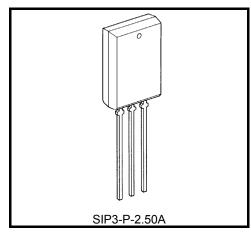
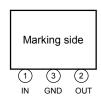
TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic

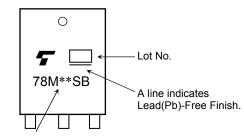

TA78M05SB, TA78M06SB, TA78M08SB, TA78M09SB, TA78M10SB, TA78M12SB, TA78M15SB, TA78M18SB, TA78M20SB, TA78M24SB

Output Current of 0.5 A, Three-Terminal Positive Voltage Regulators 5 V, 6 V, 8 V, 9 V, 10 V, 12 V, 15 V, 18 V, 20 V, 24 V

The TA78M××SB series of fixed-voltage monolithic integrated circuit voltage regulators is designed for a wide range of applications. These regulators employ internal current-limiting, thermal-shutdown and safe-area compensation, making them essentially indestructible. One of these regulators can drive up to 0.5 A of output current.


Features

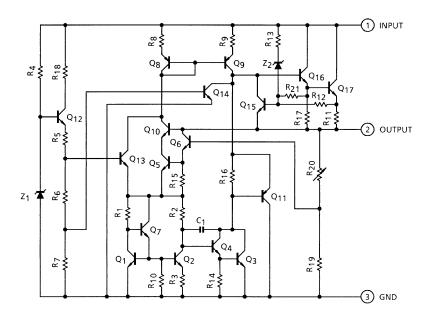
- Suitable for CMOS, TTL and the power supply of other digital ICs
- Maximum output current of 0.5 A.
- Internal overheating protection.
- Internal overcurrent protection.
- Package in the plastic case TPL ($P_D = 1.8 \text{ W}$).



Weight: 1.5 g (typ.)

Pin Assignment

Marking



Part No. (or abbreviation code)

The product(s) in this document ("Product") contain functions intended to protect the Product from temporary small overloads such as minor short-term overcurrent or overheating. The protective functions do not necessarily protect Product under all circumstances. When incorporating Product into your system, please design the system (1) to avoid such overloads upon the Product, and (2) to shut down or otherwise relieve the Product of such overload conditions immediately upon occurrence. For details, please refer to the notes appearing below in this document and other documents referenced in this document.

Equivalent Circuit

Absolute Maximum Ratings (Ta = 25°C)

Characteris	tics	Symbol	Rating	Unit
	TA78M05SB			
	TA78M06SB			
	TA78M08SB			
	TA78M09SB		35	
Input voltage	TA78M10SB	V _{IN}		V
input voltage	TA78M12SB	V IN		V
	TA78M15SB			
	TA78M18SB			
	TA78M20SB		40	
	TA78M24SB			
Output current	_	lout	0.5	Α
Power dissipation	(Ta = 25°C)	P_{D}	1.8	W
Operating temperature		T _{opr}	−30 to 85	°C
Storage temperature		T _{stg}	-55 to 150	°C
Junction temperature		Tj	150	°C
Thermal resistance		R _{th (j-a)}	69.4	°C/W

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

TA78M05SB Electrical Characteristics (Unless otherwise specified, V_{IN} = 10 V, I_{OUT} = 350 mA, 0°C \leq T $_{j}$ \leq 125°C, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F)

