

Document Version: 2.0 Date:2009/11/06

Product Functional Specification

42" Full-HD Color TFT-LCD Module Model Name: T420HW05 V3

> () Preliminary Specification (*) Final Specification

Note : This specification is subject to change without notice.

©Copyright AU Optronics, Inc. January, 2008 All Rights Reserved. No Reproduction and Redistribution Allowed

T420HW05 V3

 \oslash

Contents

No	ITEM
	COVER
	CONTENTS
	RECORD OF REVISIONS
1	GENERAL DESCRIPTION
2	ABSOLUTE MAXIMUM RATINGS
3	ELECTRICAL SPECIFICATIONS
3-1	ELECTRICAL CHARACTREISTICS
3-2	INTERFACE CONNECTIONS
3-3	SIGNAL TIMING SPECIFICATIONS
3-4	SIGNAL TIMING WAVEFORMS
3-5	COLOR INPUT DATA REFERNECE
3-6	POWER SEQUENCE
4	OPTICAL SPECIFICATIONS
5	MECHANICAL CHARACTERISTICS
6	RELIABILITY
7	INTERNATIONAL STANDARDS
7-1	SAFETY
7-2	EMC
8	PACKING
9	PRECAUTIONS

©Copyright AU Optronics, Inc. January, 2008 All Rights Reserved. No Reproduction and Redistribution Allowed

T420HW05 V3

 \oslash

Record of Revision

Version	Date	Page	Old Description	New Description	Remark
1.0	2009/11/06		Fianl spec first release		
2.0	2010/4/1		Update brightness and CR		

©Copyright AU Optronics, Inc. January, 2008 All Rights Reserved. No Reproduction and Redistribution Allowed

T420HW05 V3

VNO

1. General Description

This specification applies to the 42 inch Color TFT-LCD Module T420HW05 V3. This LCD module has a TFT active matrix type liquid crystal panel 1920x1080 pixels, and diagonal size of 42 inch. This module supports 1920x1080 Full-HD mode (Non-interlace).

Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 8-bit+FRC gray scale signal for each dot.

The T420HW05 V3 has been designed to apply the 10-bit 4 channel LVDS interface method. It is intended to support displays where high brightness, wide viewing angle, high color saturation, and high color depth.

Items	Specification	Unit	Note
Active Screen Size	42.02	inches	
Display Area	930.24(H) x 523.26(V)	mm	
Outline Dimension	994(H) x 587(V) x26.5(D)	mm	With inverter
Driver Element	a-Si TFT active matrix		
Display Colors	8bit+FRC 1073.7M	Colors	
Number of Pixels	1920 x 1080	Pixel	
Pixel Pitch	0.4845	mm	
Pixel Arrangement	RGB vertical stripe		
Display Mode	Normally Black		
Lamp quantity, type	LED	pcs	
Surface Treatment	Anti-Glare coating (Haze 11%)		
	Hard coating (3H)		

* General Information

©Copyright AU Optronics, Inc. January, 2008 All Rights Reserved. No Reproduction and Redistribution Allowed

T420HW05 V3

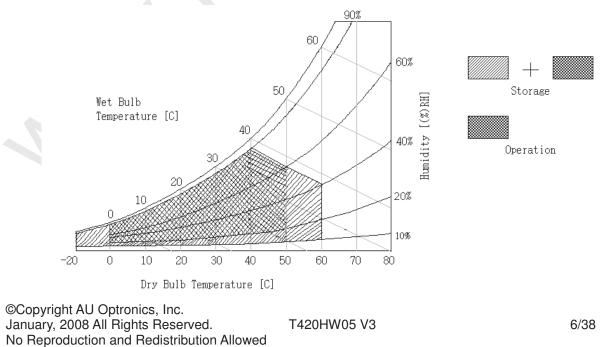
 $\langle p \rangle$

2. Absolute Maximum Ratings

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.

Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive Voltage	Vdd	-0.3	14	[Volt]	1
Input Voltage of Signal	Vin	-0.3	3.6	[Volt]	1
BLU Input Voltage	Vddb	-0.3	26.4	[Volt]	1
BLU Brightness Control Voltage	BLON	-0.3	3.6	[Volt]	1
Operating Temperature	Тор	0	+50	[°C]	2
Operating Humidity	Hop	10	80	[%RH]	2
Storage Temperature	Tst	-20	+60	[°C]	2
Storage Humidity	Нѕт	10	80	[%RH]	2
Panel Surface Temperature		-	50	G	3

Note 1 : Duration = 50msec


Note 2 : Maximum Wet-Bulb should be 50 $^\circ\!\!\mathbb{C}$ $\,$ and No condensation.

Note 3 : Half sine wave, shock level : 50G(11ms), direction : ±x, ±y, ±z (one time each direction)

Note 4 : Wave form : Random, vibration level : 1.5G RMS, Bandwidth : 10~500Hz

Duration : X,Y,Z 30min (one time each direction)

Note 5 : -20C/1hr ~ 60C/1hr, 100 cycles

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

3. Electrical Specification

The T420HW05 requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input, which powers the CCFL, is typically generated by an inverter.

