

PIN CONNECTION (top view)

www.datasheet

.44

1.5 . 1 . 10

TRUTH TABLE

OPERATING	INPUTS				OUTPUTS					
OPERATING	MR	PE	J	ĸ	Pn	Q ₀	Q1	Q ₂	Q3	Q ₃
Asynchronous Reset	L	X	Х	х	X	L	L	Ĺ	L	н
Shift, Set First Stage	Н	h	h	h	X	н	q ₀	qı	q ₂	q 2
Shift, Reset First Stage	н	h		L L	X	L	qo	q1	q ₂	g 2
Shift, Toggle First Stage	н	h	h	1	X	qo	q ₀	qi	Q2	Q 2
Shift, Retain First Stage	Н	h	1	h	X	qo	qo	Q1	q 2	q 2
Paralled Load	Н	1	х	x	Pn	po	p1	p ₂	p ₃	p ₃

.

7

_____w

المتستع فسيتعد

and the last the second

L = LOW Voltage Level H = HIGH Voltage Level

 $\label{eq:hardware} \begin{array}{l} \mathsf{L} = \mathsf{LOW} \ \mathsf{holt} \ \mathsf{Care} \\ \mathsf{t} = \mathsf{LOW} \ \mathsf{voltage} \ \mathsf{level} \ \mathsf{one} \ \mathsf{set} \ \mathsf{up} \ \mathsf{time} \ \mathsf{prlor} \ \mathsf{to} \ \mathsf{the} \ \mathsf{LOW} \ \mathsf{to} \ \mathsf{HGH} \ \mathsf{clock} \ \mathsf{transition} \\ \mathsf{h} = \mathsf{HIGH} \ \mathsf{voltage} \ \mathsf{level} \ \mathsf{one} \ \mathsf{set} \ \mathsf{up} \ \mathsf{time} \ \mathsf{prlor} \ \mathsf{to} \ \mathsf{the} \ \mathsf{LOW} \ \mathsf{to} \ \mathsf{HGH} \ \mathsf{clock} \ \mathsf{transition} \\ \mathsf{h} = \mathsf{HIGH} \ \mathsf{voltage} \ \mathsf{level} \ \mathsf{one} \ \mathsf{set} \ \mathsf{up} \ \mathsf{time} \ \mathsf{prlor} \ \mathsf{to} \ \mathsf{the} \ \mathsf{LOW} \ \mathsf{to} \ \mathsf{HGH} \ \mathsf{clock} \ \mathsf{transition} \\ \mathsf{h} = \mathsf{HIGH} \ \mathsf{voltage} \ \mathsf{level} \ \mathsf{one} \ \mathsf{set} \ \mathsf{up} \ \mathsf{transition} \\ \mathsf{hot} \ \mathsf{transition} \ \mathsf{hot} \ \mathsf{transition} \ \mathsf{transition} \ \mathsf{transition} \ \mathsf{transition} \\ \mathsf{hot} \ \mathsf{transition} \ \mathsf{transin} \ \mathsf{transitio$

١

Pn (qn) = Lower case letters indicate the state of the reference input (or output) one set up time prior to the LOW to HIGH clock transition.

تحمد ومرتشقا

T74LS195A

T-46-09-05

FUNCTIONAL DESCRIPTION

The Logic Diagram and Truth Table indicate the functional characteristics of the LS195A Shift register. The device is useful in a wide variety of shifting, counting and storage applications. It performs serial, parallel, serial to parallel, or parallel to serial data transfers at very high speeds.

The LS195A has not two primary modes of operation, shift right ($Q_0 \rightarrow Q_1$) and parallel load which are controlled by the state of the Parallel Enable (\overline{PE}) input. When the PE input is HIGH, serial data enters the first flip-flop Q_0 via the J and K inputs and is shifted one bit in the direction $Q_0 \rightarrow Q_1 \rightarrow Q_2 \rightarrow Q_3$ following each LOW to HIGH clock transition. The J K inputs provide the flexibility of the J K type input for special applications, are the simple D type input for general applications by tying the two pins togheter. When the PE input is LOW, the LS195A appears as four common clocked D flip-flop. The data on the parallel inputs P₀, P₁, P₂, P₃ is transferred to the respective Q₀, Q₁, Q₂, Q₃ outputs to the P_{n-1} inputs and holding the PE input LOW. All serial and parallel data transfers are synchronous, occurring after each LOW to HIGH clock transition. Since the LS195A utilizes edge-triggering, there is no restriction on the activity of the J, K, P_n and PE inputs for logic operation - except for the set-up and release time requirements.

A LOW on the asynchronous Master Reser (\overline{MR}) input sets all Q outputs LOW, independent for any other input condition.

ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	- 0.5 to 7	V
VI	Input Voltage, Applied to Input	- 0.5 to 15	V
Vo	Output Voltage, Applied to Output	- 0.5 to 10	V
h	Input Current, Into Inputs	- 30 to 5	mA
lo	Output Current, Into Outputs	30	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGE

Part Numbers	Sup	piy Voli	age	Temperature
	Min.	Тур.	Max.	remperatore
T74LS195AXX	4.75 V	5.0 V	5.25 V	0 °C to + 70 °C
X - package trop				

SGS-THOMSON

363

T74LS195A

بتوجه

4

· 1

S G S-THOMSON 42E D 📰 7929237 0033491 8 📰 SGTH

T-46-09-05

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter	Limits			Test Condition		
	Falance	Min.	Тур. (*)	Max.	(r	iote 1)	Unit
VIH	Input HIGH Voltage	2.0			Guaranteed In for All Input	put HIGH Voltage	۷
VIL	Input LOW Voltage			0.8	Guaranteed Input LOW Voltage for All Input		۷
Vcd	Input Clamp Diode Voltage		- 0.65	- 1.5	Vcc = MIN, IIN	= -18 mA	v V
Voh	Output HIGH Voltage	2.7	3.4		Vcc = MIN, for Vin = ViH or Vi	ι = - 400 μA μper Truth Table	۷
VOL	Output LOW Voltage		0.25	0.4	l _{OL} = 12 mA	Vcc = MIN	V
			0.35	0.5	l _{OL} = 24 mA	V _{IN} = V _{IH} or V _{IL} per Truth Table	V
Ιн	Input HIGH Current			20 0.1	$V_{CC} = MAX, V_{IN} = 2.7 V$ $V_{CC} = MAX, V_{IN} = 7.0 V$		μA mA
la∟	Input LOW Current			- 0.4	V _{CC} = MAX, V _{IN} = 0,4 V		mA
los	Output Short Circuit Current (note 2)	- 20		- 100	V _{CC} = MAX, V	о ит = 0 V	mA
lcc	Power Supply Current	1	14	21	Vcc = MAX		mA

Notes : 1. Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions 2. Not more than one output should be shorted at a time. (*) Typical values are at $V_{CC} = 5.0$ V, $T_A = 25$ °C.

AC CHARACTERISTICS: TA = 25 °C

Symbol Parameter	Paramotor	Limits			Test Conditions		
	i didinetti	Min.	Тур.	Max.	Test	Conditions	Units
f MAX	Shift Frequency	30	40		Figures 1		MHz
tрін tphl	Propagation Delay, Clock to Outputs		14 17	22 26	Figures 1	Vcc = 5.0 V CL = 15 pF	ns
ten.	Propagation Delay, MR to Outputs		19	30	Figures 3	or ~ 10 bi.	ns

AC SET-UP REQUIREMENTS: TA = 25 °C

Symbol	Parameter	Limits			Tool Constitutions		
	ralantetei	Min.	Тур.	Max.	Test Conditions		Units
twCP	Clock Pulse Width	16	17		Figure 1		ns
t₅(Data)	Set-Up Time Data to Clock	15	11		Figure 2		ns
th(Data)	Hold Time Data to Clock	0					ns
t₅(S)	Set-Up Time PE Control to Clock	25	18		Figure 4	V _{cc} = 5.0 V	nş
t _h (S)	Hold Time PE Control to Clock	0				C _L ⊭ 15 pF	ns
tw(MR)	Master Reset Pulse Width	12	8		Figure 3		ns
t _{rec} (MR)	Recovery Time Mater Reset to Clock	25	6				ns
trelease	PE	1		10			ns

4/6

SGS-THOMSON

-1. A

1.

364

S G S-THOMSON

D

.1,2

DEFINITION OF TERMS: 42E

SET-UP TIME (t_s): is defined as the minimum time required for the corret logic level to be present at the logic input prior the clock transition from LOW to HIGH in order to be recognized and transferred to the outputs.

HOLD TIME (t_h): is defined as the minimum time following the clock transition from LOW to HIGH at which the logiclevel must be maintained at the input

AC WAVEFORMS

Figure 1: Clock to Output Delays and Clock Pulse Width

 $CP \underbrace{1.3V} \underbrace$

Figure 2: Set-up (ts) and Hold (th) Time for Serial Data (J & K) and Parallel Data (Po, P1, P2, P3)

In order to ensure continued recognition. A negative HOLD TIME indicates that the correct logic level may be relased prior to the clock transitio from LOW to HIGH and still be recognized.

7929237 0033492 T 🔤 SGTH

T74LS195A

1 1

T-46-09-05

RECOVERY TIME (t_{rec}) : is defined as the minimum time required between the end of the reset pulse and the clock transition from LOW to HIGH in order to recognize and transfer HIGH Data to the Q outputs.