Characteristic	:s	Symbol	Test Circuit		Test Condition	Min	Тур.	Max	Unit
Output voltage		V _{OUT}	1	T _j = 25°C		4.8	5.0	5.2	V
Line regulation		Reg·line	1	T _j = 25°C	7 V ≤ V _{IN} ≤ 25 V, I _{OUT} = 200 mA	_	4	100	mV
Line regulation		1.090	l I	1] - 23 0	8 V ≤ V _{IN} ≤ 25 V, I _{OUT} = 200 mA	_	2	50	IIIV
Load regulation	ad regulation Regular		1	T. = 25°C	5 mA ≤ I _{OUT} ≤ 500 mA	_	25	100	mV
Load regulation		Reg·load	'	T _j = 25°C	5 mA ≤ I _{OUT} ≤ 200 mA	_	10	50	IIIV
Output voltage		V _{OUT}	1	1 $T_j = 25^{\circ}C$ $7 \text{ V} \le \text{V}_{IN} \le 20 \text{ V},$ $5 \text{ mA} \le \text{I}_{OUT} \le 350 \text{ mA}$ 4.75		4.75	_	5.25	V
Quiescent current		I _B	1	T _j = 25°C		_	4.5	8.0	mA
Quiescent current	Line	ΔI _{BI}	1	T _i = 25°C	$8.5 \text{ V} \le \text{V}_{\text{IN}} \le 25.5 \text{ V},$ $\text{I}_{\text{OUT}} = 200 \text{ mA}$	_	_	0.8	mA
change	Load	Δl _{BO}	1] ′	5 mA ≤ I _{OUT} ≤ 350 mA	_	_	0.5	
Output noise voltage		V _{NO}	2	Ta = 25°C	, 10 Hz ≤ f ≤ 100 kHz	_	50	200	μV_{rms}
Ripple rejection		R.R.	3		f = 120 Hz, I _{OUT} = 100 mA, 8 V ≤ V _{IN} ≤ 18 V, T _i = 25°C		69	_	dB
Short circuit current lin	nit	I _{SC}	1	T _j = 25°C		_	960	_	mA
Dropout voltage		V _D	1	T _j = 25°C		_	1.7	_	V
Average temperature coefficient of output vo	oltage	T _{CVO}	1	I _{OUT} = 5 n	mA		-0.6		mV/°C

TA78M06SB Electrical Characteristics (Unless otherwise specified, V_{IN} = 11 V, I_{OUT} = 350 mA, 0°C \leq T $_{j}$ \leq 125°C, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F)

Characteristic	s	Symbol	Test Circuit		Test Condition	Min	Тур.	Max	Unit
Output voltage		V _{OUT}	1	T _j = 25°C		5.75	6.0	6.25	V
Line regulation		Reg·line	1	T _i = 25°C	8 V ≤ V _{IN} ≤ 25 V, I _{OUT} = 200 mA	_	4	100	mV
Line regulation		ricg iiiic	'	1) 200	9 V ≤ V _{IN} ≤ 25 V, I _{OUT} = 200 mA	_	2	50	IIIV
Load regulation	regulation Reg·load		1	T. = 25°C	5 mA ≤ I _{OUT} ≤ 500 mA	_	25	120	mV
Load regulation		Regiload	'	T _j = 25°C	5 mA ≤ I _{OUT} ≤ 200 mA	_	10	60	IIIV
Output voltage		V _{OUT}	1 $T_j = 25^{\circ}C$ $\begin{array}{c c} 8 \ V \le V_{IN} \le 21 \ V, \\ 5 \ mA \le I_{OUT} \le 350 \ mA \end{array}$ 5.7 -		_	6.3	V		
Quiescent current	Quiescent current		1	T _j = 25°C		_	4.5	8.0	mA
Quiescent current	Line	ΔI _{BI}	1	T _i = 25°C	$9.5 \text{ V} \le \text{V}_{\text{IN}} \le 25.5 \text{ V},$ $\text{I}_{\text{OUT}} = 200 \text{ mA}$	_	_	0.8	mA
change	Load	Δl _{BO}	1] ′	5 mA ≤ I _{OUT} ≤ 350 mA	_	_	0.5	
Output noise voltage	•	V _{NO}	2	Ta = 25°C	, 10 Hz ≤ f ≤ 100 kHz	_	55	220	μV_{rms}
Ripple rejection		R.R.	3		z, I _{OUT} = 100 mA, ≤ 19 V, T _j = 25°C	59	66	_	dB
Short circuit current lin	nit	I _{SC}	1	T _j = 25°C		_	960	_	mA
Dropout voltage		V _D	1	T _j = 25°C		_	1.7	_	V
Average temperature coefficient of output vo	oltage	T _{CVO}	1	I _{OUT} = 5 n	nA	_	-0.7	_	mV/°C

TA78M08SB Electrical Characteristics (Unless otherwise specified, V_{IN} = 14 V, I_{OUT} = 350 mA, 0°C \leq T $_{j}$ \leq 125°C, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F)

