TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA1219AN

AUDIO / VIDEO SWITCHING IC FOR TVs

The TA1219AN is an audio/video switching IC for TV sets.

Conforming to I²C bus standards, it allows you to perform various switching operations through the bus lines by using a microcomputer. Furthermore, since the presence of a signal on its sync signal output pin can be determined by a microcomputer, it is possible to check each input/output channel (self-diagnosis).

This IC has the same pin assignments as the TA1218AN (SDIP42), a 2-channel output version of the TA1219AN, so these chips are pin compatible on pins 3 to 20 and 23 to 40 in TA1218AN.

Weight : 2.98g (Typ.)

FEATURES

- I²C bus control
- Video : 5-channel inputs and 1-channel outputs (2 channels conforming to S system)
- Audio: 5-channel inputs and 2-channel outputs
- Self-diagnostic function
- ADC inputs based on European 21-pin standards
- ADC inputs based on S1/S2 terminal standards
- Switchable subaddress

961001FBA1 TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook. The products described in this document are subject to foreign exchange and foreign trade control laws. The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

BLOCK DIAGRAM

PIN ASSIGNMENT

PIN DESCRIPTION

PIN No.	NAME	FUNCTION	INTERFACE CIRCUIT
1	Det in	This pin is for input a sync separation signal. Input the signal from Det Select to this pin with capacitance coupling. The input resistance of this pin is $18k\Omega$. The sync signal separated from Det Select is outputted from Sync Out for use in self-diagnosis.	1
2	Det Select	This pin is for output a sync separation signal. Signals $V_{in}V1$, $V_{in}V2$, $V_{in}TV$, $Y/V_{in}S1$, $V_{out}1$, Y_{out} or C_{out} are outputted from this pin. The output resistance of this pin is 35Ω . Input the signal from this pin to Det in with capacitance coupling.	2 200Ω 200Ω
3	L _{in} TV	This pin is for input a left audio signal from the main demodulator in the TV set. The signal fed into this pin is presented to $L_{out}TV$ and $L_{out}1$. The input dynamic range of this pin is 6.5V _{p-p} and the input resistance is 70k Ω .	$3 + 1.5k\Omega + $
4	R _{in} TV	This pin is for input a right audio signal from the main demodulator in the TV set. The signal fed into this pin is presented to $R_{out}TV$ and $R_{out}1$. The input dynamic range of this pin is 6.5V _{p-p} and the input resistance is 70k Ω .	(4)

PIN No.	NAME	FUNCTION	INTERFACE CIRCUIT
5	V _{in} TV	This pin is for input a composite audio signal from the main demodulator in the TV set. The signal fed into this pin is presented to $V_{out}1$, Y_{out} and C_{out} . The same signal is also output from Det Select as a sync separation signal. The input dynamic range of this pin is $2.0V_{p-p}$ and the input resistance is $30k\Omega$.	(5) $(1.5k\Omega)$ (1
6	L _{in} V1	This pin is for input a left audio signal from an external source (V1 channel). This pin can also be used for PIP signal input. The signal fed into this pin is presented to $L_{out}1$. The input dynamic range of this pin is 6.5V _{p-p} and the input resistance is 70 Ω .	G
7	R _{in} V1	This pin is for input a right audio signal from an external source (V1 channel). This pin can also be used for PIP signal input. The signal fed into this pin is presented to R_{out} 1. The input dynamic range of this pin is 6.5V _{p-p} and the input resistance is 70k Ω .	7 1.5kΩ 1.5kΩ 1.5kΩ 1.5kΩ 1.5kΩ
8	V _{in} V1	This pin is for input a composite video signal from an external source (V1 channel). This pin can also be used for PIP signal input. The signal fed into this pin is presented to V_{out} 1, Y_{out} and C_{out} . The same signal is also output from Det Select as a sync separation signal. The input dynamic range of this pin is 2.0V _{p-p} and the input resistance is 30k Ω .	$(B) = (V_{out})^{1.5k\Omega} + (V_{out})^{1.5k\Omega} $

PIN No.	NAME	FUNCTION	INTERFACE CIRCUIT
9	L _{in} S1	This pin is for input a left audio signal from an external source (S1 channel). The signal fed into this pin is presented to $L_{out}1$. The input dynamic range of this pin is 6.5V _{p-p} and the input resistance is 70k Ω .	
10	Y / V _{in} S1	This pin is for input a luminance signal or composite video signal from an external source (S1 channel). The signal fed into this pin is presented to V_{out} 1, Y_{out} and C_{out} . The same signal is also output from Det Select as a sync separation signal. The input dynamic range of this pin is 2.0V _{p-p} and the input resistance is 30k Ω .	(10) $(1.5k\Omega)$
11	R _{in} S1	This pin is for input a right audio signal from an external source (S1 channel). The signal fed into this pin is presented to $R_{out}1$. The input dynamic range of this pin is 6.5V _{p-p} and the input resistance is 70k Ω .	1.5kΩ
12	C _{in} S1	This pin is for input a chroma signal from an external source (S1 channel). It also functions as an S-mode select switch for the S1 channel. The S mode is selected when the pin voltage is DC opened. The signal fed into this pin is presented to C_{out} directly and to V_{out} 1 after being combined with the Y _{in} S1 signal. The input dynamic range of this pin is 2.0V _{p-p} and the input resistance is 30k Ω .	12 1.5kΩ 1.5kΩ 1.5kΩ 1.5kΩ 1.5kΩ 1.5kΩ S Mode SW

PIN No.	NAME	FUNCTION	INTERFACE CIRCUIT
13	L _{in} S2	This pin is for input a left audio signal from an external source (S2 channel). The signal fed into this pin is presented to L_{out} 1. The input dynamic range of this pin is 6.5V _{p-p} and the input resistance is 70k Ω .	13
14	Y / V _{in} S2	This pin is for input a luminance signal or composite aoudio signal from an external source (S2 channel). The signal fed into this pin is presented to V_{out} 1, Y_{out} and C_{out} . The input dynamic range of this pin is 2.0V _{p-p} and the input resistance is 30k Ω .	(14)
15	R _{in} S2	This pin is for input a right audio signal from an external source (S2 channel). The signal fed into this pin is presented to R_{out} 1. The input dynamic range of this pin is 6.5V _{p-p} and the input resistance is 70k Ω .	13 1.5kΩ 1.5kΩ 1.5kΩ 1.5kΩ 1.5kΩ
16	C _{in} S2	This pin is for input a chroma signal from an external source (S2 channel). It also functions as an S-mode select switch for the S2 channel. The S mode is selected when the pin voltage is DC opened. The signal fed into this pin is presented to C_{out} directly and to V_{out} 1 after being combined with the Y _{in} S2 signal. The input dynamic range of this pin is 2.0V _{p-p} and the input resistance is 30k Ω .	(1)

