TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic

TA8224H

Multi Output Voltage Regulator For CD Player

The TA8224H is voltage regulator IC, designed for compact disc player use, built in 3 outputs and reset circuit. In addition, protection of over voltage, output to GND short and thermal shut down are involved.

Features

٠

- 3 regulated voltage outputs
 VOUT1 (for μ-com system) fixed voltage output
 : VOUT1 = 5V (typ.) / 100mA (max.)
 - VOUT2 (for servo system) fixed voltage output

 $: V_{OUT2} = 5V (typ.) / 300mA (max.)$

- VOUT3 (for driver) adjustable voltage output
- : V_{OUT3} = 8V (typ.) / 1.2A (max.) Built-in reset circuit 2 input, 1 output
 - : Reset sense voltage $V_R \le 3.4V$ (Ta = 25°C)
- Built-in stand-by circuit
 - STB1 for VOUT1, VOUT2, VOUT3
 - STB2 for VOUT2, VOUT3
- Built-in various protection circuits
 - : Over voltage, output to GND short, thermal shut down
 - Input operating voltage range

: VIN (opr) = $7.5 \sim 24V$ (operating VOUT1 only)

Block Diagram

PROT1 : Over Voltage PROT2 : Thermal Shut Down PROT3 : Current Limiter for Output-GND Short

Explanation For Each Terminal

Pin No.	Symbol	Function	Remarks			
1	STB1	Stand–by switch for V _{OUT1} , V _{OUT2} , V _{OUT3}	GND terminal for bias circuit. (1) \rightarrow GND: On, (1) \rightarrow open: Off			
2	GND	GND	GND is except for bias circuit.			
3	STB2	Stand-by switch	$V_{STB2} \ge 3.0V$: On, $V_{STB2} \le 1.2V$: Off			
4	V _{ref}	Reference for VOUT3	V_{OUT3} is decide a ratio of R_1 to R_2 .			
5	Reset1	Reset input 1	V _{R1} ≥ 3.75V: Off, V _{R1} ≤ 3.4V: Reset			
6	V _{OUT3}	Adjustable voltage output	Adjust by external resistor R_1 and R_2			
7	V _{IN1}	Input terminal 1	Driver stage supply terminal			
8	V _{OUT2}	5V output	Output fixed 5V.			
9	Reset2	Reset input 2	V _{R2} ≥ 3.75V: Off, V _{R2} ≤ 3.4V: Reset			
10	V _{OUT1}	5V output	Output fixed 5V.			
11	V _{IN2}	Input 2	Pre stage supply terminal			
12	Reset	Reset output	Open collector			

Maximum Ratings (Ta = 25°C)

Characteristic	Symbol	Rating	Unit
DC input voltage	V _{CC}	30	V
Power dissipation	P _D (Note)	25	W
Operating temperature	T _{opr}	-25~75	°C
Storage temperature	T _{stg}	-55~150	°C

(Note) Derated above Ta = 25°C in proportion of 200mW / °C

Electrical Characteristics (unless otherwise specified, V_{IN}=12V, I_{OUT1}=100mA, I_{OUT2}=300mA, I_{OUT3}=300mA, Ta=25°C)

Characteristic		Symbol	Test Cir- cuit	Test Condition		Min.	Тур.	Max.	Unit	
Output voltage		V _{OUT1}	_	_		4.8	5.0	5.3	V	
		V _{OUT2}	_	—		4.8	5.0	5.3		
		V _{OUT3}	_	$R_1 = 18k\Omega, R_2 = 39k\Omega$		7.7	8.0	8.3		
		Reg1. line	_	$7.5V \le V_{IN} \le 24V$		_	20	100		
Input regulation		Reg2. line	_	$7.5V \le V_{IN} \le 20V$		_	20	100	mV	
		Reg3. line	_	$10.3V \le V_{IN} \le 20V$		_	20	150		
		Reg1. load	_	0mA ≤ I _{OUT1} ≤ 100mA		_	20	100		
	l regulation	Reg2. load	_	5mA ≤ I _{OUT2} ≤ 300mA		_	20	100	mV	
LUat	regulation	Developed		5mA ≤ I _{OUT3} ≤ 300mA		_	20	100		
		Reg3. load	_	5mA ≤ I _{OUT3} ≤ 1.2A		_	50	_		
		R.R.1	_		$10V \le V_{IN} \le 24V$	60	70	_	dB	
Ripp	le rejection ratio	R.R.2	_	V _{in} = 1V _{rms} f = 120Hz	11V ≤ V _{IN} ≤ 20V	60	70	_		
		R.R.3	—		$12V \le V_{IN} \le 20V$	52	64	_		
		V _{D1}	—	V _{IN} = 6V		_	1.8	_		
Drop	oout voltage	V _{D2}	—	V _{IN} = 6V		_	1.8	_	V	
		V _{D3}	_	V _{IN} = 8V		_	1.5	_		
		I _{MAX1}	_			100	200	_		
Maxi	imum output ent	I _{MAX2}	_	1 –		300	400	_	mΑ	
ount		I _{MAX3}	_			1.2	1.5	_	А	
Output short current		I _{SC1}	_			_	250	_	mA	
		I _{SC2}	_			_	400	_		
		I _{SC3}	_			_	1.0	_	А	
Output noise voltage		V _{no1}	_			_	180	—	μV	
		V _{no2}	_			_	230	—		
		V _{no3}	_			_	260	—		
Outent unter		T _{CVO1}	_			_	0.5	—		
temp	perature	T _{CVO2}	_			_	-1.1	_	mV / °C	
coef	ficient	T _{CVO3}	_			_	-1.2	—		
Bias current		Ι _Β	_	I _{OUT1} -0mA, V _{OUT2} , ₃ -off		_	0.6	1.2	mA	
	Reset sense voltage	ense voltage V _R —		-		3.4	_	3.75	V	
Reset	Hysteresis voltage ΔV_H		_	_		_	60	—	mV	
	Output saturation voltage	V _{sat}	_	R ₃ = 510Ω		_	0.3	1.0	V	
	Sensing Voltage temperature coefficient	Tc VO4	_	_		_	0.5	_	mV / °C	
Stand-by current		I _{Istb}	—	V ₁ = 0V, V _{OUT2} , ₃ -off		-	180	300	μA	
Threshold voltage		V _{Sstb2}	_	—		1.2	_	3.0	V	

Test Circuit

Application Circuit

Package Dimensions

Weight: 4.04g (typ.)

RESTRICTIONS ON PRODUCT USE

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.