Characteristic	s	Symbol	Test Circuit		Test Condition	Min	Тур.	Max	Unit
Output voltage		V _{OUT}	1	T _j = 25°C		7.7	8.0	8.3	V
Line regulation		Reg·line	1	T _i = 25°C	10.5 V ≤ V _{IN} ≤ 25 V, I _{OUT} = 200 mA	_	5	100	mV
Line regulation		rteg iiite	'	1, 200	11 V ≤ V _{IN} ≤ 25 V, I _{OUT} = 200 mA	_	3	50	IIIV
Load regulation	gulation Poguland		1	T. = 25°C	5 mA ≤ I _{OUT} ≤ 500 mA	_	26	160	mV
Load regulation		Reg·load	'	T _j = 25°C	5 mA ≤ I _{OUT} ≤ 200 mA	_	10	80	IIIV
Output voltage		V _{OUT}	1 $T_j = 25^{\circ}C$ $10.5 \text{ V} \le \text{V}_{IN} \le 23 \text{ V}, \\ 5 \text{ mA} \le I_{OUT} \le 350 \text{ mA}$ 7.6		_	8.4	V		
Quiescent current	Quiescent current		1	T _j = 25°C		_	4.6	8.0	mA
Quiescent current	Line	ΔI _{BI}	1	T _i = 25°C	11 V ≤ V _{IN} ≤ 25.5 V, I _{OUT} = 200 mA	_	_	0.8	mA
change	Load	Δl _{BO}	1] ′	5 mA ≤ I _{OUT} ≤ 350 mA	_	_	0.5	
Output noise voltage	•	V _{NO}	2	Ta = 25°C	, 10 Hz ≤ f ≤ 100 kHz	_	60	250	μV_{rms}
Ripple rejection		R.R.	3		z, I _{OUT} = 100 mA, ′ _{IN} ≤ 21.5 V, T _j = 25°C	56	63	_	dB
Short circuit current limit I _{SC}		1	T _j = 25°C		_	960	_	mA	
Dropout voltage		V _D	1	T _j = 25°C		_	1.7	_	V
Average temperature coefficient of output vo	oltage	T _{CVO}	1	I _{OUT} = 5 n	nA	_	-1.0	_	mV/°C

TA78M09SB Electrical Characteristics (Unless otherwise specified, V_{IN} = 15 V, I_{OUT} = 350 mA, 0°C \leq T $_{j}$ \leq 125°C, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F)

Characteristic	s	Symbol	Test Circuit		Test Condition	Min	Тур.	Max	Unit
Output voltage		V _{OUT}	1	T _j = 25°C		8.64	9.0	9.36	٧
Line regulation		Reg·line	1	T _i = 25°C	11.5 V ≤ V _{IN} ≤ 26 V, I _{OUT} = 200 mA	_	5	100	mV
Zine regulation		rteg iiile	'	., 200	13 V ≤ V _{IN} ≤ 26 V, I _{OUT} = 200 mA	_	3	50	IIIV
Load regulation	ulation Reg-load 1 T _i = 2		T. = 25°C	5 mA ≤ I _{OUT} ≤ 500 mA	_	26	180	mV	
Load regulation		Reg·load	'	T _j = 25°C	5 mA ≤ I _{OUT} ≤ 200 mA	_	10	90	IIIV
Output voltage		V _{OUT}	1	1 $T_j = 25^{\circ}C$ $11.5 \text{ V} \le \text{V}_{IN} \le 24 \text{ V},$ 5 mA $\le \text{I}_{OUT} \le 350 \text{ mA}$		8.55	_	9.45	V
Quiescent current	Quiescent current		1	T _j = 25°C		_	4.6	8.0	mA
Quiescent current	Line	ΔI _{BI}	1	T _i = 25°C	12 V ≤ V _{IN} ≤ 26.5 V, I _{OUT} = 200 mA	_	_	0.8	mA
change	Load	Δl _{BO}	1] ′	5 mA ≤ I _{OUT} ≤ 350 mA	_	_	0.5	
Output noise voltage		V _{NO}	2	Ta = 25°C	, 10 Hz ≤ f ≤ 100 kHz	_	60	270	μV_{rms}
Ripple rejection		R.R.	3	f = 120 Hz 12.5 V ≤ V	z, I _{OUT} = 100 mA, ′ _{IN} ≤ 22.5 V, T _j = 25°C	56	63	_	dB
Short circuit current lin	Short circuit current limit I _{SC}		1	T _j = 25°C		_	960	_	mA
Dropout voltage		V _D	1	T _j = 25°C		_	1.7	_	V
Average temperature coefficient of output vo	oltage	T _{CVO}	1	I _{OUT} = 5 n	nA		-1.1	_	mV/°C

TA78M10SB Electrical Characteristics (Unless otherwise specified, V_{IN} = 16 V, I_{OUT} = 350 mA, 0°C \leq T $_{j}$ \leq 125°C, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F)

