

Document Version: 3.0

Date: 2009/7/1

Product Functional Specification

42" Full HD Color TFT-LCD Module Model Name: T420HW04 V1

() Preliminary Specification (*) Final Specification

Contents

No	
	CONTENTS
	RECORD OF REVISIONS
1	GENERAL DESCRIPTION
2	ABSOLUTE MAXIMUM RATINGS
3	ELECTRICAL SPECIFICATION
3-1	ELECTRIACL CHARACTERISTICS
3-2	INTERFACE CONNECTOR
3-3	SIGNAL TIMING SPECIFICATION
3-4	SIGNAL TIMING WAVEFORM
3-5	COLOR INPUT DATA REFERENCE
3-6	POWER SEQUENCE
3-7	BACK LIGHT POWER SPECIFICATION
4	OPTICAL SPECIFICATION
5	MECHANICAL CHARACTERISTICS
6	Reliability
7	INTERNATIONAL STANDARD
8	PACKING
9	PRECAUTION

Record of Revision

Version	Data	Page.	Old Description	New Description	Remark
1.0	1.0 2009/03/26			Preliminary spec first release	
2.0	2009/6/1			Final spec first release	
		4	10-bit	8-bit	
		5	Shock (non-operation)	Shock (non-operation)	
			(x,y) max : 40G	(x,y) max : 50G	
		5	Shock (non-operation)	Shock (non-operation)	
		3	(z) max : 30G	(z) max : 50G	
		8-9		Update interface connection i nformation	
		11-13		Add MEMC information	
		13		Update signal timing specifica tion	
		16		Update power sequence	
		21-22		Update 2D drawing	
		28	3pcs packaging	7pcs packaging	
		29		Update sample and mass	
				production stage shipping	
				label	
3.0	2009/7/1	17	C-ballast =15pF	Modify BLU spec	
0.0	2000/171	.,	o bander ropi	(C-ballast 22pF)	
	-				

1. General Description

This specification applies to the 42 inch Color TFT-LCD Module T420HW04 V1. This LCD module has a TFT active matrix type liquid crystal panel 1920x1080 pixels, and diagonal size of 42 inch. This module supports Full HD mode (Non-interlace).

Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 8-bit gray scale signal for each dot.

The T420HW04 V1 has been designed to apply the 8-bit 2 channel LVDS interface method. It is intended to support displays where high brightness, EBU Gamut (72% NTSC), wide viewing angle, and high color depth are very important.

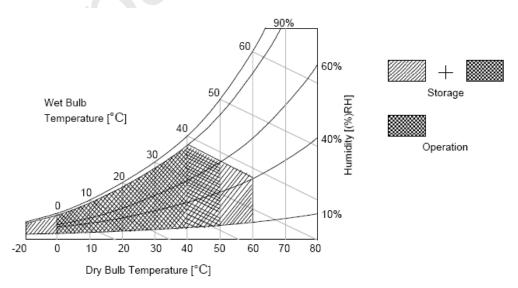
The T420HW04 V1 backlight unit is using inverter-less solution (Capacitor type balance board), and need to be powered by integrated power system by customers.

* General Information

Items	Specification	Unit	Note
Active Screen Size	42.02	inches	
Display Area	930.24(H) x 523.26(V)	mm	
Outline Dimension	983.0(H) x 576.0(V) x 49.9(D)	mm	Without inverter
Driver Element	a-Si TFT active matrix		
Display Colors	1073.7M	Colors	
Color Gamut	72	%	NTSC
Number of Pixels	1920 x 1080	Pixel	
Pixel Pitch	0.4845	mm	
Pixel Arrangement	RGB vertical stripe		
Display Mode	Normally Black		
Lamp quantity, type	16pcs, Straight type	pcs	
Surface Treatment	Anti-Glare coating (Haze 11%)		
	Hard coating (3H)		

2. Absolute Maximum Ratings

The followings are maximum values which, if exceeded, may cause faulty operation or damage to the unit


Item	Symbol	Min.	Max	Unit	Note
Logic/LCD Drive Voltage	V_{DD}	-0.3	14.0	V_{DC}	1
Input Voltage of Signal	V _{IN}	-0.3	4	V_{DC}	1
Operating Temperature	T _{OP}	0	+50	°C	2
Operating Humidity	H _{OP}	10	90	%RH	2
Storage Temperature	T _{ST}	-20	+60	°C	2
Storage Humidity	H _{ST}	10	90	%RH	2
Panel Surface Temperature	T _{SUR}	-	+65	°C	2
Shock (non-operation)	±x, ±y	1	50	G	3
Shock (non-operation)	±z	-	50	G	3
Vibration (non-operation)			1.5	G	4

Note 1: Duration = 50ms

Note 2: Maximum Wet-Bulb should be 39 °C and no condensation. The relative humidity must not exceed 90% non-condensing at temperatures of 40 °C or less. At temperatures greater than 40 °C, the wet bulb temperature must not exceed 39 °C.