Р	arameter	Symbol		Values		Unit	Notes	
			Min	Тур	Мах			
LCD:								
Power Su	ipply Input Voltage	Vdd	10.8	12	13.2	Vdc		
Power Su	pply Input Current	ldd	-	0.54	1.3	А	1	
Power Co	onsumption	Pc	-	6.48		Watt	1	
Inrush Cu	irrent	I _{RUSH}	-	-	4	Α	5	
LVDS	Differential Input			+100	mV			
Interface	High Threshold					4	4	
	Voltage							
	Differential Input	-100			mV			
	Low Threshold					4	4	
	Voltage							
	Common Input	0.6	1.2	1.8	V			
	Voltage							
CMOS	Input High	2.0		3.3	Vdc			
Interface	Threshold Voltage							
	Input Low	0		0.8	Vdc			
	Threshold Voltage							
Backlight F	ower Consumption			105		Watt	2	
Life Time (N	/ITTF)		30000			Hours	3	

3-1 Electrical Characteristics

The relative humidity must not exceed 80% non-condensing at temperatures of 40° C or less. At temperatures greater than 40° C, the wet bulb temperature must not exceed 39° C. When operate at low temperatures, the brightness of LED will drop and the lifetime of LED will be reduced.

Note :

1. Vdd=12.0V, fv=120 Hz, fcLk=80 Mhz , 25°C, Vdd Duration time= 470 μs , Test pattern : white pattern

©Copyright AU Optronics, Inc. January, 2008 All Rights Reserved. T No Reproduction and Redistribution Allowed

T420HW05 V3

- The Backlight power consumption shown above does include loss of external converter at 25 °C. The used LED current is the LED typical current, Operating condition : ILED=165mA, Duty=100%
- **3.** The life is determined as the time at which luminance of the lamp is 50% compared to that of initial value at the typical lamp current on condition of continuous operating at 25±2°C.
- 4. VCIM = 1.2V

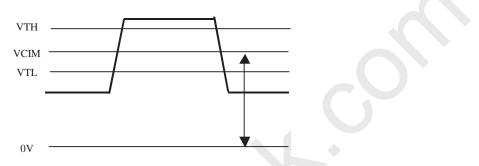
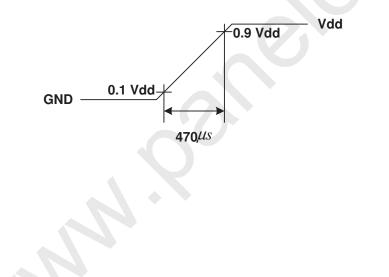



Figure : LVDS Differential Voltage

5. Measurement Condition: Rising time = $470 \,\mu$ s

©Copyright AU Optronics, Inc. January, 2008 All Rights Reserved. No Reproduction and Redistribution Allowed

T420HW05 V3

3-2 Interface Connections

LCD connector 1 : 187059-5122 (P-TWO INDUSTRIES INC.) or equivalent.

Pin No	Symbol	Description	Note
1	NC	No Connect (AUO internal use)	
2	NC	No Connect (AUO internal use)	
3	NC	No Connect (AUO internal use)	
4	NC	No Connect (AUO internal use)	
5	NC	No Connect (AUO internal use)	
6	NC	No Connect (AUO internal use)	
7	LVDS Option	Low/Open for Normal (NS), High for JEIDA	Default : NS mode
8	NC	No Connect (AUO internal use)	
9	NC	No Connect (AUO internal use)	
10	NC	No Connect (AUO internal use)	
11	GND	Ground	
12	R1_0-	LVDS Channel 1, Signal 0-	
13	R1_0+	LVDS Channel 1, Signal 0+	
14	R1_1-	LVDS Channel 1, Signal 1-	
15	R1_1+	LVDS Channel 1, Signal 1+	
16	R1_2-	LVDS Channel 1, Signal 2-	
17	R1_2+	LVDS Channel 1, Signal 2+	
18	GND	Ground	
19	R1_CLK-	LVDS Channel 1, Clock -	Channel 1
20	R1_CLK+	LVDS Channel 1, Clock +	Ghanner i
21	GND	Ground	
22	R1_3-	LVDS Channel 1, Signal 3-	
23	R1_3+	LVDS Channel 1, Signal 3+	
24	R1_4-	LVDS Channel 1, Signal 4-	
25	R1_4+	LVDS Channel 1, Signal 4+	
26	NC or GND	No Connect or Ground	
27	NC or GND	No Connect or Ground	
28	R2_0-	LVDS Channel 2, Signal 0-	Channel 2
29	R2_0+	LVDS Channel 2, Signal 0+	
30	R2_1-	LVDS Channel 2, Signal 1-	
31	R2_1+	LVDS Channel 2, Signal 1+	
32	R2_2-	LVDS Channel 2, Signal 2-	

©Copyright AU Optronics, Inc. January, 2008 All Rights Reserved. No Reproduction and Redistribution Allowed

T420HW05 V3

1			r
33	R2_2+	LVDS Channel 2, Signal 2+	
34	GND	Ground	
35	R2_CLK-	LVDS Channel 2, Clock -	
36	R2_CLK+	LVDS Channel 2, Clock +	
37	GND	Ground	
38	R2_3-	LVDS Channel 2, Signal 3-	
39	R2_3+	LVDS Channel 2, Signal 3+	
40	R2_4-	LVDS Channel 2, Signal 4-	
41	R2_4+	LVDS Channel 2, Signal 4+	
42	NC or GND	No Connect or Ground	
43	NC or GND	No Connect or Ground	
44	GND	Ground	
45	GND	Ground	
46	GND	Ground	
47	V _{DD}	Operating Voltage supply, +12V DC regulated	Dewer
48	V _{DD}	Operating Voltage supply, +12V DC regulated	Power
49	V _{DD}	Operating Voltage supply, +12V DC regulated	
50	V _{DD}	Operating Voltage supply, +12V DC regulated	
51	V _{DD}	Operating Voltage supply, +12V DC regulated	

©Copyright AU Optronics, Inc. January, 2008 All Rights Reserved. No Reproduction and Redistribution Allowed

T420HW05 V3

 \oslash

LCD connector 2 : 187060-4122 (P-TWO INDUSTRIES INC.) or equivalent.