Characteristic	s	Symbol	Test Circuit		Test Condition	Min	Тур.	Max	Unit
Output voltage		V _{OUT}	1	T _j = 25°C		9.6	10.0	10.4	V
Line regulation		Pogulino	1	T _j = 25°C	12.5 V ≤ V _{IN} ≤ 26 V, I _{OUT} = 200 mA	_	6	100	mV
Line regulation		Reg·line	'		14 V ≤ V _{IN} ≤ 26 V, I _{OUT} = 200 mA	_	3	50	IIIV
Load regulation		Reg·load	1	T _i = 25°C	5 mA ≤ I _{OUT} ≤ 500 mA	_	26	200	mV
Load regulation		Regiload	d 1 T	1j - 25 C	5 mA ≤ I _{OUT} ≤ 200 mA	_	10	100	IIIV
Output voltage		V _{OUT}	1	T _j = 25°C	12.5 V ≤ V _{IN} ≤ 25 V, 5 mA ≤ I _{OUT} ≤ 350 mA	9.5	_	10.5	٧
Quiescent current		IB	1	T _j = 25°C		_	4.7	8.0	mA
Quiescent current	Line	ΔI _{BI}	1	T _i = 25°C	13 V ≤ V _{IN} ≤ 26.5 V, I _{OUT} = 200 mA	_	_	0.8	mA
change	Load	Δl _{BO}	1] ′	5 mA ≤ I _{OUT} ≤ 350 mA	_	_	0.5	
Output noise voltage		V _{NO}	2	Ta = 25°C	, 10 Hz ≤ f ≤ 100 kHz	_	65	280	μV_{rms}
Ripple rejection		R.R.	3	f = 120 Hz 13.5 V ≤ V	, I _{OUT} = 100 mA, ′ _{IN} ≤ 23.5 V, T _j = 25°C	55	62	_	dB
Short circuit current lin	nit	I _{SC}	1	T _j = 25°C		_	960	_	mA
Dropout voltage		V_{D}	1	T _j = 25°C		_	1.7	_	V
Average temperature coefficient of output vo	oltage	T _{CVO}	1	I _{OUT} = 5 n	nA	_	-1.3	_	mV/°C

TA78M12SB Electrical Characteristics (Unless otherwise specified, V_{IN} = 19 V, I_{OUT} = 350 mA, 0°C \leq T $_{j}$ \leq 125°C, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F)

Characteristic	cs	Symbol	Test Circuit		Test Condition	Min	Тур.	Max	Unit
Output voltage		V _{OUT}	1	T _j = 25°C		11.5	12.0	12.5	V
Line regulation		Reg·line	1	T _i = 25°C	14.5 V ≤ V _{IN} ≤ 30 V, I _{OUT} = 200 mA	_	7	100	mV
Line regulation		Reguiile	'	1] - 25 C	16 V ≤ V _{IN} ≤ 30 V, I _{OUT} = 200 mA	_	3	50	IIIV
Load regulation		Reg·load	1	T. = 25°C	5 mA ≤ I _{OUT} ≤ 500 mA	_	27	240	m\/
Load regulation		Regiload			5 mA ≤ I _{OUT} ≤ 200 mA	_	10	120	mV
Output voltage		V _{OUT}	1	T _j = 25°C	14.5 V ≤ V _{IN} ≤ 27 V, 5 mA ≤ I _{OUT} ≤ 350 mA	N ≤ 27 V, T ≤ 350 mA 11.4 —		12.6	V
Quiescent current		ΙΒ	1	T _j = 25°C		_	4.8	8.0	mA
Quiescent current	Line	Δl _{Bl}	1	T _i = 25°C	15 V ≤ V _{IN} ≤ 30.5 V, I _{OUT} = 200 mA	_	_	0.8	mA
change	Load	ΔI _{BO}	1		5 mA ≤ I _{OUT} ≤ 350 mA	_	_	0.5	
Output noise voltage		V _{NO}	2	Ta = 25°C	, 10 Hz ≤ f ≤ 100 kHz	_	70	300	μV _{rms}
Ripple rejection		R.R.	3	f = 120 Hz 15 V ≤ V _{IN}	f = 120 Hz, I_{OUT} = 100 mA, 15 V \leq V _{IN} \leq 25 V, T_j = 25°C		62	_	dB
Short circuit current limit I _{SC}		I _{SC}	1	T _j = 25°C		_	960	_	mA
Dropout voltage V _D		1	T _j = 25°C		_	1.7	_	V	
Average temperature coefficient of output ve	oltage	T _{CVO}	1	I _{OUT} = 5 n	mA	_	-1.6	_	mV/°C

