

4 × 4 REGISTER FILE

DESCRIPTION

The T54LS170/T74LS170 is a high speed, lowpower 4×4 Register File organized as four word by four bits. Separate read and write inputs, both address adn enable, allow simultaneous read and write operation.

Open collector outputs make it possible, to connect up to 128 outputs in a wired-AND configuration to increase the word capacity up to 512 words. Any number of these devices can be operated in parallel to generate an n-bit length.

The T54LS670/T74LS670 provides a similar function to this device but it features 3-state outputs.

- SIMULTANEOUS READ/WRITE OPERATION
- EXPANDABLE TO 512 WORDS OF n-BIT
- TYPICAL ACCESS TIME OF 20 ns
- LOW LEAKAGE OPEN-COLLECTOR OUTPUTS FOR EXPANSION
- TYPICAL POWER DISSIPATION OF 125 mW
- INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS
- FULLY COMPATIBLE

PIN NAMES

D ₁ -D ₄ W _A -W _B	Data Inputs
₩ _A -₩ _B Ē _W	Write Address Inputs Write Enable (Active LOW) Input
∣ ⊑w <u>R</u> _A -R _B	Read Address Inputs
	Read Enable (Active LOW) Input
Q ₁ -Q ₄	Outputs

LOGIC DIAGRAM

WRITE/READ TRUTH TABLES

WRITE TRUTH TABLE (SEE NOTES A, B, AND C)

WRI	TE INP	UTS		wo	ORD	
WB	N _B W _A Ē _W		0	1	2	3
Ļ	L	L	Q=D	Q ₀	Q ₀	Q ₀
L	н	L	Qo	Q = D	Q	\overline{Q}_0
н	L	L	Q	Q ₀	Q=D	\tilde{Q}_0
Н	Н	L	Q	Q_0	Q ₀	Q = D
Х	Х	н	Q ₀	$\tilde{Q_0}$	Q ₀	Qo

READ TRUTH TABLE (SEE NOTES A AND B)

RE/	AD INP	UTS	OUTPUTS				
R _B	R _A	ĒR	Q ₁	Q ₂	Q ₃	Q ₄	
L	L	L	WOB1	W0B2	W0B3	W0B4	
L	н	L	W1B1	W1B2	W1B3	W1B4	
н	L	L	W2B1	W2B2	W2B3	W2B4	
н	н	L	W3B1	W3B2	W3B3	W3B4	
X	х	н	н	н	H	Н	

NOTES: A. H = HIGH Level, L = LOW Level, X = Don't Care

B. (Q = D) = The four selected internal flip-flop outputs will assume the states applied to the four external data inputs.

C. Q_0 = The level of Q before the indicated input conditions were established.

D. W0B1 = The first bit of word 0. etc.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	T
V _{CC}	Supply Voltage	Value	Uni
		-0.5 to 7	<u> </u>
<u> </u>	Input Voltage, Applied to Input	-0.5 to 15	v
Vo	Output Voltage, Applied to Output	-0.5 to 10	v
<u> </u>	Input Current, Into Inputs	- 0.5 to 50	mA
_lo	Output Current, Into Outputs	50	mA

Stresses in excess of those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions in excess of those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

GUARANTEED OPERATING RANGES

Part Numbers				
	Min	Тур	Max	Temperature
T54LS170D2	4.5 V	5.0 V	5.5 V	-55°C to +125°C
T74LS170XX	4.75 V	5.0 V	5.25 V	0°C to +70°C

XX = package type.