		, , , , , , , , , , , , , , , , , , ,	
Pin No	Symbol	Description	Note
1	NC	No Connect (AUO internal use)	
2	NC	No Connect (AUO internal use)	
3	NC	No Connect (AUO internal use)	
4	NC	No Connect (AUO internal use)	
5	NC	No Connect (AUO internal use)	
6	NC	No Connect (AUO internal use)	
7	NC	No Connect (AUO internal use)	
8	NC	No Connect (AUO internal use)	
9	GND	Ground	
10	R3_0-	LVDS Channel 3, Signal 0-	
11	R3_0+	LVDS Channel 3, Signal 0+	1
12	R3_1-	LVDS Channel 3, Signal 1-	7
13	R3_1+	LVDS Channel 3, Signal 1+	
14	R3_2-	LVDS Channel 3, Signal 2-	
15	R3_2+	LVDS Channel 3, Signal 2+	_
16	GND	Ground	
17	R3_CLK-	LVDS Channel 3, Clock -	Ohannal 0
18	R3_CLK+	LVDS Channel 3, Clock +	– Channel 3
19	GND	Ground	
20	R3_3-	LVDS Channel 3, Signal 3-	_
21	R3_3+	LVDS Channel 3, Signal 3+	_
22	R3_4-	LVDS Channel 3, Signal 4-	
23	R3_4+	LVDS Channel 3, Signal 4+	
24	NC or GND	No Connect or Ground	
25	NC or GND	No Connect or Ground	
26	R4_0-	LVDS Channel 4, Signal 0-	Channel 4
27	R4_0+	LVDS Channel 4, Signal 0+	
28	R4_1-	LVDS Channel 4, Signal 1-	
29	R4_1+	LVDS Channel 4, Signal 1+	
30	R4_2-	LVDS Channel 4, Signal 2-	
31	R4_2+	LVDS Channel 4, Signal 2+	
32	GND	Ground	
33	R4_CLK-	LVDS Channel 4, Clock -	

©Copyright AU Optronics, Inc. January, 2008 All Rights Reserved. No Reproduction and Redistribution Allowed

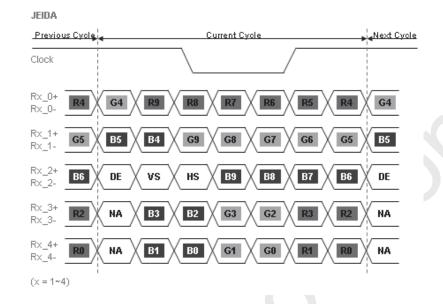
T420HW05 V3

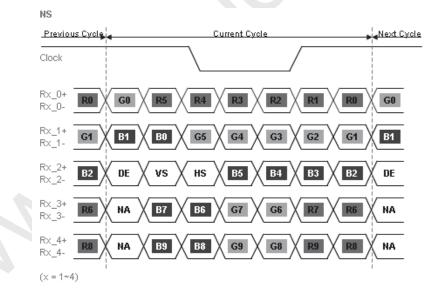
34	R4_CLK+	LVDS Channel 4, Clock +
35	GND	Ground
36	R4_3-	LVDS Channel 4, Signal 3-
37	R4_3+	LVDS Channel 4, Signal 3+
38	R4_4-	LVDS Channel 4, Signal 4-
39	R4_4+	LVDS Channel 4, Signal 4+
40	NC or GND	No Connect or Ground
41	NC or GND	No Connect or Ground

- Note: 1. All GND (ground) pin should be connected together to the LCD module's metal frame.

2. All $V_{\text{LCD}}\;$ (power input) pins should be connected.

©Copyright AU Optronics, Inc. January, 2008 All Rights Reserved. No Reproduction and Redistribution Allowed


T420HW05 V3


 \oslash

LVDS Option = High→JEIDA

LVDS Option = Low/Open→NS

©Copyright AU Optronics, Inc. January, 2008 All Rights Reserved. No Reproduction and Redistribution Allowed