TA78M15SB Electrical Characteristics (Unless otherwise specified, V_{IN} = 23 V, I_{OUT} = 350 mA, 0°C \leq T $_{j}$ \leq 125°C, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F)

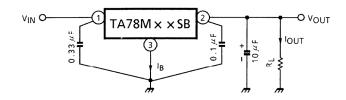
Characteristic	:s	Symbol	Test Circuit		Test Condition	Min	Тур.	Max	Unit
Output voltage		V _{OUT}	1	T _j = 25°C		14.4	15.0	15.6	V
Line regulation		Reg·line	1	T _i = 25°C	17.5 V ≤ V _{IN} ≤ 30 V, I _{OUT} = 200 mA	_	8	100	mV
Line regulation		riog inic		1) 200	20 V ≤ V _{IN} ≤ 30 V, I _{OUT} = 200 mA	_	4	50	IIIV
Load regulation			5 mA ≤ I _{OUT} ≤ 500 mA	_	27	300	mV		
Load regulation		Regiload	'	1j - 25 C	5 mA ≤ I _{OUT} ≤ 200 mA	_	10	150	IIIV
Output voltage		Vout	1	1 $T_j = 25^{\circ}C$ $17.5 \text{ V} \le \text{V}_{IN} \le 30 \text{ V},$ 5 mA $\le \text{I}_{OUT} \le 350 \text{ mA}$		14.25	_	15.75	V
Quiescent current		I _B	1	T _j = 25°C		_	4.8	8.0	mA
Quiescent current	Line	ΔI _{BI}	1	T _i = 25°C	18 V ≤ V _{IN} ≤ 30.5 V, I _{OUT} = 200 mA	_	_	0.8	mA
change	Load	Δl _{BO}	1] ′	5 mA ≤ I _{OUT} ≤ 350 mA	_	_	0.5	
Output noise voltage		V _{NO}	2	Ta = 25°C	, 10 Hz ≤ f ≤ 100 kHz	_	80	450	μV_{rms}
Ripple rejection		R.R.	3	f = 120 Hz 18.5 V ≤ V	$_{\text{I}}$, I_{OUT} = 100 mA, $I_{\text{IN}} \le 28.5 \text{ V}$, T_{j} = 25°C	54	61	_	dB
Short circuit current lin	nit	I _{SC}	1	T _j = 25°C		_	960	_	mA
Dropout voltage		V _D	1	T _j = 25°C		_	1.7	_	V
Average temperature coefficient of output vo	oltage	T _{CVO}	1	I _{OUT} = 5 n	nA	_	-2.0	_	mV/°C

TA78M18SB Electrical Characteristics (Unless otherwise specified, V_{IN} = 27 V, I_{OUT} = 350 mA, 0°C \leq T $_{j}$ \leq 125°C, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F)

Characteristic	es	Symbol	Test Circuit		Test Condition	Min	Тур.	Max	Unit
Output voltage		V _{OUT}	1	T _j = 25°C		17.3	18.0	18.7	V
Line regulation		Reg·line	1	T _i = 25°C	21 V ≤ V _{IN} ≤ 33 V, I _{OUT} = 200 mA	_	9	100	mV
Line regulation		rtog iiilo	'	1] - 23 0	24 V ≤ V _{IN} ≤ 33 V, I _{OUT} = 200 mA	_	5	50	IIIV
Load regulation		Pogulood	Reg-load 1 $T_i = 25^{\circ}C$ 5 mA $\leq I_{OUT} \leq 500$ mA		_	28	360	mV	
Load regulation		Reg·load	'	1j - 25 C	5 mA ≤ I _{OUT} ≤ 200 mA	_	10	180	IIIV
Output voltage		V _{OUT}	1	T _j = 25°C	21 V ≤ V _{IN} ≤ 33 V, 5 mA ≤ I _{OUT} ≤ 350 mA	≤ 33 V, T ≤ 350 mA 17.1 — 18.9		18.9	٧
Quiescent current	Quiescent current		1	T _j = 25°C		_	4.8	8.0	mA
Quiescent current	Line	ΔI _{BI}	1	T _i = 25°C	21.5 V ≤ V _{IN} ≤ 33.5 V, I _{OUT} = 200 mA	_	_	0.8	mA
change	Load	Δl _{BO}	1] ′	5 mA ≤ I _{OUT} ≤ 350 mA	_	_	0.5	
Output noise voltage		V _{NO}	2	Ta = 25°C	, 10 Hz ≤ f ≤ 100 kHz	_	90	490	μV_{rms}
Ripple rejection		R.R.	3		f = 120 Hz, I _{OUT} = 100 mA, 22 V ≤ V _{IN} ≤ 32 V, T _i = 25°C		60	_	dB
Short circuit current lin	rcuit current limit I_{SC} 1 $T_j = 25^{\circ}C$			_	960	_	mA		
Dropout voltage		V _D	1	T _j = 25°C		_	1.7	_	V
Average temperature coefficient of output ve	oltage	T _{CVO}	1	I _{OUT} = 5 n	nA		-2.5	_	mV/°C