PIN No.	NAME	FUNCTION	INTERFACE CIRCUIT
17	I/O1	This is an ADC input/DAC output pin. The ADC is a 4-level detection type (2 bits). The threshold levels are 8.0V, 3.0V, and 0.75V. The DAC (1bit) is an open-collector output. Make sure that the current flowing into this pin is 2.0mA or less.	
18	1/02	This is an ADC input/DAC output pin. The ADC is a 4-level detection type (2 bits). The threshold levels are 8.0V, 3.0V, and 0.75V. The DAC (1bit) is an open-collector output. Make sure that the current flowing into this pin is 2.0mA or less.	
19	GND	This is the GND pin.	_
20	SCL	This pin is for input an I ² C bus clock. The input threshold level of this pin is 2.25V.	20 Surge protection circuit Circuit
21	SDA	This is an I ² C bus data input/output pin. The input threshold level of this pin is 2.25V. Make sure that the current flowing into this pin is 3.0mA or less.	20 Surge protection circuit

PIN No.	NAME	FUNCTION	INTERFACE CIRCUIT
22	Sync out	This pin is for output a self- diagnostic sync signal. The signal separated from $V_{in}TV V_{in}V1$, $V_{in}V2$, $Y/V_{in}S1$, $V_{out}1$, Y_{out} or C_{out} is outputted from this pin. In addition, the signal derived from $L_{out}1$ or $R_{out}1$ is also output from this pin for use in audio block diagnosis. This is an open-collector output. Make sure that the current flowing into this pin is 2.0mA or less.	<pre>CDet in > Output select SW <sound> </sound></pre>
23	Address	This is for an I ² C bus slave address select switch. The threshold level of this pin is 2.25V. The following lists the addresses : High : 92H (Write), 93H (Read) Low : 90H (Write), 91H (Read)	23 60kΩ C Select SW
24	V _{in} V2	This pin is for input a composite video signal from an external source (V2 channel). This pin can also be used for PIP signal input. The signal fed into this pin is presented to V_{out} 1, Y_{out} , and C_{out} . The same signal is also output from Det Select as a sync separation signal. The input dynamic range of this pin is 2.0V _{p-p} and the input resistance is 30k Ω .	(24)
25	L _{in} V2	This pin is for input a left audio signal from an external source (V2 channel). This pin can also be used for PIP signal input. The signal fed into this pin is presented to L_{out} 1. The input dynamic range of this pin is 6.5V _{p-p} and the input resistance is 70k Ω .	23

PIN No.	NAME	FUNCTION	INTERFACE CIRCUIT
26	Y _{in}	This pin is for input a luminance signal from an external comb filter. The signal fed into this pin is presented to Y_{out} . The input dynamic range of this pin is $5.5V_{p-p}$ and the input resistance is $60k\Omega$.	26
27	R _{in} V2	This pin is for input a right audio signal from an external source (V2 channel). This pin can also be used for PIP signal input. The signal fed into this pin is presented to R_{out} 1. The input dynamic range of this pin is 6.5V _{p-p} and the input resistance is 70k Ω .	27 1.5kΩ 1.5kΩ 1.5kΩ 1.5kΩ 1.5kΩ
28	C _{in}	This pin is for input a chroma signal from an external comb filter. The signal fed into this pin is presented to C_{out} . The input dynamic range of this pin is $5.5V_{p-p}$ and the input resistance is $60k\Omega$. This pin also functions as a audio mute switch. The entire audio output can be muted by pulling the voltage on this pin below 2.25V.	28 (3) (3) (3) (3) (3) (4) (5) (5) (5) (5) (5) (5) (5) (5
29	Vcc	This is the power supply pin. Apply 9V to this pin. The current consumption of this pin is 47mA.	_
30	C _{out}	This pin is for output a chroma signal. The signal fed into C_{in} , $C_{in}S1$, $C_{in}S2$, $V_{in}V1$, $V_{in}V2$, $Y/V_{in}S1$, $Y/V_{in}S2$, or $V_{in}TV$ is outputted from this pin. The output resistance of this pin is 25Ω . The same signal is also outputted from Det Select as a sync separation signal.	30 Cout SW 1.5kΩ <det select=""></det>

PIN No.	NAME	FUNCTION	INTERFACE CIRCUIT
31	R _{out} 1	This pin is for output the main channel right audio signal. The signal fed into $R_{in}V1$, $R_{in}V2$, $R_{in}S1$, $R_{in}S2$, or $R_{in}TV$ is outputted from this pin. The output resistance of this pin is 45Ω . Furthermore, the signal outputted from this pin is pulse-converted for use in self-diagnosis. The converted signal is outputted from Sync Out. This outputted can be muted independently of $L_{out}1$ by bus control.	30 31 COND CON
32	Yout	This pin is for output a luminance signal. The signal fed into Y_{in} , $Y/V_{in}S1$, $Y/V_{in}S2$, $V_{in}V1$, $V_{in}V2$, or $V_{in}TV$ is outputted from this pin. The output resistance of this pin is 25Ω . The same signal is also outputted from Det Select as a sync separation signal.	32
33	L _{out} 1	This pin is for output the main channel left audio signal. The signal fed into $L_{in}V1$, $L_{in}V2$, $L_{in}S1$, $L_{in}S2$, or $L_{in}TV$ is outputted from this pin. The output resistance of this pin is 45Ω . Furthermore, the signal outputted from this pin is pulse-converted for use in self-diagnosis. The converted signal is outputted from Sync Out. This output can be muted independently of R _{out} 1 by bus control.	20k.Ω 1.5mA 1.