LOGIC SYMBOL

V_{CC} = Pin 16 GND = Pin 8 () = Pin numbers

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

Symbol	Parameter			Limits		Test Conditions			
Symbol	rarameter		Min.	Тур.	Max.	(Note 1)		Units	
V _{IH} Input HIGH Voltage		Input HIGH Voltage 2.0		Guaranteed input HIGH Volta for all Inputs	nput HIGH Voltage	V			
V _{IL}	Input LOW Voltage	54			0.7	Guaranteed input LOW Voltage for all Inputs		v	
		74			0.8				
V _{CD}	Input Clamp Diode Vo	ltage		- 0.65	- 1.5	V _{CC} = MIN,I _{IN}	= - 18mA	V	
I _{ОН}	Output HIGH Current				20	$V_{OH} = 5.5V$, $V_{CC} = MIN$, $V_{IN} = V_{IH}$ or V_{IL} per Truth Table		μA	
V _{OL}	Output LOW Voltage	54,74		0.25	0.4	I _{OL} = 4.0mA	$V_{CC} = MIN V_{IN} = V_{IH} \text{ or}$	v	
		74	· · · ·	0.35	0.5	I _{OL} = 8.0mA	VIL per Truth Table		
IIH	Input HIGH Current Any D, R or W Ē _R or Ē _W				20 40	$V_{CC} = MAX, V_{IN} = 2.7V$		μΑ	
	Any D, R or W Ē _R or Ē _W				0.1 0.2	$V_{CC} = MAX, V_{IN} = 7.0V$		mA	
ί _Ι L	Input LOW Current Any D, R, or W Ē _R or Ē _W				- 0.4 - 0.8	$V_{CC} = MAX, V_{IN} = 0.4V$		mA	
lcc	Power Supply Current (Note 2)			25	40	V _{CC} = MAX		mA	

AC CHARACTERISTICS: T_A = 25°C

Symbol ^t PLH ^t PHL	Parameter	Limits					
	raidiletei	Min.	Тур.	Max.	l est	Conditions	Units
	Propagation Delay, Negative- Going \overline{E}_R to Outputs	20 20	30 30	Fig. 1			
t _{PLH} t _{PHL}	Propagation Delay, R_A or R_B to Q Outputs		25 24	40 40	Fig. 2	V _{CC} = 5.0V	
t _{PLH} t _{PHL}	Propagation Delay, Negative- Going \overline{E}_W to Q Outputs		30 26	40 40	Fig. 1	$ \begin{array}{c} \mathbf{C}_{L} = 15pF \\ \mathbf{R}_{L} = 2k\Omega \end{array} $	
t _{PLH} t _{PHL}	Propagation Delay, Data Inputs to Q Outputs		30 22	45 35	Fig. 1		

Notes:

Conditions for testing, not shown in the Table, are chosen to guarantee operation under "worst case" conditions.
I_{CC} is measured under the following worst-case conditions: 4.5V is applied to all data inputs and both enable inputs, all address inputs are grounded, and all outputs are open.

3) Typical values are at $V_{CC} = 5.0V$, $T_A = 25^{\circ}C$

AC SET-UP REQUIREMENTS: T_A=25°C

Symbol	-		Limits		Test Conditions	Units
	Parameter	Min.	Тур.	Max.	Test Conditions	Units
tw	Clock Pulse Width (LOW) for E _W	25				ns
t _s D (Note 3)	Set-up Time, Data Inputs whith Respect to Positive-Going \overline{E}_W	10				ns
t _h D	Hold Time, Data Inputs whith Respect to Positive-Going \overline{E}_W	15			V _{CC} = 5.0V	ns
t _s W (Note 5)	Set-up Time, Write Select Inputs W_A and W_B with Respect to Negative-Going \overline{E}_W	15			Fig. 3	ns
t _h W	Hold Time, Write Select Inputs W_A and W_B with Respect to Negative-Going \overline{E}_W	15				ns
t _{LATCH}	Latch Time	25				ns

Notes:

- 3) The Data to Enable Set-up Time is defined as the time required for the logic level to be present at the Data input prior to the enable transition for LOW to HIGH in order from the latch to recognize and store the new data.
- 4) The Hold Time (t_h) is defined as the minimim time following the enable transitin from LOW to HIGH that the logic level must be maintained at the input in order to ensure continued recognition.
- 5) The address to Enable Set-up Time is the time before the HIGH to LOW Enable transition the Address must be stable so that the correct latch is addressed and the other latches are not affected.
- 6) The shaded areas indicate when the inputs are permitted to change for predictable output performance.

AC WAVEFORMS