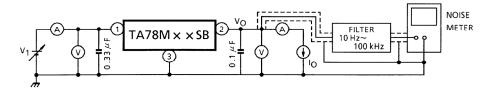
TA78M20SB Electrical Characteristics (Unless otherwise specified, V_{IN} = 29 V, I_{OUT} = 350 mA, 0°C \leq T $_{j}$ \leq 125°C, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F)

Characteristic	s	Symbol	Test Circuit		Test Condition	Min	Тур.	Max	Unit
Output voltage		V _{OUT}	1	T _j = 25°C		19.2	20.0	20.8	V
Line regulation		Reg·line	1	T _i = 25°C	23 V ≤ V _{IN} ≤ 35 V, I _{OUT} = 200 mA	_	10	100	m\/
Line regulation		ricg iiiic	'	,	24 V ≤ V _{IN} ≤ 35 V, I _{OUT} = 200 mA	_	6	50	mV
Load regulation		Dogland	1	T 25°C	5 mA ≤ I _{OUT} ≤ 500 mA	_	28	400	m\/
Load regulation		Reg·load	1 $T_j = 25^{\circ}C$		5 mA ≤ I _{OUT} ≤ 200 mA	_	10	200	mV
Output voltage	e V_{OUT} 1 $T_j = 25^{\circ}C$ $\begin{bmatrix} 23 \text{ V} \leq \text{V}_{IN} : 5 \text{ mA} \leq \text{I}_{OU} \end{bmatrix}$		23 V ≤ V _{IN} ≤ 35 V, 5 mA ≤ I _{OUT} ≤ 350 mA	19.0	_	21.0	V		
Quiescent current		ΙΒ	1	T _j = 25°C		_	4.9	8.0	mA
Quiescent current	Line	Δl _{Bl}	1	T _i = 25°C	23.5 V ≤ V _{IN} ≤ 35.5 V, I _{OUT} = 200 mA	_	_	0.8	mA
change	Load	Δl _{BO}	1		5 mA ≤ I _{OUT} ≤ 350 mA	_	_	0.5	
Output noise voltage	•	V _{NO}	2	Ta = 25°C	, 10 Hz ≤ f ≤ 100 kHz	_	95	540	μV_{rms}
Ripple rejection		R.R.	3	f = 120 Hz 24 V ≤ V _{IN}	f = 120 Hz, I _{OUT} = 100 mA, 24 V ≤ V _{IN} ≤ 34 V, T _j = 25°C		60	_	dB
Short circuit current lin	nit	I _{SC}	1	T _j = 25°C		_	960	-	mA
Dropout voltage V _D 1		1	T _j = 25°C		_	1.7	_	V	
Average temperature coefficient of output vo	ltage	T _{CVO}	1	I _{OUT} = 5 n	nA	_	-3.0	_	mV/°C

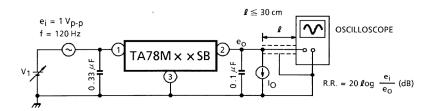


TA78M24SB Electrical Characteristics (Unless otherwise specified, V_{IN} = 33 V, I_{OUT} = 350 mA, 0°C \leq T $_{j}$ \leq 125°C, C_{IN} = 0.33 μ F, C_{OUT} = 0.1 μ F)