PIN No.	NAME	FUNCTION	INTERFACE CIRCUIT
34	V _{out} 1	This pin is for output the main channel composite video signal. The signal fed into $V_{in}TV$, $V_{in}V1$, $V_{in}V2$, $V_{in}S1$, $V_{in}S2$, $Y_{in}S1 + C_{in}S1$, or $Y_{in}S2 + C_{in}S2$ is outputted from this pin. The output resistance of this pin is 25Ω . The same signal is also outputted from Det Select as a sync separation signal.	33 ↓ Vout1 SW 1.5kΩ ↓ Other N ↓ Select>
35	R _{out} TV	This pin is for output only the signal that is forwarded from $R_{in}TV$. The output resistance of this pin is 45 Ω . This output can be muted in combination with $L_{out}TV$ by bus control.	COK D SOK D SO
36	L _{out} TV	This pin is for output only the signal that is forwarded from L _{in} TV. The output resistance of this pin is 45Ω. This output can be muted in combination with R _{out} TV by bus control.	1.5mA 20kΩ 70kΩ 70kΩ 70kΩ 70kΩ

BUS DATA SPECIFICATIONS

Data structure

(1) Write

S	Slave address (90H or 92H)	W (0)	А	Data 1	А	Data 2	А	Data 3	A	Р
---	-------------------------------	----------	---	--------	---	--------	---	--------	---	---

(2) Read

S	Slave address	R	Α	Data 4	Α	Р
	(91H or 93H)	(1)				

 * Slave address is switched by the voltage applied to pin 27 (address). Switched to 90H when low (GND) ; switched to 92H when high (V_{CC}) during write mode.

Contents of data

MODE	DATA No.		CONTENTS OF DATA									
		B07	B06	B05	B04	B03	B02	B01	B00			
	Data 1		Audio	mute		Forced TV		YC output	switching			
	[F0H]	L _{out} TV R _{out} TV		R _{out} 1	L _{out} 1	Audio		Yout	C _{out}			
		B17	B16	B15	B14	B13	B12	B11	B10			
Write	Data 2 [1FH]	sensitivity	Sync output switching	Sync (di	agnosis) d switching	etection	Input select (Main)					
	Data 2	B27	B26	B25	B24	B23	B22	B21	B20			
	Data 3 [07H]		DAC o	output swit								
					1/02	I/01						
		B37	B36	B35	B34	B33	B32	B31	B30			
Read	Data 4		ADC input discrimination					S input discrimination Powe				
			I / O2 Hi	l/O2 Low	I/O1 Hi	I/O1 Low	C _{in} S1	C _{in} S2	on reset			

(Note) Shown in [] are reset data.

(Note) The data contents marked by a slash (/) are an unused bit (data free).

Video select

MODE		OUTPUT	S IN	PUT	BUS DATA			
		SIGNAL	DISCRIM	INATION	INPUT SELECT (MAIN)			
INPUT	S/V	V _{out} 1	CS1	CS2	B12	B11	B10	
	V	Y/V _{in} S1	Low					
S 1	s	Y/V _{in} S1		*	0	0	0	
	3	+C _{in} S1	Open				1	
	FV	Y/V _{in} S1					1	
	V	Y/V _{in} S2		Low				
S 2	s	Y/V _{in} S2	*		0	1	0	
52		+ C _{in} S2		Open	U			
FV		Y/V _{in} S2					1	
V1	V	V _{in} V1	*	*	1	0	1	
V2	V	V _{in} V2	*	*	1	1	0	
TV	V	V _{in} TV	*	*	1	1	1	

Do not use [100] for the input select data.

L/R select

	MODE MAIN L/R OUTPUT SIGNAL		BUS DATA				
MODE			FORCED TV VOICE	INPUT	SELECT	(MAIN)	
INPUT	L _{out} 1	R _{out} 1	B03	B12	B11	B10	
S1	L _{in} S1	R _{in} S1		0	0	*	
S2	L _{in} S2	R _{in} S2		0	1	*	
V1	L _{in} V1	R _{in} V1	0	1	0	1	
V2	L _{in} V2	R _{in} V2		1	1	0	
TV	L _{in} TV	R _{in} TV		1	1	1	
TV	L _{in} TV	R _{in} TV	1	*	*	*	

Do not use [100] for the input select data.

Y output select

MODE		Y OUTPUT	MAIN V SELECT MODE		BUS DATA
		SIGNAL			Y OUTPUT
		JUNAL	(SEE TAB		SWITCHING
INPUT	THROUGH	Yout		LL 2-2.)	B01
	Y _{in}	Y _{in}		V or	0
S 1	V through	Y/V _{in} S1	S1	FV	1
	Y through	Y/V _{in} S1		S	*
	Y _{in}	Y _{in}		V or	0
S2	V through	Y/V _{in} S2	S2	FV	1
	Y through	Y/V _{in} S2		S	*
V1	Y _{in}	Y _{in}	V1	v	0
V I	V through	V _{in} V1		v	1
V2	Y _{in}	Y _{in}	V2	v	0
V 2	V through	V _{in} V2	VZ		1
ту	Yin	Y _{in}	τv	v	0
ΤV	V through	V _{in} TV	IV	V	1

C output select

MODE		Y OUTPUT	MAIN V SELECT		BUS DATA C OUTPUT
		SIGNAL	MOE (SEE TAB		SWITCHING
INPUT	THROUGH	Cout	(SEE TAD	LC 2-2.)	B00
	C _{in}	C _{in}		V or	0
S1	V through	Y/V _{in} S1	S1	FV	1
	C through	C _{in} S1		S	*
	C _{in}	с _{іп}		V or	0
S2	V through	Y/V _{in} S2	S2	FV	1
	C through	C _{in} S2		S	*
V1	C _{in}	C _{in}	V1	v	0
VI	V through	V _{in} V1	VI	v	1
V2	C _{in}	C _{in}	V2	v	0
٧Z	V through	V _{in} V2	٧Z	v	1
τ	C _{in}	C _{in}	ΤV	v	0
ΤV	V through	V _{in} TV	IV	v	1

Sync detection select

MODE		DETECTION SYNC		BUS DATA			
		SELECT		SYNC SWITCHING	SYNC DETECTION SWITCHING		
		DET SELECT	SYNC OUT	B16	B15	B14	B13
	TV	V _{in} TV				1	1
Video	V1	V _{in} V1	Sync	0	0	0	1
Input	V2	V _{in} V2	Sync	U		1	0
	S1	Y/V _{in} S1	7			0	0
	V _{out} 1	V _{out} 1				1	1
Video	Δ	—	Sync	0	1	0	1
Output	Yout	Yout	Sync			1	0
	Cout	Cout				0	0
	R _{out} 1	*	R _{out} 1			1	1
Audio	Lout ¹	│ ★	L _{out} 1	1	*	0	1
Output	Δ	★	R _{out} 2			1	0
	\triangle	*	L _{out} 2			0	0

(Note 1) For Det Select marked by ★, the video input or video output corresponding to data B15, B14, and B13 is selected.