T420HW05 V3

Backlight Connector Pin Configuration

1. Electrical specification

No	ITEM	SYME	BOL	CONDITION	MIN	TYP	MAX	UNIT	Note
1	Input Voltage	VDC)В		21.6	24.0	26.4	V _{DC}	
2	Input Current	I _{DD}	В	V _{DDB} =24V 100% Brightness		4.5	5.7	A _{DC}	
3	Input Power	Pdd	DВ	V _{DDB} =24V 100% Brightness		108	137	w	$\boldsymbol{\zeta}$
4	Input inrush current	I _{RUS}	ĞН	V _{DDB} =24V 100% Brightness			7	A _{DC}	
<u>5</u>	ON/OFF Control	V _{BLON}	V _{DDB} =2 4V	0.0		0.8	V _{DC}	V _{DC}	
2	Voltage	V BLON	V _{DDB} =2 4V	0		2	mA _{DC}	V_{DC}	
<u>6</u>	ON/OFF Control Current	I _{BLON}			2.0		3.3	V_{DC}	
	External PWM			0		0.8	V_{DC}	V_{DC}	
<u>7</u>	Control Voltage	EV _{PWM}	PWM= 100%	0		2	mA _{DC}	V_{DC}	
<u>8</u>	External PWM Control Current	ЕІрум	PWM= 30%	0		2	mA _{DC}	mA _{DC}	
	Control Current			10*		100	%	mA_{DC}	
<u>9</u>	External PWM Duty Ratio	ЕДрум			10		100	Hz	
<u>10</u>	External PWM Frequency	EF _{PWM}		V _{DDB} =24V	140	180	240	Hz	
1 <u>1</u>	Internal PWM Control Voltage	IV _{PV}	VM	V _{DDB} =24V 100% Brightness	0		3.3	V_{DC}	

 $(Ta=25\pm5^{\circ}C, Turn on for 45minutes)$

* Note : At < 20% dimming ratio, AUO would not guarantee display performance & start at High and Low Temperature condition.

©Copyright AU Optronics, Inc. January, 2008 All Rights Reserved. No Reproduction and Redistribution Allowed

T420HW05 V3

VNO

2. Input specification

Connector 2: JST_PA type connector (side entry type) or equivalent

Pin No	Symbol	Description
1	VDDB (Main Power)	DV input 24.0 VDC
2	VDDB (Main Power)	DV input 24.0 VDC
3	VDDB (Main Power)	DV input 24.0 VDC
4	VDDB (Main Power)	DV input 24.0 VDC
5	VDDB (Main Power)	DV input 24.0 VDC
6	GND	Ground
7	GND	Ground
8	GND	Ground
9	GND	Ground
10	GND	Ground
11	Reserved	Please leave it open
12	VBLON (Enable Pin)	BL On/Off control signal High/Open: On, Low: Off (Low=0~ 0.8V, High=2.0~5.0V)
13	VDIM	Internal PWM (3.3V,100% duty)/open for 100% luminance, 0V : 20%(TBD) duty < NC ; when use External PWM >
14	PDIM	External PWM (AC 0~3.3V, Duty: 10%~100%) < NC ; when use internal PWM>

NN 90

©Copyright AU Optronics, Inc. January, 2008 All Rights Reserved. No Reproduction and Redistribution Allowed

T420HW05 V3

3-3 Signal Timing Specifications

This is the signal timing required at the input of the User connector. All of the interface signal timing should be satisfied with the following specifications for it's proper operation.

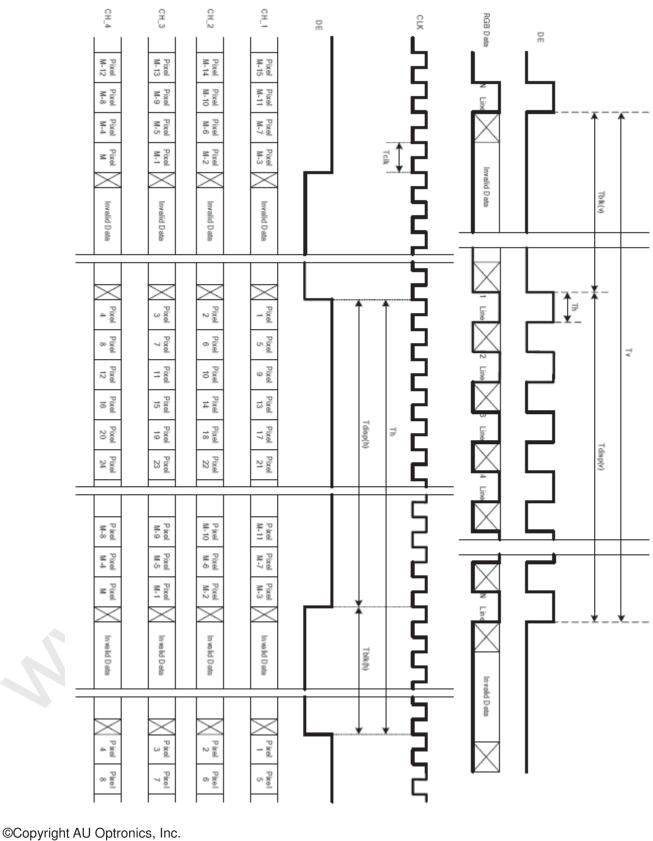
Timing Table (DE only Mode)

Vertical Frequency Range A (120Hz)

	1	1	-	-		
Signal	Item	Symbol	Min	Туре	Max	Unit
	Period	Τv	1096	1130	1160	Th
	Active	Tdisp (v)		1080		Th
Vertical Section	Blanking	Tblk (v)	16	50	80	Th
	Period	Th	540	570	580	Tclk
	Active	Tdisp (h)		480		Tclk
Horizontal Section	Blanking	Tblk (h)	60	90	100	Tclk
Clock	Period	CLK		12.94		ns
Clock	Frequency	Freq	71.02	77.29	80.74	MHz
Vertical Frequency	Frequency	Vs	118	120	122	Hz
Horizontal Frequency	Frequency	Hs	131.52	135.6	139.2	KHz

Vertical Frequency Range B (100Hz)