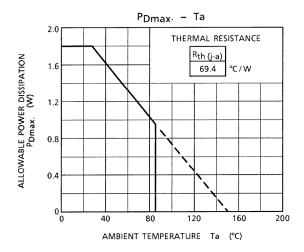
Characteristic	s	Symbol	Test Circuit		Test Condition	Min	Тур.	Max	Unit
Output voltage		V _{OUT}	1	T _j = 25°C		23.0	24.0	25.0	V
Line regulation		Paglina	1	T _j = 25°C	27 V ≤ V _{IN} ≤ 38 V, I _{OUT} = 200 mA	_	12	100	mV
Line regulation		Reg·line	'		28 V ≤ V _{IN} ≤ 38 V, I _{OUT} = 200 mA	_	7	50	IIIV
Load regulation		Reg·load	1	T. = 25°C	5 mA ≤ I _{OUT} ≤ 500 mA	_	30	480	m\/
Load regulation		Regiload	1 T _j = 25°C		5 mA ≤ I _{OUT} ≤ 200 mA	_	10	240	mV
Output voltage		V _{OUT}	1	T _j = 25°C	27 V ≤ V _{IN} ≤ 38 V, 5 mA ≤ I _{OUT} ≤ 350 mA	22.8	_	25.2	٧
Quiescent current		ΙΒ	1	T _j = 25°C		_	5.0	8.0	mA
Quiescent current	Line	Δl _{Bl}	1	T _i = 25°C	$27.5 \text{ V} \le \text{V}_{\text{IN}} \le 38.5 \text{ V},$ $\text{I}_{\text{OUT}} = 200 \text{ mA}$	_	_	0.8	mA
change	Load	Δl _{BO}	1] ′	5 mA ≤ I _{OUT} ≤ 350 mA	_	_	0.5	
Output noise voltage		V _{NO}	2	Ta = 25°C	, 10 Hz ≤ f ≤ 100 kHz	_	115	650	μV_{rms}
Ripple rejection		R.R.	3	f = 120 Hz 28 V ≤ V _{IN}	f = 120 Hz, I _{OUT} = 100 mA, 28 V ≤ V _{IN} ≤ 38 V, T _i = 25°C		57	_	dB
Short circuit current limit I _{SC}		1	T _j = 25°C		_	960	_	mA	
Dropout voltage		V _D	1	T _j = 25°C		_	1.7	_	V
Average temperature coefficient of output vo	oltage	T _{CVO}	1	I _{OUT} = 5 n	nA	_	-3.5	_	mV/°C

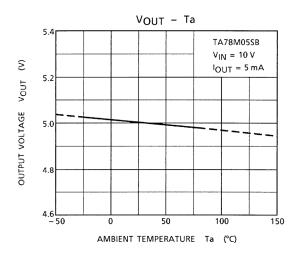


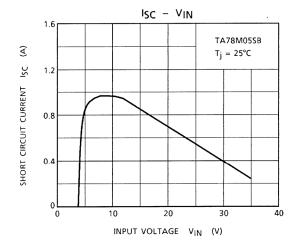
Test Circuit 1 / Standard Application

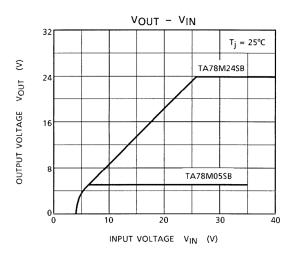

Test Circuit 2

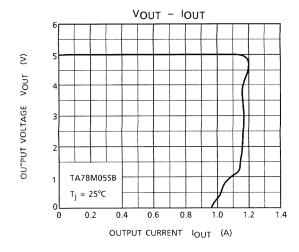
 V_{NO}

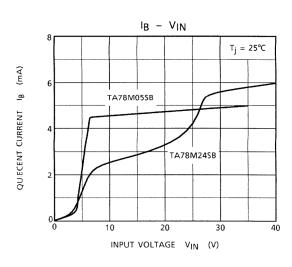


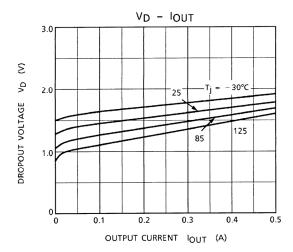

Test Circuit 3

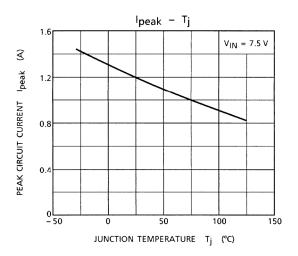

R.R.

