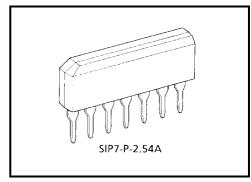
### TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

# **TA8052S**

### 0.3A MOTOR DRIVER WITH BRAKE FUNCTION

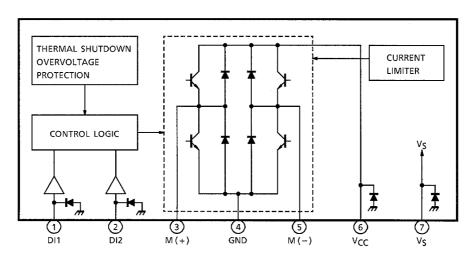
The TA8052S is a full-bridge driver which directly drives a bidirectional DC motor. Inputs DI1 and DI2 are combined to select one of forward, reverse, stop, and brake modes. Since the inputs are TTL-compatible, the IC can be directly controlled from a CPU or other control system. The IC also has various protective functions

### **FEATURES**


• Output current : 300mA (max.)

Four modes : Forward, reverse, stop, and brake

• Multiple protective functions


 $: Thermal\ shutdown,\ current\ limiter,\ and\ overvoltage\ shut\ down.$ 

- Bulit-in diode for counteracting counter electromotive force
- Small SIP-7 pin



Weight: 0.7 g (typ.)

### **BLOCK DIAGRAM AND PIN LAYOUT**

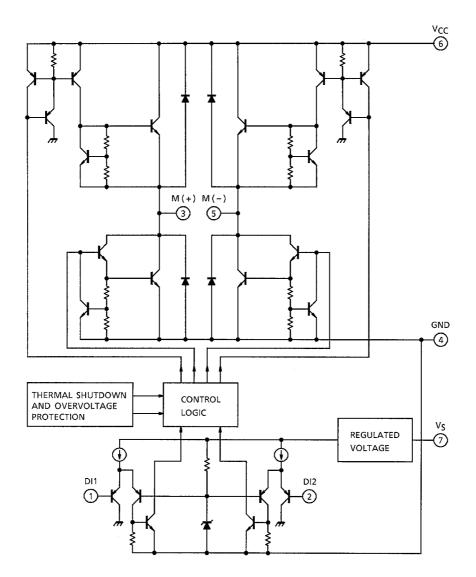


# **PIN DESCRIPTION**

| PIN No. | SYMBOL          | DESCRIPTION                                                                                                                                 |  |  |
|---------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1       | DI1             | Output status control pin.                                                                                                                  |  |  |
| 2       | DI2             | Connects to a PNP-type voltage comparator.                                                                                                  |  |  |
| 3       | M (+)           | Connects to the DC motor. Diodes for absorbing counter electromotive force are contained on the V $_{\rm CC}$ and GND sides.                |  |  |
| 4       | GND             | Grounded                                                                                                                                    |  |  |
| 5       | M (-)           | Connects to the DC motor together with pin 3 and has the same function as pin 3. This pin is controlled by the inputs from pins 1 and 2.    |  |  |
| 6       | V <sub>CC</sub> | Power supply pin. This pin has a function to turn off the output when the applied voltage exceeds 30V, thus protecting the IC and the load. |  |  |
| 7       | Vs              | Power supply pin for the control section. This pin is completely separated from the $V_{CC}$ pin.                                           |  |  |

### **TRUTH TABLE**

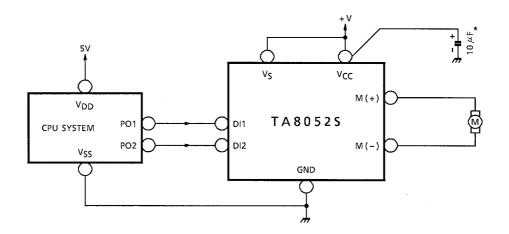
| Inj | out | Out         | put       | 0.1.111.1   |  |  |
|-----|-----|-------------|-----------|-------------|--|--|
| DI1 | DI2 | M (+)       | M (-)     | Output Mode |  |  |
| Н   | Н   | L           | L         | BRAKE       |  |  |
| L   | Н   | L           | Н         | REVERSE     |  |  |
| Н   | L   | Н           | L         | FORWARD     |  |  |
| L   | L   | OFF (high i | mpedance) | STOP        |  |  |


# MAXIMUM RATINGS (Ta = 25°C)

| CHARACTERISTIC        | SYMBOL           | RATING                    | UNIT |
|-----------------------|------------------|---------------------------|------|
| Supply Voltage        | V <sub>CC</sub>  | 50 (1s)                   | V    |
| Input Voltage         | V <sub>IN</sub>  | -0.3~V <sub>CC</sub> +0.3 | ٧    |
| Output Current        | lout             | 300                       | mA   |
| Power Dissipation     | $P_{D}$          | 0.92                      | W    |
| Operating Temperature | T <sub>opr</sub> | -40~85                    | °C   |
| Storage Temperature   | T <sub>stg</sub> | -55~150                   | °C   |
| Lead Temperature Time | T <sub>sol</sub> | 260 (10s)                 | °C   |