Signal	Item	Symbol	Min	Туре	Max	Unit
	Period	Period Tv 1200 1280 139		1392	Th	
Vertical Section	Active	Tdisp (v)		1080		Th
	Blanking	Tblk (v)	120	200	312	Th
	Period	Th	540	570	580	Tclk
Horizontal Section	Active	Tdisp (h)			Tclk	
	Blanking	Tblk (h)	60	90	100	Tclk
Clock	Period	CLK		13.71		ns
CIUCK	Frequency	Freq	64.8	72.96	80.74	MHz
Vertical Frequency	Frequency	Vs	94	100	102	Hz
Horizontal Frequency Frequency		Hs	120	128	139.2	KHz


©Copyright AU Optronics, Inc. January, 2008 All Rights Reserved. No Reproduction and Redistribution Allowed

T420HW05 V3

3-4 Signal Timing Waveforms

January, 2008 All Rights Reserved. No Reproduction and Redistribution Allowed

T420HW05 V3

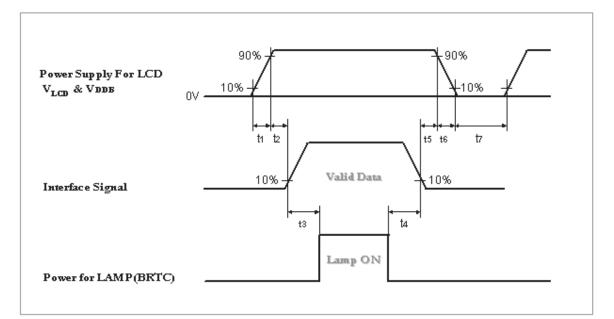
VNO

3-5 Color Input Data Reference

The brightness of each primary color (red, green and blue) is based on the 10 bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

															Inpu	ut Co	olor (Data											_		
	Color					RB	ED									GRE	EEN									BL	UE				
	COIDI					M	SB									M	SB									M	SB				
		R9	R8	R7	R6	R5	R4	R3	R2	R1	RO	G9	G8	G7	G6	G5	G4	G3	G2	G1	GO	B9	B8	B7	B6	B5	Β4	B3	B2	B1	BO
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Basic	Blue(1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
Color	Cyan	O	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(001)	Ö	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	Ö	0	0	0	0	0	0	0	0	0
RED																															
	RED(1022)	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	Ö	0	0	0	0	0	0	0	0	0
	GREEN(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(001)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
GREEN																															
	GREEN(1022)	Ō	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	GREEN(1023)	Ö	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	BLUE(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE(001)	Ö	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ö	0	0	0	0	0	0	0	0	1
BLVE																								·							
	BLUE(1022)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0
	BLUE(1023)	Ö	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

©Copyright AU Optronics, Inc. January, 2008 All Rights Reserved. No Reproduction and Redistribution Allowed


T420HW05 V3

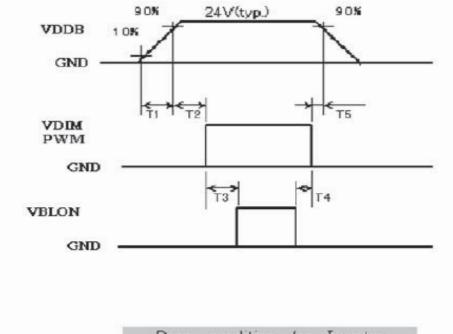
3-6 Power Sequence

1. Power sequence of panel

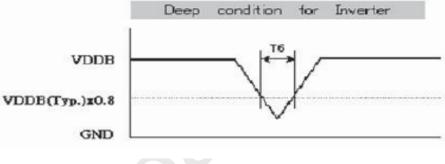
		Units		
Parameter	Min.	Тур.		Min.
t1	0.4		30	ms
t2	0.1	-	50	ms
t3	300	-	-	ms
t4	10	-	-	ms
t5	0.1	-	50	ms
t6	-	-	300	ms
t7	500	-	-	ms

Apply the lamp voltage within the LCD operating range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal.

Caution : The above on/off sequence should be applied to avoid abnormal function in the display. In case of handling, make sure to turn off the power when you plug the cable into the input connector or pull the cable out of the connector.


©Copyright AU Optronics, Inc. January, 2008 All Rights Reserved. No Reproduction and Redistribution Allowed

T420HW05 V3



2. Power sequence of driver board

Parameter		Units		
	Min.	Тур.	Max.	
T1	20	-	-	ms
T2	500	-	-	ms
ТЗ	250	-	-	ms
T4	0	-	-	ms
T5	1	-	-	ms
Т6			10	ms

©Copyright ALL Optropice Inc. Janua No Re

-

4. Optical Specification

Optical characteristics are determined after the unit has been 'ON' and stable for approximately 60 minutes in a dark environment at 25°C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and θ equal to 0°.

