www.DataSheet4U.com

OCTAL D FLIP-FLOP WITH COMMON ENABLE AND CLOCK

DESCRIPTION

The T54LS377/T74LS377 is an 8-Bit register built using advanced Low Power Schottky technology. This register consists of eight D-type flip-flops with a buffered common clock and a buffered common clock enable. The device is packaged in the spacesaving (0.3 inch row spacing) 20 pin package.

www.DataSheet4U.com

TRUTH TABLE

E	CP D _n		Q _n
н	- T	x	No Change
L		н	н
L		L	L

et4U.cofra LOW Voltage Level

H = HIGH Voltage Level

X = Don't Care

DataShe

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit	
V _{CC}	Supply Voltage	-0.5 to 7	v	
VI	Input Voltage, Applied to Input	- 0.5 to 15	v	
Vo	Output Voltage, Applied to Output	-0.5 to 10	v	
I _l	Input Current, Into Inputs	- 30 to 5	mA	
lo	Output Current, Into Outputs	50	mA	

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGES

Dant Mumbara		Supply Voltage		
Part Numbers	Min	Тур	Max	Temperature
T54LS377D2	4.5 V	5.0 V	5.5 V	- 55°C to + 125°C
T74LS377XX	4.75 V	5.0 V	5.25 V	www.bataSfeet4U.com

XX = package type.

LOGIC SYMBOL AND LOGIC DIAGRAM 3 7 8 13 14 17 18 DataShe Do D1 D2 D3 D4 D5 D6 D-F 11 0,0,0,0,0,0,0,0,0,0,0, LC--0076 2 5 6 9 12 15 16 19 D_2 D, D D3 D٤ Ds D, D₂ (13) 181 (1) Ē CP (11) D ĊР ۵ 0 CP ٥ CF D ٢ CP ٥ n n I(2) I (9) I (15) T (19) 1(5) 1(6) I (12) 1 (16) ۵,6 a, Q1 Q2 Q3 ۵4 ٩s ۵, LC-0141 V_{CC} = Pin 20 GND = Pin 10 () = Pin numbers

FUNCTIONAL DESCRIPTION

The LS377 consists of eight edge-triggered D flipflops with individual D inputs and Q outputs. The Clock (CP) and Enable input (Ē) are common to all flip-flops. When \overline{E} is LOW, new data is entered into the register on the next LOW-to-HIGH transition of (CP). When \overline{E} is HIGH, the register will relate the effective of the CP.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

A	Parameter		Limits			Test Conditions		
Symbol			Min.	Тур.	Max.	(Note 1) Guaranteed input HIGH Voltage for all Inputs		V
VIH			2.0					
VIL	Input LOW Voltage	54			0.7	Guaranteed input LOW Voltage for all Inputs		l v
		74			0.8			l v
VCD	Input Clamp Diode Voltage			-0.65	- 1.5	$V_{CC} = MIN, I_{IN} = -18mA$		Na
V _{OH} Output HIGH	Output HIGH Voltage	54	2.5	3.5		$V_{CC} = MIN, I_{OH} = -400 \mu A, V_{IN} = V_{IH}$ or		v
		74	2.7	3.5		VIL per Truth	Table	ľ
VOL	Output LOW Voltage	54,74		0.25	0.4	I _{OL} = 4.0mA	$V_{CC} = MIN, V_{IN} = V_{IH}$ or	
		74		0.35	0.5	I _{OL} = 8.0mA	VIL per Truth Table	V V
ιн	Input HIGH Current				20 0.1	V _{CC} = MAX,V V _{CC} = MAX,V		μA mA
հ	Input LOW Current				- 0.4	$V_{CC} = MAX, V_{IN} = 0.4V$		mA
los	Output Short Circuit Current (Note 2)		- 20		- 100	V _{CC} = MAX, V _{OUT} = 0V		mA
Icc	Power Supply Current			18	28	V _{CC} = MAX		mA

ataSheet4U.com

AC CHARACTERISTICS: T_A = 25°C

Symbol	Parameter		Limits		Test Conditions		
		Min.	Тур.	Max.	lest	Units	
f _{MAX}	Minimum Input Clock Frequency	30	40		Fig. 1		ns
t _{PLH}	Propagation Delay Clock to Output		17	27	Fig. 1	$V_{CC} = 5.0V$ CL = 15pF	ns
t _{PHL}	Propagation Delay Clock to Output		18	27	Fig. 1	$R_{L} = 2k\Omega$	ns

Notes:

1) Conditions for testing, not shown in the Table, are chosen to guarantee operation underwwwrst cases receipte.com 2) Not more than one output should be shorted at a time.

3) Typical values are at $V_{CC} = 5.0V$, $T_A = 25^{\circ}C$

Symbol	Parameter Minimum Clock Pulse Width	Limits					
		Min.	Тур.	Max.	Test Conditions		Units
t _W (CP)		20			Fig. 1		ns
t _s	Set-up Data to Clock (HIGH or LOW)	20			Fig. 1		ns
t _h com	Hold Time, Data to Clock (HIGH or LOW)	5			Fig. 1		ns
t _s H	Set-up Time HIGH Enable to Clock	10			Fig. 1	V _{CC} = 5.0V C _L = 15pF	ns
t _h H	Hold Time HIGH Enable to Clock	5			Fig. 1	$R_{L} = 2k\Omega$	ns
t _s L	Set-up Time LOW Enable to Clock	25			Fig. 1		ns
t _h L	Hold Time Enable to Clock	5			Fig. 1		ns

AC CHARACTERISTICS: TA = 25°C

DEFINITION OF TERMS:

SET-UP TIME (t_s) - is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from LOW to HIGH in order to be recognized and transferred to the outputs.

DataSheet4U.com

HOLD TIME (t_h) - is defined as the minimum time following the clock transition from LOW to HIGH that the logic level must be maintained at the input in order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from LOW to HIGH and still be recognized.

AC WAVEFORMS