(Note 2) Don't use the data marked by \triangle .

Sync detection sensitivity switching

MODE		BUS DATA
		DETECTION SENSITIVITY SWITCHING
		B17
Sensitivity	High	1
	Low	0

Audio mute

MODE		BUS DATA					
IVIC	NIODE		AUDIO MUTE				
OUTPUT	MUTE	B07	B06	B05	B04		
1 .1	off	*	*	*	0		
Lout ¹	on				1		
D.1	off	*	*	0	*		
R _{out} 1	on			1			
L _{out} TV	off	0	*	*	*		
L _{out} TV R _{out} TV	on	1					

DAC output switching

		BUS DATA		
MC	DE	DAC OUTPUT SWITCHING		
OUTPUT	STATE	B24	B23	
1/01	Open	*	0	
1/01	Low		1	
1/02	Open	0	*	
17.02	Low	1		

Read mode

Read mod	le		
Power-on	reset	discrimi	nation

		BUS DATA		
MODE		POWER-ON RESET		
		B30		
Denet	on	1		
Reset	off	0		

-

S input discrimination

		BUS DATA		
МС	DDE	S INPUT DISCRIMINATION		
INPUT	VOLTAGE	B32	B31	
C _{in} S2	High (Open)	*	1	
	Low		0	
C _{in} S1	High (Open)	1	*	
	Low	0		

ADC input discrimination

MODE		BUS DATA					
IVIC	JDE	Al	DC INPU	T DISCRI	MINATIO	N	
INPUT	VOLTAGE	B37	B36	B35	B34	B33	
	High		*	*	0	0	
1/01	Mid	*			1	0	
1/01	Low				0	1	
	Bottom				1	1	
	High		0	0			
	Mid	*	1	0	*	*	
1/02	Low		0	1			
	Bottom		1	1			

I²C BUS CONTROLLED FORMAT SUMMARY

Bus controlled format of TA1219AN is based on I²C BUS control format of Philips.

Purchase of TOSHIBA I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	Vcc	14	V
Power Dissipation	PDMAX	1662 (Note)	mW
Operating Temperature	T _{opr}	- 20~65	°C
Storage Temperature	T _{stg}	- 55~150	°C

(Note) When using the device at temperatures above Ta = 25°C, reduce the rated power dissipation by 13.3mW per degree of centigrade. (See the diagram below.)

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	PIN No.	MIN.	TYP.	MAX.	UNIT	REMARK
Supply Voltage	29	8.1	9.0	9.9	V	—
Composite Signal Input Amplitude	5, 8, 10, 14, 24	_	1.0	_	V _{p-p}	100IRE
Y Input Amplitude	10, 14	_	1.0	_	V _{p-p}	100IRE
Comb Y Input Amplitude	26	—	2.0	_	V _{p-p}	
Chroma Input Amplitude	12, 16	—	286	—	mV _{p-p}	Burst
Comb Chroma Input Amplitude	28	_	572	_	mV _{p-p}	Burst
Audio Input Amplitude	3, 4, 6, 7, 9, 11, 13, 15, 25, 27	—	_	6.0	V _{p-p}	—

ELECTRICAL CHARACTERISTICS

(Referenced to $V_{CC} = 9V$ at Ta = 25°C unless otherwise specified.) Current consumption

PIN No.	PIN NAME	SYMBOL	TEST CIR- CUIT	MIN.	TYP.	MAX.	UNIT
29	Vcc	lcc	_	30	47	64	mA

Pin voltage

	nuge						
PIN No.	PIN NAME	SYMBOL	TEST CIR- CUIT	MIN.	TYP.	MAX.	UNIT
1	Det in	V1	_	6.3	6.6	6.9	V
2	Det Select	V2	_	3.4	3.7	4.0	V
3	L _{in} TV	V3	_	5.0	5.2	5.4	V
4	R _{in} TV	V4	_	5.0	5.2	5.4	V
5	V _{in} TV	V5	_	5.0	5.2	5.4	V
6	L _{in} V1	V6	_	5.0	5.2	5.4	V
7	R _{in} V1	V7	_	5.0	5.2	5.4	V
8	V _{in} V1	V8	_	5.0	5.2	5.4	V
9	L _{in} S1	V9	_	5.0	5.2	5.4	V
10	Y/V _{in} S1	V10	_	5.0	5.2	5.4	V
11	R _{in} S1	V11	_	5.0	5.2	5.4	V
12	C _{in} S1	V12	—	5.0	5.2	5.4	V
13	L _{in} S2	V13	—	5.0	5.2	5.4	V
14	Y/V _{in} S2	V14	_	5.0	5.2	5.4	V
15	R _{in} S2	V15	_	5.0	5.2	5.4	V
16	C _{in} S2	V16	—	5.0	5.2	5.4	V
19	GND	V19	—		0	_	V
24	V _{in} V2	V24	—	5.0	5.2	5.4	V
25	L _{in} V2	V25	—	5.0	5.2	5.4	V
26	Y _{in}	V26	—	5.0	5.2	5.4	V
27	R _{in} V2	V27	—	5.0	5.2	5.4	V
28	c _{in}	V28	-	5.0	5.2	5.4	V
29	Vcc	V29	_		9.0	—	V
30	Cout	V30	_	3.5	3.8	4.1	V
31	R _{out} 1	V31	_	3.7	4.0	4.3	V
32	Yout	V32	_	3.5	3.8	4.1	V
33	L _{out} 1	V33	—	3.7	4.0	4.3	V
34	V _{out} 1	V34	—	4.1	4.4	4.7	V
35	R _{out} TV	V35	_	3.7	4.0	4.3	V
36	L _{out} TV	V36	_	3.7	4.0	4.3	V