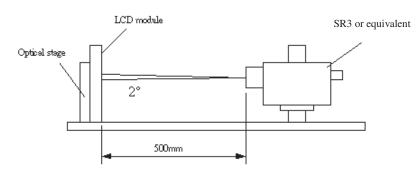


Fig.4-1 Optical measurement equipment and method

Par	rameter	Symbol		Values		Units	Notes
		Min.		Тур.	Max.		
Contrast Rat	tio	CR	3000	4000			1
Surface Lum	ninance, white	LWH	340	420		cd/m²	2
Luminance \	Variation	б _{WHITE}		1.3		3	3
Response Ti	ime (G to G)	Τγ		(8.5)		ms	4,5 (Gray to Gray)
Color Coord	inates						
	RED	R _X	1	0.6247			
		R _Y		0.3498	-		
	GREEN	G _X		0.3241			
		G _Y		0.6059			
	BLUE	B _X	Typ0.03	0.1472	- Typ.+0.03 - -		
		B _Y		0.0455			
	WHITE	W _X		(0.280)			
		W _Y		(0.290)			
Viewing Ang	le						Contrast Ratio>10
x ax	is, right($\varphi = 0^{\circ}$)	$\theta_{\rm r}$	1	89		Degree	6
x axis, left($\varphi = 180^{\circ}$)		θ_{\perp}		89			
y ax	is, up(φ =90°)	θ _u		89			
y ax	y axis, down ($\varphi = 0^{\circ}$)			89			

©Copyright AU Optronics, Inc. January, 2008 All Rights Reserved. No Reproduction and Redistribution Allowed

T420HW05 V3

Note:

1. Contrast Ratio (CR) is defined mathematically as:

Contrast ratio (CR)= <u>Brightness on the "white" state</u> Brightness on the "black" state

2. Surface luminance is luminance value at point 5 across the LCD surface 50cm from the surface with all pixels displaying white. From more information see Fig. 4-2. When VDDB = 24V, IDDB = 6.4A. $L_{WH}=L_{on5}$, Where L_{on1} is the luminance with all pixels displaying white at center 5 location.

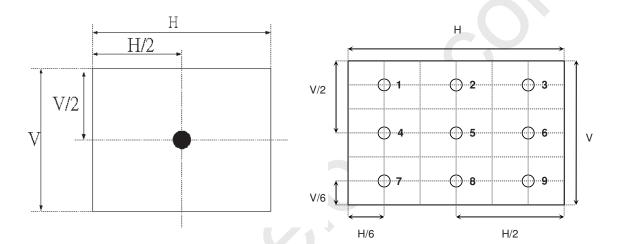


Fig.4-2 Optical measurement point

3. The variation in surface luminance, $\delta_{\text{ WHITE}}$ is defined under 100% brightness as:

 $\delta_{\text{WHITE(9P)}} = \text{Maximum}(L_{\text{on1}}, L_{\text{on2}}, \dots, L_{\text{on9}}) / \text{Minimum}(L_{\text{on1}}, L_{\text{on2}}, \dots, L_{\text{on9}})$

©Copyright AU Optronics, Inc. January, 2008 All Rights Reserved. No Reproduction and Redistribution Allowed

T420HW05 V3

4. Response Time:

(a) G-to-G: average response time among brightness of 0%, 25%, 50%, 75% &100%.

	0%	25%	50%	75%	100%
0%		tr: 0%→25%	tr: 0%→50%	tr: 0%→75%	tr: 0% → 100%
25%	tf: 25% → 0%		tr: 25%→50%	tr: 25%→75%	tr: 25% → 100%
50%	tf: 50% → 0%	tf: 50% → 25%		tr: 50%→75%	tr: 50%→100%
75%	tf: 75% → 0%	tf: 75% → 25%	tf: 75%→50%		tr: 75%→100%
100%	tf: 100% → 0%	tf: 100% → 25%	tf: 100%→50%	tf: 100%→75%	

5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see Fig. 4-3. (Optical measurement by SR3)

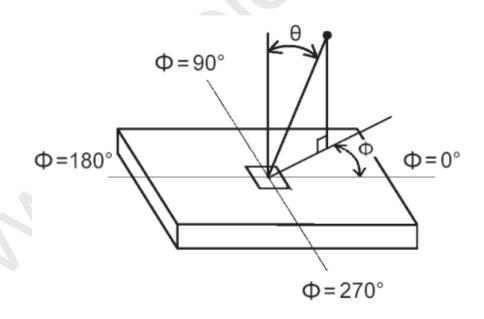


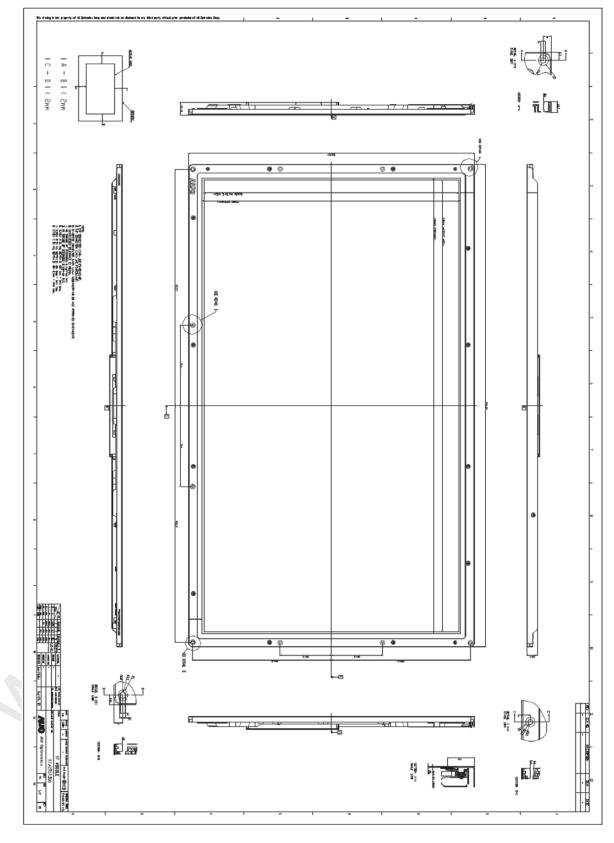
Fig.4-3 Viewing Angle Definition

©Copyright AU Optronics, Inc. January, 2008 All Rights Reserved. No Reproduction and Redistribution Allowed