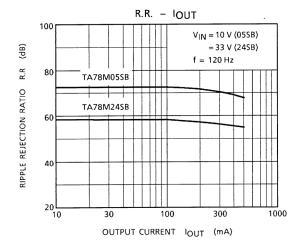


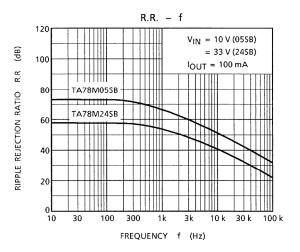

13

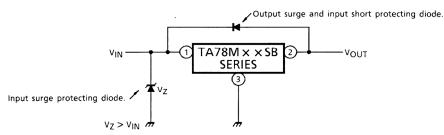




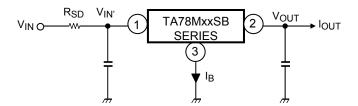







Usage Precautions

- (1) In regard to GND, be careful not to apply a negative voltage to the input/output terminal.
- (2) If a surge voltage exceeding the absolute maximum rating is applied to the input terminal or if a voltage in excess of the input terminal voltage is applied to the output terminal, the circuit may be destroyed.


Particular care is necessary in the case of the latter.

Circuit destruction may also occur if the input terminal shorts to GND in a state of normal operation, causing the output terminal voltage to exceed the input voltage (GND potential) and the electrical charge of the chemical capacitor connected to the output terminal to flow into the input side.

Where these risks exist, take steps such as connecting zener and general silicon diodes to the circuit, as shown in the figure below.

(3) When the input voltage is too high, the power dissipation of the three-terminal regulator, which is a series regulator, increases, causing the junction temperature to rise. In such a case, it is recommended to reduce the power dissipation, and hence the junction temperature, by inserting a power-limiting resistor RSD in the input terminal.

The power dissipation PD of the IC is expressed in the following equation.

$$P_D = (V_{IN'} - V_{OUT}) \cdot I_{OUT} + V_{IN'} \cdot I_B$$

Reducing $V_{IN'}$ below the lowest voltage necessary for the IC will cause ripple, deterioration in output regulation and, in certain circumstances, parasitic oscillation.

To determine the resistance value of RSD, design with a margin, referring to the following equation.

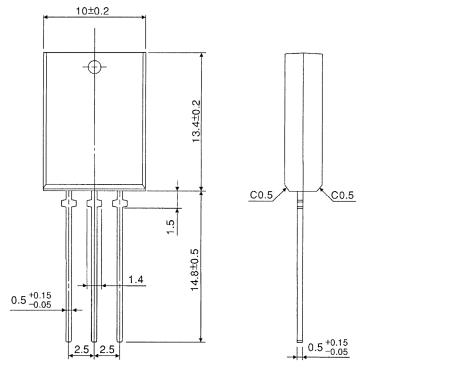
$$R_{SD} < \frac{V_{IN} - V_{IN'}}{I_{OUT} + I_{B}}$$

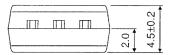
(4) Be sure to connect a capacitor near the input terminal and output terminal between both terminals and GND. The capacitances should be determined experimentally because they depend on printed circuit board patterns. In particular, adequate investigation should be made to ensure there is no problem even in high or low temperatures.

· Low voltage

Do not apply voltage to the Product that is lower than the minimum operating voltage, or the Product's protective functions will not operate properly and the Product may be permanently damaged.

• Overcurrent Protection


The overcurrent protection circuits in the Product are designed to temporarily protect Product from minor overcurrent of brief duration. When the overcurrent protective function in the Product activates, immediately cease application of overcurrent to Product. Improper usage of Product, such as application of current to Product exceeding the absolute maximum ratings, could cause the overcurrent protection circuit not to operate properly and/or damage Product permanently even before the protection circuit starts to operate.


• Overheating Protection

The thermal shutdown circuits in the Product are designed to temporarily protect Product from minor overheating of brief duration. When the overheating protective function in the Product activates, immediately correct the overheating situation. Improper usage of Product, such as the application of heat to Product exceeding the absolute maximum ratings, could cause the overheating protection circuit not to operate properly and/or damage Product permanently even before the protection circuit starts to operate.

Package Dimensions

SIP3-P-2.50A Unit: mm

Weight: 1.5 g (Typ.)

RESTRICTIONS ON PRODUCT USE

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which
 manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patents or other rights of
 TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.