DC CHARACTERISTICS

CHARACTERISTIC	MEASURED PIN	SYMBOL	TEST CIR- CUIT	MIN.	TYP.	MAX.	UNIT	REMARK
	Det in	R1	—	10	18	30	kΩ	
	V _{in} TV	R5	—	20	30	40	kΩ	
	V _{in} V1	R8	—	20	30	40	kΩ	
	V _{in} V2	R24	-	20	30	40	kΩ	
	Y/V _{in} S1	R10	—	20	30	40	kΩ	
	Y/V _{in} S2	R14	—	20	30	40	kΩ	
	C _{in} S1	R12	—	20	30	40	kΩ	
	C _{in} S2	R16	_	20	30	40	kΩ	Measure a change ⊿I in the
	Yin	R26	_	40	60	80	kΩ	current flowing into each pin
Input Pin	C _{in}	R28	_	40	60	80	kΩ	when the voltage is raised by
Input Resistance	L _{in} TV	R3	_	49	70	100	kΩ	0.5V. Then calculate the input
	R _{in} TV	R4	_	49	70	100	kΩ	resistance value R.
	L _{in} V1	R6	_	49	70	100	kΩ	$R = 0.5 V / \Delta I [\Omega]$
	R _{in} V1	R7	_	49	70	100	kΩ	
	L _{in} V2	R25	_	49	70	100	kΩ	
	R _{in} V2	R27	_	49	70	100	kΩ	
	L _{in} S1	R9	_	49	70	100	kΩ	
	R _{in} S1	R11	_	49	70	100	kΩ	
	L _{in} S2	R13	_	49	70	100	kΩ	
	R _{in} S2	R15	_	49	70	100	kΩ	
	Det Select	R2	_	17	35	53	Ω	
	V _{out} 1	R34	_	13	25	50	Ω	Measure a voltage change ⊿V
	Yout	R32	_	13	25	50	Ω	on each pin when a current
Output Pin	Cout	R30	_	13	25	50	Ω	of 100 μ A flows into the pin.
Output Resistance	LoutTV	R36	_	20	45	90	Ω	Then calculate the output
Resistance	R _{out} TV	R35	_	20	45	90	Ω	resistance value R.
	Lout1	R33	_	20	45	90	Ω	$R = \Delta V / 100 \mu A [\Omega]$
	R _{out} 1	R31	_	20	45	90	Ω	
S Mode Discrimination	C _{in} S1	VthC1	_	1.75	2.25	2.75	v	Voltage on pin 12 at which data B31 changes.
Voltage	C _{in} S2	VthC2	_	1.75	2.25	2.75	v	Voltage on pin 16 at which data B32 changes.
External Mute ON Voltage	c _{in}	VthM		1.75	2.25	2.75	V	Voltage on pin 28 at which voice is muted.

CHARACTERISTIC	MEASURED PIN	SYMBOL	TEST CIR- CUIT	MIN.	TYP.	MAX.	UNIT	REMARK
Address Switching Voltage	address	VthA	_	1.75	2.25	2.75	v	Voltage on pin 23 at which the slave address changes.
	1/01	VthI1L	-	0.55	0.75	0.95	v	Low-Bottom threshold level of I/O1 input (pin 17).
	1/01	VthI1M	_	2.5	3.0	3.5	v	Mid-Low threshold level of I/O1 input (pin 17).
ADC Input Discrimination	1/01	VthI1H	_	7.5	8.0	8.5	v	High-Mid threshold level of I/O1 input (pin 17).
Voltage	1/02	Vthl2L	_	0.55	0.75	0.95	v	Low-Bottom threshold level of I/O2 input (pin 18).
	1/02	VthI2M	_	2.5	3.0	3.5	v	Mid-Low threshold level of I/O2 input (pin 18).
	1/02	VthI2H	_	7.5	8.0	8.5	v	High-Mid threshold level of I/O1 input (pin 18).