T420HW05 V3

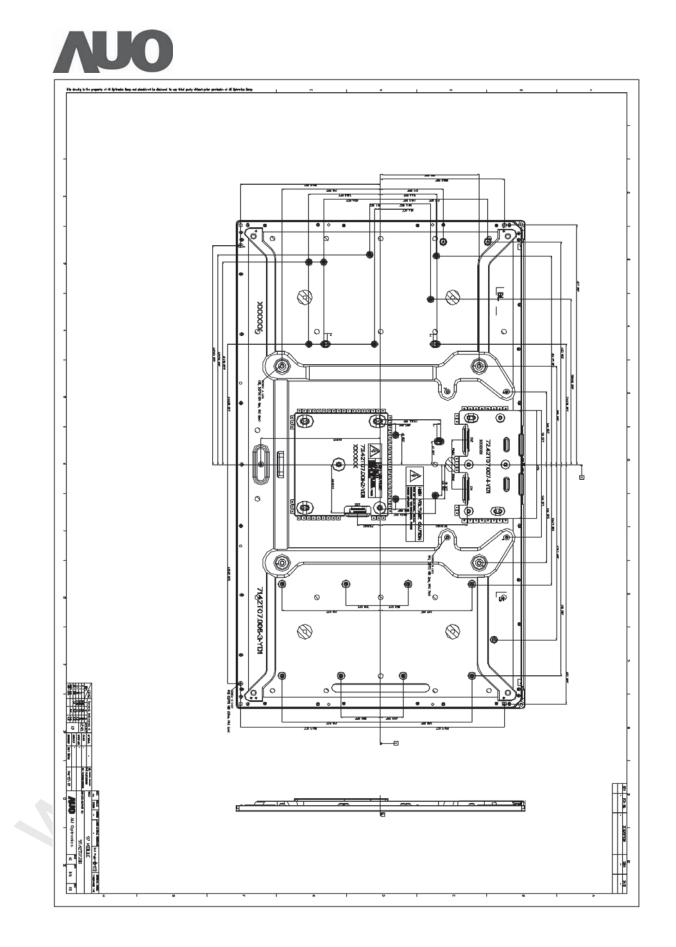
5. Mechanical Characteristics

The contents provide general mechanical characteristics for the model T420HW05V3. In addition the figures in the next page are detailed mechanical drawing of the LCD.


	Horizontal (typ.)	994mm				
Outline Dimension	Vertical (typ.)	587mm				
	Depth (typ.)	26.5mm (with inverter)				
Bezel Area	Horizontal (typ.)	938mm				
	Vertical (typ.)	531mm				
Active Display Area	Horizontal	930.24mm				
Active Display Area	Vertical	523.26mm				
Weight	8700 (typ),					
Surface Treatment	Anti-Glare coating (Haze 11%)					
	Hard coating (3H)					

©Copyright AU Optronics, Inc. January, 2008 All Rights Reserved. No Reproduction and Redistribution Allowed

T420HW05 V3



©Copyright AU Optronics, Inc. January, 2008 All Rights Reserved. No Reproduction and Redistribution Allowed

T420HW05 V3

©Copyright AU Optronics, Inc. January, 2008 All Rights Reserved. No Reproduction and Redistribution Allowed

T420HW05 V3

Panel condition in RA test

Brightness: 420nits

No	Test Item	Condition					
1	High temperature storage test	Ta=60℃ 300h					
2	Low temperature storage test	Ta= -20℃ 300h					
3	High temperature operation test	Ta=50℃ 300h					
4	Low temperature operation test	Ta=-5℃ 300h					
5	Vibration test (non-operating)	Wave form: random Vibration level: 1.5G RMS Bandwidth: 10-300Hz, Duration: X, Y, Z 30min One time each direction					
6	Shock test (non-operating)	Shock level: 50G Waveform: half since wave, 11ms Direction: ±X, ±Y, ±Z One time each direction					
7	Vibration test (with carton)	Wave form: random Vibration level: 1.5G RMS Bandwidth: 10-200Hz, Duration: X, Y, Z 30min One time each direction					
8	Drop test (with carton)	Height: 25.4cm 6 surfaces (ASTMD4169-I)					

Result Evaluation Criteria

There should be no change which might affect the practical display function when the display quality test is conducted under normal operating condition.

©Copyright AU Optronics, Inc. January, 2008 All Rights Reserved. No Reproduction and Redistribution Allowed

T420HW05 V3

7. International Standard

7-1. Safety

(1) UL 60950-1, UL 60065

Standard for Safety of Information Technology Equipment Including electrical Business Equipment.

