10 10		V		
Output Section Supply Voltage	V _M 10 10		10	V		
Output Current	Ι _Ο	1.5	1.5	А		
Power Dissipation	PD	1 (Note		W		
Operating Temperature	T _{opr}	-20~75		°C		
Storage Temperature	T _{stg}	-55~150				

Note 1: When mounted on board (100 ×100 × 1.6 mm Cu 24%)

OPERATING SUPPLY VOLTAGE RANGE (Ta = 25° C) CAPSTAN SECTION

CHARACTERISTIC	SYMBOL	OPERATING RANGE	UNIT
Small Signal Section Supply Voltage	CV _{CC}	4.2~6.0	V
Output Section Supply Voltage	CVM	2.8~8.0	V

CYLINDER SECTION

CHARACTERISTIC	SYMBOL	OPERATING RANGE	UNIT
Small Signal Section Supply Voltage	YV _{CC}	4.2~6.0	V
Output Section Supply Voltage	YVM	1.5~8.0	V

ELECTRICAL CHARACTERISTICS CAPSTAN SECTION ($CV_{CC} = 5.0 \text{ V}$, $CV_M = 3 \text{ V}$, $Ta = 25^{\circ}C$)

CHARACTERISTIC		SYMBOL	TEST CIRCUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
		CI _{CC1}	1	Output open, standby	_	60	80	μA
Supply Current		CI _{CC2}	1	Output open, start		5	8	mA
Supply Current		CI _{M1}	2	Output open, standby		2	5	mA
		CI _{M2}	2	Output open, start	_	7	12	mA
	Input Current	CIH	3	CV _{CMR} = 2.5 V	_	—	5	μA
Hall Amp	Common-Phase Voltage Range	CV _{CMR}	4		1.4	_	2.8	V
Circuit	Input Sensitivity	CV _H	5	(Note)	20	_	_	mV _{p-p}
	Hall Input Output Voltage Gain	CG _{VHO}	5	RANGLE = 6.8 kΩ	20	23	26	dB
	Saturation Voltage (Upper Side+Lower side)	CV _{sat} (H + L)	6	$I_{O} = 0.1 \text{ A}, CV_{M} = 3 \text{ V}, CV_{H} = 50 \text{ mV}_{p-p}$	_	1.3	1.8	v
Output Circuit				I_{O} = 1.0 A, CV_{M} = 5 V, CV_{H} = 50 mV _{p-p}	_	2.3	2.8	
	Quiescent Voltage	CV _{OS}	8		1.05	1.25	1.45	V
	Quiescent Voltage Difference	ΔCV_{OS}	8		_	_	80	mV
	Input Voltage (H)	CV _{SH}	11	(Start)	3.0	_	CV _{CC}	V
Standby Circuit	Input Voltage (L)	CV _{SL}	11	(Stop)	0	—	1.2	V
	Input Current	CI _{INS}	11	CV _S = 0 V		—	5	μA
	Input Voltage (H)	CV _{FH}	12	(Reverse rotation)	3.0	_	CV_{CC}	V
FR Circuit	Input Voltage (L)	CV _{FL}	12	(Forward rotation)	0	_	1.2	V
	Input Current	Cl _{INF}	12	CV _F = 5.0 V	—	—	70	μA
Thermal Shutdown Circuit Operating Temperature		T _{SD}	_	(Junction temperature)		170	_	°C

Note: Defined by output functioning

CYLINDER SECTION ($YV_{CC} = 5.0 \text{ V}, YV_{M} = 3 \text{ V}, Ta = 25^{\circ}\text{C}$)

CHARACTERISTIC		SYMBOL	TEST CIRCUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
Supply Current		YI _{CC}	1	Output open	-	5	8	mA
Supply Current		ΥΙ _Μ	2	Output open	_	25	40	mA
	Input Current	ΥΙ _Η	3	YV _{CMR} = 2.5 V	_	_	5	μA
Hall Amp Circuit	Common-Phase Input Voltage Range	YV _{CMR}	4		1.3	_	YV _{CC} −1.3	V
	Input Sensitivity	ΥV _H	5	(Note)	20	_	_	mV _{p-p}
Output Circuit	Saturation Voltage (Upper Side+Lower side)	YV _{sat} (H + L)	6	I _O = 1.0 A, YV _H = 30 mV _{p-p}	_	2.2	2.7	V
	Leakage Current (Upper Side)	YV _{OL} (H)	9	YV _M = 10 V	_	_	10	μA
	Leakage Current (Lower Side)	YV _{OL} (L)	10	YV _M = 10 V	_	_	10	μA
Thermal Shutdown Operating Temperature		T _{SD}	_		_	170	_	°C

Note: Defined by output functioning

TEST CIRCUIT

1. YICC, CICC1, CICC2

2. YI_M, CI_{M1}, CI_{M2}

 $3. \ YI_H, CI_H$

4. YV_{CMR}, CV_{CMR}

5. YV_H , CV_H , CG_{VHO}

6. YVsat (H), CVsat (H)

TOSHIBA 7. YV_{sat(L)}, CV_{sat(L)}

8. CV_{OS}, ΔCV_{OS}

9. YI_{OL (H)}

10. YI_{OL (L)}

11. CV_{SH}, CV_{SL}, CI_{INS}

TOSHIBA

12. CVFH, CVFL, CIINF

APPLICATION CIRCUIT

TOSHIBA

Note: Utmost care is necessary in the design of the output line, YV_M, CV_M and GND line since IC may be destroyed due to short-circuit between outputs, air contamination fault, or fault by improper grounding.

PACKAGE DIMENSIONS

QFP44-P-1414-0.80B

Unit : mm

Weight: 1.15 g (Typ.)

1.2±0.2

RESTRICTIONS ON PRODUCT USE

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.