AC CHARACTERISTICS

CHARACTERISTIC	SELECT MODE	SYMBOL	TEST CIR- CUIT	MIN.	TYP.	MAX.	UNIT	TEST METHOD
	V _{in} TV	VDR5V1	_	1.5	2.0	—	V _{p-p}	(1) Apply a 15kHz sine wave
	V _{in} V1	VDR8V1	_	1.5	2.0	—	V _{p-p}	to each input pin.
V _{out} 1	V _{in} V2	VDR24V1	_	1.5	2.0	—	V _{p-p}	(2) In each select mode,
Input Dynamic	Y/V _{in} S1	VDR10V1		1.5	2.0	—	V _{p-p}	measure an input amplitude at which the
Range	C _{in} S1	VDR12V1	—	1.5	2.0	—	V _{p-p}	output waveform on
	Y/V _{in} S2	VDR14V1	—	1.5	2.0		V _{p-p}	pin 34 begins to be
	C _{in} S2	VDR16V1	—	1.5	2.0	—	V _{p-p}	distorted.
	V _{in} TV	G5V1	_	5.5	6.0	6.5	dB	(1) Apply a 15kHz 10V
	V _{in} V1	G8V1	—	5.5	6.0	6.5	dB	(1) Apply a 15kHz, 1.0V _{p-p} sine wave to each input
V _{out} 1	V _{in} V2	G24V1		5.5	6.0	6.5	dB	pin.
Gain	Y/V _{in} S1	G10V1	—	5.5	6.0	6.5	dB	(2) In each select mode, find
	C _{in} S1	G12V1		5.5	6.0	6.5	dB	the gain between input
	Y/V _{in} S2	G14V1		5.5	6.0	6.5	dB	and output.
	C _{in} S2	G16V1		5.5	6.0	6.5	dB	(1) Apply a 1 (1) since wave
	V _{in} TV	F5V1	_	10			MHz	(1) Apply a 1.0V _{p-p} sine wave to each input pin.
	V _{in} V1	F8V1		10	_	<u> </u>	MHz	(2) In each select mode,
V _{out} 1	V _{in} V2	F24V1		10			MHz	measure a frequency at
Frequency Response	Y/V _{in} S1	F10V1		10	_		MHz	which the output
Nesponse	C _{in} S1	F12V1		10			MHz	amplitude on pin 34 is 3dB
	Y/V _{in} S2	F14V1		10			MHz	down from the 15kHz
	C _{in} S2	F16V1		10	_		MHz	applied level.
	v _{in} Tv	CT5V1	—	55	60		dB	(1) Apply a 3.58MHz, 1.0V _{p-p}
	V _{in} V1	CT8V1		55	60	—	dB	sine wave to each input pin.
	V _{in} V2	CT24V1	-	55	60	—	dB	(2) In each select mode,
V _{out} 1 Crosstalk	Y/V _{in} S1	CT10V1	_	55	60	_	dB	compare signal output
Closstalk	C _{in} S1	CT12V1	_	55	60	_	dB	from the selected pin with
	Y/V _{in} S2	CT14V1	_	55	60	_	dB	leakage components from nonselected pins to find a
	C _{in} S2	CT16V1	_	55	60	_	dB	crosstalk.
	V _{in} TV	VDR5Y	_	1.5	2.0	_	V _{p-p}	(1) Apply a 15kHz sine wave
	V _{in} V1	VDR8Y		1.5	2.0	—	V _{p-p}	to each input pin. (2) In each select mode,
Yout	V _{in} V2	VDR24Y	_	1.5	2.0		V _{p-p}	(2) In each select mode, measure an input
Input Dynamic Range	Y/VinS1	VDR10Y	_	1.5	2.0	—	V _{p-p}	amplitude at which the
Nange	Y/VinS2	VDR14Y		1.5	2.0	—	V _{p-p}	output waveform on
	Y _{in}	VDR26Y	_	5.0	5.5	—	V _{p-p}	pin 32 begins to be distorted.

CHARACTERISTIC	SELECT MODE	SYMBOL	TEST CIR- CUIT	MIN.	TYP.	MAX.	UNIT	TEST METHOD
	V _{in} TV	G5Y	_	5.5	6.0	6.5	dB	(1) Apply a 15kHz, 1.0V _{p-p}
	V _{in} V1	G8Y	—	5.5	6.0	6.5	dB	sine wave to each input
Yout	V _{in} V2	G24Y	-	5.5	6.0	6.5	dB	pin.
Gain	Y/V _{in} S1	G10Y	—	5.5	6.0	6.5	dB	(2) In each select mode, find
	Y/V _{in} S2	G14Y	—	5.5	6.0	6.5	dB	the gain between input
	Yin	G26Y	—	- 0.5	0	0.5	dB	and output.
	V _{in} TV	F5Y	—	10	—	_	MHz	(1) Apply a 1.0V _{p-p} sine wave
	V _{in} V1	F8Y	_	10	_	_	MHz	to each input pin. (2) In each select mode,
Yout Froguency	V _{in} V2	F24Y	_	10	_	_	MHz	measure a frequency at
Frequency Response	Y/V _{in} S1	F10Y	_	10	_	_	MHz	which the output
incoponise	Y/V _{in} S2	F14Y	_	10	_	_	MHz	amplitude on pin 32 is 3dB down from the 15kHz
	Y _{in}	F26Y	_	10	_	_	MHz	applied level.
	V _{in} TV	СТ5Ү	_	55	60		dB	(1) Apply a 3.58MHz, 1.0V _{p-p}
	V _{in} V1	СТ8Ү	_	55	60	_	dB	sine wave to each input pin.
Yout	V _{in} V2	CT24Y	_	55	60	_	dB	(2) In each select mode,
Crosstalk	Y/V _{in} S1	СТ10Ү	_	55	60	_	dB	compare signal output from the selected pin with
	Y/V _{in} S2	CT14Y	_	55	60	_	dB	leakage components from
	Y _{in}	CT26Y	_	55	60		dB	nonselected pins to find a crosstalk.
	VinTV	VDR5C	_	1.5	2.0	—	V _{p-p}	(1) Apply a 15kHz sine wave
	V _{in} V1	VDR8C	_	1.5	2.0	_	V _{p-p}	to each input pin.
	V _{in} V2	VDR24C	_	1.5	2.0	—	V _{p-p}	(2) In each select mode,
C _{out} Input Dynamic	Y/V _{in} S1	VDR10C	—	1.5	2.0	—	V _{p-p}	measure an input
Range	C _{in} S1	VDR12C	—	1.5	2.0	—	V _{p-p}	amplitude at which the
Range	Y/V _{in} S2	VDR14C		1.5	2.0	—	V _{p-p}	output waveform on
	C _{in} S2	VDR16C		1.5	2.0	—	V _{p-p}	pin 30 begins to be
	с _{іп}	VDR28C	—	5.0	5.5	—	V _{p-p}	distorted.
	V _{in} TV	G5C	_	5.5	6.0	6.5	dB	
	V _{in} V1	G8C	_	5.5	6.0	6.5	dB	(1) Apply a 15kHz, 1.0V _{p-p}
	V _{in} V2	G24C	_	5.5	6.0	6.5	dB	sine wave to each input
C _{out}	Y/V _{in} S1	G10C	_	5.5	6.0	6.5	dB	pin.
Gain	C _{in} S1	G12C	—	5.5	6.0	6.5	dB	(2) In each select mode, find
	Y/V _{in} S2	G14C	_	5.5	6.0	6.5	dB	the gain between input
	C _{in} S2	G16C	—	5.5	6.0	6.5	dB	and output.
	с _{іп}	G28C	—	- 0.5	0	0.5	dB	