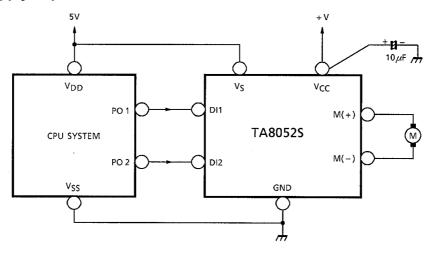
# ELECTRICAL CHARACTERISTICS (V<sub>S</sub>, V<sub>CC</sub> = $8\sim16$ V, Ta = $-40\sim85$ °C)

| CHARACTERISTIC            | SYMBOL                   | PIN              | TEST<br>CIR-<br>CUIT | TEST CONDITION                    | MIN | TYP. | MAX  | UNIT |
|---------------------------|--------------------------|------------------|----------------------|-----------------------------------|-----|------|------|------|
|                           | I <sub>S1</sub>          | Vs               | _                    | Stop                              | _   | 2.5  | 5    | mA   |
| Current Consumption (I)   | I <sub>S2</sub>          |                  | _                    | Forward / Reverse                 | _   | 4    | 8    |      |
|                           | I <sub>S3</sub>          |                  | _                    | Brake                             | _   | 4    | 8    |      |
|                           | I <sub>CC1</sub>         | Vcc              | _                    | Stop                              | _   | _    | 1    | mA   |
| Current Consumption (II)  | I <sub>CC2</sub>         |                  | _                    | Forward / Reverse                 | _   | 7.5  | 15   |      |
|                           | I <sub>CC3</sub>         |                  | _                    | Brake                             | _   | _    | 1    |      |
| Input Voltage             | V <sub>IL</sub>          | DI1 / DI2        |                      |                                   | _   | _    | 0.8  | V    |
| Input Voltage             | V <sub>IH</sub>          |                  | _                    |                                   | 2.0 | _    | _    |      |
| In most Command           | I <sub>IL</sub>          | DI1 / DI2        | _                    | V <sub>IN</sub> = 0.4V            | _   | _    | -20  | - μΑ |
| Input Current             | I <sub>IH</sub>          |                  | _                    | V <sub>IN</sub> = V <sub>CC</sub> | _   | _    | 10   |      |
| Output Saturation Voltage | V <sub>sat</sub> (total) | M (+)<br>/ M (-) | _                    | I <sub>O</sub> = 200mA            | _   | 1.8  | 2.5  | ٧    |
| Output Lookage Current    | I <sub>LEAK-U</sub>      | M (+)<br>/ M (-) | _                    | V <sub>O</sub> = 0V               | _   | _    | -100 | μА   |
| Output Leakage Current    | I <sub>LEAK-L</sub>      |                  | _                    | $V_O = V_{CC}$                    | _   | _    | 100  |      |
| Diado Fanyard Valtago     | V <sub>F-U</sub>         | M (+)<br>/ M (-) | _                    | I <sub>F</sub> = 200mA            | _   | 1.1  | _    | V    |
| Diode Forward Voltage     | V <sub>F-L</sub>         |                  | _                    | I <sub>F</sub> = 200mA            | _   | 1.1  | _    |      |
| Output Limit Current      | I <sub>SC</sub>          |                  | _                    | Ta = 25°C                         | 0.3 | 0.55 | _    | Α    |
| Chutdaya Tarana aratura   | T <sub>SD-H</sub>        |                  | _                    | $ON \rightarrow OFF$              | _   | 150  | _    | °C   |
| Shutdown Temperature      | T <sub>SD-L</sub>        |                  | _                    | OFF → ON                          | _   | 130  | _    |      |
| Overvoltage Detection     | V <sub>SD</sub>          |                  | _                    |                                   | 27  | 30   | 33   | V    |
| T ( D   T                 | t <sub>pLH</sub>         |                  | _                    |                                   | _   | 1    | 10   |      |
| Transfer Delay Time       | t <sub>pHL</sub>         |                  | _                    |                                   | _   | 1    | 10   | μs   |


# I/O EQUIVALENT CIRCUIT



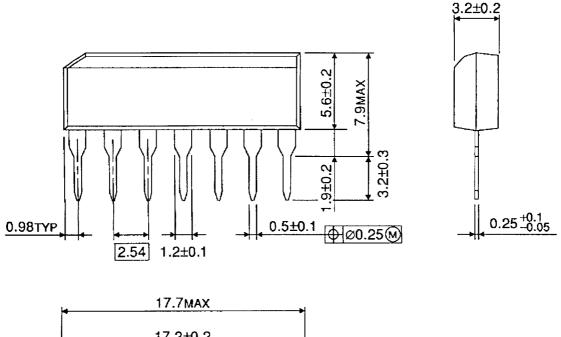
4 2002-02-27


# **EXAMPLE OF APPLICATION CIRCUIT**

### 1. Standard Circuit



\*: Connect this capacitor as close to the IC as Possible.


# 2. Power Supply Separation Circuit



5

# **PACKAGE DIMENSIONS**

SIP7-P-2.54A Unit: mm



17.2±0.2

Weight: 0.7g (Typ.)

6 2002-02-27

### **RESTRICTIONS ON PRODUCT USE**

000707EAA\_S

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The information contained herein is presented only as a guide for the applications of our products. No
  responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
  rights of the third parties which may result from its use. No license is granted by implication or otherwise under
  any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.