(2) IEC 60950-1 : 2001, IEC 60065:2001

Standard for Safety of International Electrotechnical Commission

(3) EN 60950 : 2001+A11, EN 60065:2002+A1:2006

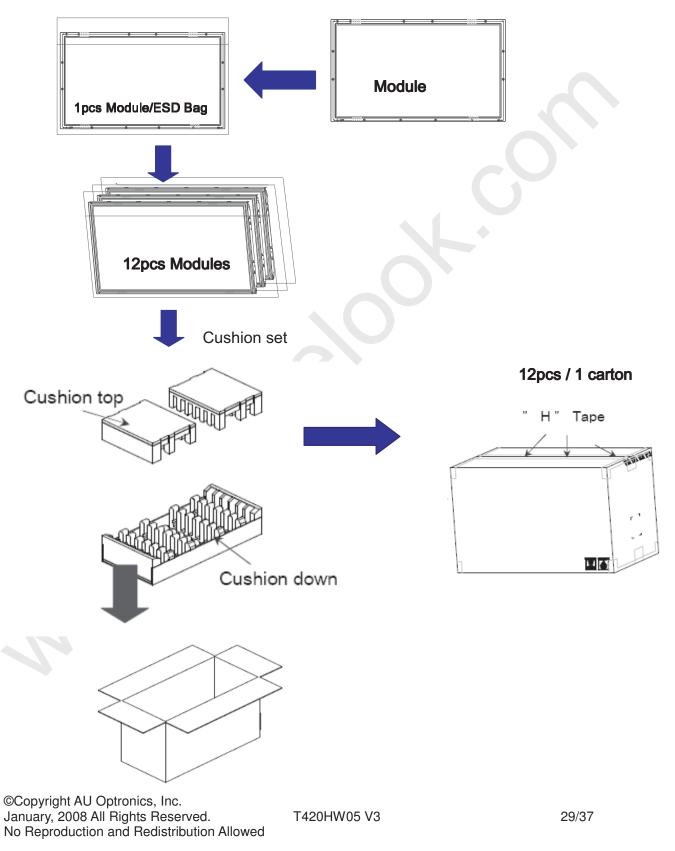
European Committee for Electrotechnical Standardization (CENELEC)

EUROPEAN STANDARD for Safety of Information Technology Equipment Including Electrical Business Equipment.

7-2. EMC

- ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHz to 40GHz. "American National standards Institute(ANSI), 1992
- (2) C.I.S.P.R "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." International Special committee on Radio Interference.
- (3) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." European Committee for Electrotechnical Standardization. (CENELEC), 1998

©Copyright AU Optronics, Inc. January, 2008 All Rights Reserved. No Reproduction and Redistribution Allowed


T420HW05 V3

8.Packing

Packing Instruction

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

Package information: Carton outside dimension : 1060x560x650mm Carton/Package weight : 6kg

Shipping label

Green Mark Description:

For Pb Free products, AUO will add (19) for identification.

For RoHS compatible products, AUO will add **bulk** for identification.

Note: The Green Mark will be present only when the green documents have been ready by AUO

Internal Green Team. (The definition of green design follows the AUO green design checklist.)

Carton label

Pallet information

By air cargo :: (2x1) x1 layers, one pallet put 2 boxes, total 24 pcs module.

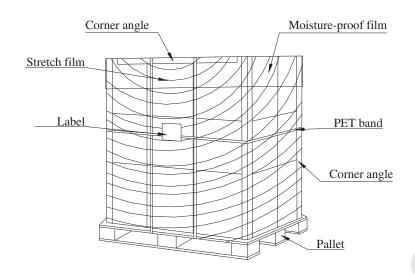
By sea : (2x1) x3 layers, one pallet put 2 boxes, total 24 pcs module.

Pallet dimension : 1150x1070x132mm

Pallet weight : 10kg

By air total weight : 90 kg/box X 2 boxes=180kg (with pallet weight 190kg)

By sea total weight : 90 kg/box X 2 boxes=180 kg (with pallet weight 190kg)


©Copyright AU Optronics, Inc. January, 2008 All Rights Reserved. No Reproduction and Redistribution Allowed

T420HW05 V3

www.panelook.com

9.PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

9-1 MOUNTING PRECAUTIONS

- (1) You must mount a module using holes arranged on back side of panel.
- (2) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (3) You should adopt radiation structure to satisfy the temperature specification.
- (4) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (5) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth. (Some cosmetics are detrimental to the polarizer.)
- (6) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front/ rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (7) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (8) Do not open the case because inside circuits do not have sufficient strength.

©Copyright AU Optronics, Inc. January, 2008 All Rights Reserved. No Reproduction and Redistribution Allowed

T420HW05 V3

9-2 OPERATING PRECAUTIONS

- (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage: $V=\pm 200 mV(Over and under shoot voltage)$
- (2) Response time depends on the temperature. (In lower temperature, it becomes longer..)
- (3) Brightness depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time (required time that brightness is stable after turned on) becomes longer.
- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimize the interface.

9-3 ELECTROSTATIC DISCHARGE CONTROL

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4 PRECAUTIONS FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

9-5 STORAGE

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5° C and 35° C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.

9-6 HANDLING PRECAUTIONS FOR PROTECTION FILM

- (1) The protection film is attached to the bezel with a small masking tape. When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of flue still on the Bezel after the protection film is peeled off.

©Copyright AU Optronics, Inc. January, 2008 All Rights Reserved. No Reproduction and Redistribution Allowed

T420HW05 V3

(3) You can remove the glue easily. When the glue remains on the Bezel or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.

©Copyright AU Optronics, Inc. January, 2008 All Rights Reserved. No Reproduction and Redistribution Allowed

T420HW05 V3