CHARACTERISTIC	SELECT MODE	SYMBOL	TEST CIR- CUIT	MIN.	TYP.	MAX.	UNIT	TEST METHOD
	V _{in} TV	F5C	—	10	_	_	MHz	(1) Apply a 1.0V _{p-p} sine wave
	V _{in} V1	F8C	—	10	_	_	MHz	to each input pin.
	V _{in} V2	F24C	—	10	_	_	MHz	(2) In each select mode,
Cout	Y/V _{in} S1	F10C	_	10		_	MHz	measure a frequency at
Frequency Response	C _{in} S1	F12C	_	10		_	MHz	which the output
Response	Y/V _{in} S2	F14C		10		_	MHz	amplitude on pin 30 is 3dB
	C _{in} S2	F16C	—	10		_	MHz	down from the 15kHz
	c _{in}	F28C	—	10		—	MHz	applied level.
	V _{in} TV	CT5C	_	55	60		dB	(1) Apply a 3.58MHz, 1.0V _{p-p}
	V _{in} V1	CT8C	-	55	60	—	dB	sine wave to each input
	V _{in} V2	CT24C	_	55	60	_	dB	pin.
Cout	Y/V _{in} S1	CT10C	_	55	60		dB	(2) In each select mode,
Crosstalk	C _{in} S1	CT12C	_	55	60	_	dB	compare signal output from the selected pin with
	Y/V _{in} S2	CT14C	_	55	60		dB	leakage components from
	C _{in} S2	CT16C	_	55	60	_	dB	nonselected pins to find a
	C _{in}	CT28C	_	55	60		dB	crosstalk.
	V _{in} TV		(1) Apply a 15kHz sine wave					
	V _{in} V1	VDR8D	_	5.0	5.5	_	V	to each input pin.
Det Select	V _{in} V2	VDR24D	—	5.0	5.5	_	V	(2) In each select mode,
Input Dynamic	Y/V _{in} S1	VDR10D	_	5.0	5.5	—	V	measure an input
Range	V _{out1}	VDR34D		1.5	2.0		V	amplitude at which the
	V _{out2}	VDR38D	_	1.5	2.0	_	V	output waveform on pin 2
	Cout	VDR30D	—	1.2	1.8	—	V	begins to be distorted.
	V _{in} TV	G5D	—	- 0.5	0	0.5	dB	(1) Apply a 15/1/2 1 0)/
	V _{in} V1	G8D	_	- 0.5	0	0.5	dB	(1) Apply a 15kHz, 1.0V _{p-p} sine wave to each input
Det Select	V _{in} V2	G24D	—	- 0.5	0	0.5	dB	pin.
Gain	Y/V _{in} S1	G10D	—	- 0.5	0	0.5	dB	(2) In each select mode, find
Cum	V _{out1}	G34D	—	- 0.1	0	0.1	dB	the gain between input
	Yout	G32D	—	- 0.1	0	0.1	dB	and output.
	Cout	G30D	_	- 0.1	0	0.1	dB	
	L _{in} TV	VDR3L1		6.0	6.5	_	V _{p-p}	(1) Apply a 1kHz sine wave to
L _{out} 1	L _{in} V1	VDR6L1	_	6.0	6.5	_	V _{p-p}	each input pin. (2) In each select mode,
Input Dynamic	L _{in} V2	VDR25L1	_	6.0	6.5	_	V _{p-p}	measure an input
Range	L _{in} S1	VDR9L1	_	6.0	6.5	_	V _{p-p}	amplitude at which the output waveform on pin 33
	L _{in} S2	VDR13L1	_	6.0	6.5	_	V _{p-p}	begins to be distorted.

CHARACTERISTIC	SELECT MODE	SYMBOL	TEST CIR- CUIT	MIN.	TYP.	MAX.	UNIT	TEST METHOD
	L _{in} TV	G3L1	_	- 0.5	0	0.5	dB	(1) Apply a 1kHz, 1.0V _{p-p} sine
L _{out} 1	L _{in} V1	G6L1	—	- 0.5	0	0.5	dB	wave to each input pin.
Gain	L _{in} V2	G25L1	—	- 0.5	0	0.5	dB	(2) In each select mode, find
Gain	L _{in} S1	G9L1	—	- 0.5	0	0.5	dB	the gain between input
	L _{in} S2	G13L1	—	- 0.5	0	0.5	dB	and output.
	L _{in} TV	F3L1	_	0.1	2.0	_	MHz	 Apply a 1.0V_{p-p} sine wave to each input pin.
Lout1	L _{in} V1	F6L1	—	0.1	2.0		MHz	(2) In each select mode,
Frequency	L _{in} V2	F25L1	—	0.1	2.0		MHz	measure a frequency at which the output
Response	L _{in} S1	F9L1	—	0.1	2.0	_	MHz	amplitude on pin 33 is 3dB down from the 1 kHz
	L _{in} S2	F13L1	—	0.1	2.0	_	MHz	applied level.
	L _{in} TV	CT3L1		70	100	_	dB	(1) Apply a 1kHz, 1.0V _{p-p} sine wave to each input pin.
	L _{in} V1	CT6L1	Ι	70	100	—	dB	(2) In each select mode,
L _{out} 1 Crosstalk	L _{in} V2	CT25L1	Ι	70	100	—	dB	compare signal output from the selected pin with
	L _{in} S1	CT9L1	—	70	100		dB	leakage components from
	L _{in} S2	CT13L1	—	70	100	_	dB	nonselected pins to find a crosstalk.
	L _{in} TV	M3L1		70	100	_	dB	(1) Apply a 1kHz, 1.0V _{p-p} sine wave to each input pin.
L _{out} 1	L _{in} V1	M6L1	_	70	100	_	dB	(2) In each select mode,
Mute	L _{in} V2	M25L1	—	70	100		dB	compare the output amplitudes on pin 33 when
Attenuation	L _{in} S1	M9L1	_	70	100		dB	mute is turned on and turned off to find mute
	L _{in} S2	M13L1	_	70	100		dB	attenuation.
	R _{in} TV VDR4R1 — 6.0 6.5 —	V _{p-p}	(1) Apply a 1kHz sine wave to					
R _{out} 1	R _{in} V1	VDR7R1	Ι	6.0	6.5		V _{p-p}	each input pin. (2) In each select mode,
Input Dynamic	R _{in} V2	VDR27R1	—	6.0	6.5	—	V _{p-p}	measure an input
Range	R _{in} S1	VDR11R1	—	6.0	6.5	_	V _{p-p}	amplitude at which the output waveform on pin 31
	R _{in} S2	VDR15R1	—	6.0	6.5		V _{p-p}	begins to be distorted.

CHARACTERISTIC	SELECT MODE	SYMBOL	TEST CIR- CUIT	MIN.	TYP.	MAX.	UNIT	TEST METHOD
	R _{in} TV	G4R1	—	- 0.5	0	0.5	dB	(1) Apply a 1kHz, 1.0V _{p-p} sine
R _{out} 1	R _{in} V1	G7R1	—	- 0.5	0	0.5	dB	wave to each input pin.
Gain	R _{in} V2	G27R1	—	- 0.5	0	0.5	dB	(2) In each select mode, find
	R _{in} S1	G11R1	—	- 0.5	0	0.5	dB	the gain between input
	R _{in} S2	G15R1	—	- 0.5	0	0.5	dB	and output.
	R _{in} TV	F4R1	_	0.1	2.0	_	MHz	 Apply a 1.0V_{p-p} sine wave to each input pin.
R _{out} 1	R _{in} V1	F7R1	_	0.1	2.0		MHz	(2) In each select mode,
Frequency Response	R _{in} V2	F27R1	_	0.1	2.0		MHz	measure a frequency at which the output
Response	R _{in} S1	F11R1	_	0.1	2.0		MHz	amplitude on pin 31 is 3dB down from the 1kHz
	R _{in} S2	F15R1	_	0.1	2.0		MHz	applied level.
	R _{in} TV	CT4R1	—	70	100	_	dB	(1) Apply a 1kHz, 1.0V _{p-p} sine wave to each input pin.
	R _{in} V1	CT7R1	_	70	100	_	dB	(2) In each select mode,
R _{out} 1 Crosstalk	R _{in} V2	CT27R1	—	70	100	_	dB	compare signal output from the selected pin with
	R _{in} S1	CT11R1	_	70	100	—	dB	leakage components from nonselected pins to find a
	R _{in} S2	CT15R1	_	70	100	_	dB	crosstalk.
	R _{in} TV	M4R1	_	70	100	—	dB	(1) Apply a 1kHz, 1.0V _{p-p} sine wave to each input pin.
R _{out} 1	R _{in} V1	M7R1	—	70	100		dB	(2) In each select mode,
Mute Attenuation	R _{in} V2	M27R1	_	70	100		dB	compare the output amplitudes on pin 31 when
Attenuation	R _{in} S1	M11R1	_	70	100		dB	mute is turned on and turned off to find mute
	R _{in} S2	M15R1	_	70	100		dB	attenuation.
L _{out} TV Input Dynamic Range	L _{in} TV	VDR3LTV	_	6.0	6.5	_	V _{p-p}	While applying a 1kHz sine wave to pin 3, measure an input amplitude at which the output waveform on pin 36 begins to be distorted.
L _{out} TV Gain	L _{in} TV	G3LTV		- 0.5	0	0.5	dB	While applying a 1kHz, $1.0V_{p}$ sine wave to pin 3, find the gain between pins 3 and 36.

CHARACTERISTIC	SELECT MODE	SYMBOL	TEST CIR- CUIT	MIN.	TYP.	MAX.	UNIT	TEST METHOD
L _{out} TV Frequency Response	L _{in} TV	F3LTV	_	0.1	2.0	_	MHz	While applying a 1.0V _{p-p} sine wave to pin 3, measure a frequency at which the output waveform on pin 36 is 3dB down from the 1kHz applied level.
	L _{in} TV	CT3LTV		70	100	_	dB	(1) Apply a 1kHz, 1.0V _{p-p} sine wave to each input pin.
	L _{in} V1	CT6LTV	_	70	100	—	dB	(2) Compare the output
L _{out} TV Crosstalk	L _{in} V2	CT25LTV	Ι	70	100	—	dB	amplitude when L _{in} TV is selected with leakage
	L _{in} S1	CT9LTV	_	70	100	_	dB	components from
	L _{in} S2	CT13LTV	_	70	100	—	dB	nonselected pins to find a crosstalk.
L _{out} TV Mute Attenuation	L _{in} TV	M3LTV	_	70	100	_	dB	While applying a 1kHz, 1.0V _{p-p} sine wave to pin 3, compare the output amplitudes on pin 36 when mute is turned on and turned off to find mute attenuation.
R _{out} TV Input Dynamic Range	R _{in} TV	VDR4RTV	_	6.0	6.5	_	V _{p-p}	While applying a 1kHz sine wave to pin 4, measure an input amplitude at which the output waveform on pin 35 begins to be distorted.
R _{out} TV Gain	R _{in} TV	G4RTV		- 0.5	0	0.5	dB	While applying a 1kHz, 1.0V _{p-p} sine wave to pin 4, find the gain between pins 4 and 35.
R _{out} TV Frequency Response	R _{in} TV	F4RTV		0.1	2.0	_	MHz	While applying a 1.0V _{p-p} sine wave to pin 4, measure a frequency at which the output waveform on pin 35 is 3dB down from the 1kHz applied level.

CHARACTERISTIC	SELECT MODE	SYMBOL	TEST CIR- CUIT	MIN.	TYP.	MAX.	UNIT	TEST METHOD
R _{out} TV Crosstalk	R _{in} TV	CT4RTV	_	70	100	_	dB	 (1) Apply a 1kHz, 1.0V_{p-p} sine wave to each input pin. (2) Compare the output amplitude when R_{in}TV is selected with leakage components from nonselected pins to find a crosstalk.
	R _{in} V1	CT7RTV		70	100	_	dB	
	R _{in} V2	CT27RTV		70	100	—	dB	
	R _{in} S1	CT11RTV		70	100	—	dB	
	R _{in} S2	CT15RTV	-	70	100	—	dB	
R _{out} TV Mute Attenuation	R _{in} TV	M4RTV		70	100	_	dB	While applying a 1kHz, $1.0V_{p-p}$ sine wave to pin 4, compare the output amplitudes on pin 35 when mute is turned on and turned off to find mute attenuation.

APPLICATION CIRCUIT

OUTLINE DRAWING SDIP36-P-500-1.78

Unit : mm

Weight : 2.98g (Typ.)