Note 3: Sine wave, 11ms, direction: ±x, ±y, ±z (one time each direction)

Note 4: Wave form: random, vibration level: 1.5G RMS, Bandwidth: 10--300Hz Duration: X, Y, Z 30min (one time each direction)

©Copyright AU Optronics Corp. 2009 All Rights Reserved. No Reproduction and Redistribution Allowed

T420HW04 V1

3. Electrical Specification

The T420HW04 V1 requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input, which powers the CCFL, is typically generated by an integrate power (I/P) system.

3.1 Electrical Characteristics

Parameter		Symbol		Value		Unit	Note
Pa	i didilicici			Тур.	Max	Unit	Note
Power Supply I	nput Voltage	V_{DD}	10.8	12	13.2	V _{DC}	
Power Supply I	nput Current	I _{DD}		1	1.3	Α	1
Power Consum	ption	Pc				Watt	1
Inrush Current		I _{RUSH}		_ 1	4	Α	5
	Differential Input				+100		
	High Threshold	V_{TH}				mV_{DC}	4
	Voltage						
LVDS	Differential Input		-100				
Interface	Low Threshold	V_{TL}				mV_{DC}	4
	Voltage						
Interface	Common Input	V _{CIM}	0.6	1.2	1.8	V_{DC}	
	Voltage	V CIM				▼ DC	
	Input High	V _{IH}	2.0		3.3	V_{DC}	
CMOS	Threshold Voltage	(High)				V DC	
Interface	Input Low	V _{IL}	0		0.8	V	
	Threshold Voltage	(Low)				V_{DC}	
Backlight Powe	r Consumption (ref.)	P _{BL}				Watt	2
Life Time	*		50000			Hours	3

The performance of the Lamp in LCD panel, for example life time or brightness, is extremely influenced by the characteristics of the balance board and I/P board. All the parameters should be carefully designed as not to produce too much leakage current from high-voltage output. While design or order balance board, please make sure unwanted lighting caused by the mismatch of the lamp and balance board (no lighting, flicker, etc) never occurs. After confirmation, the LCD Panel should be operated in the same condition as installed in your instrument.

Do not attach a conducting tape to lamp connecting wire. If the lamp wire attach to conducting tape, TFT-LCD Module has a low luminance and the inverter has abnormal action, because leakage current occurs between lamp wire and conducting tape.

When operate at low temperatures, the brightness of CCFL will drop and the lifetime of CCFL will be reduced.

Note:

- 1. V_{DD} =12.0V, f_V =60Hz, f_{CLK} =74.25Mhz, 25°C, V_{DD} duration time=400 μ s, test pattern: white pattern
- 2. The backlight power consumption shown above is tested by lamp current I L=7.6mA.
- 3. The life is determined as the time at which luminance of the lamp is 50% compared to that of initial value at the typical lamp current on condition of continuous operating at 25 ±2°C.
- 4. V_{CIM}=1.20V

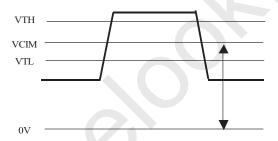
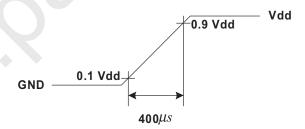



Figure: LVDS Differential Voltage

5. Measurement condition: rising time=400 µs

3.2 Interface Connections

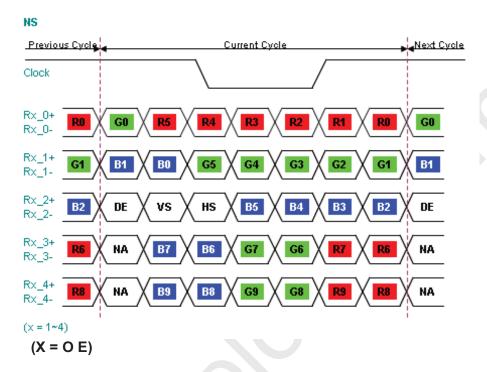
LCD connector 1 : FI-RE51S-HF (JAE)

PIN#	Signal Name	Description
1	V_{DD}	Operating voltage supply, +12V DC regulated
2	V_{DD}	Operating voltage supply, +12V DC regulated
3	V_{DD}	Operating voltage supply, +12V DC regulated
4	V_{DD}	Operating voltage supply, +12V DC regulated
5	V_{DD}	Operating voltage supply, +12V DC regulated
6	GND	Ground
7	GND	Ground
8	GND	Ground
9	GND	Ground
10	RO_0-	LVDS Channel 1, pair 0, negative
11	RO_0+	LVDS Channel 1, pair 0, positive
12	RO_1-	LVDS Channel 1, pair 1, negative
13	RO_1+	LVDS Channel 1, pair 1, positive
14	RO_2-	LVDS Channel 1, pair 2, negative
15	RO_2+	LVDS Channel 1, pair 2, positive
16	GND	Ground
17	RO_CLK-	LVDS Clock, Channel 1, negative
18	RO_CLK+	LVDS Clock, Channel 1, positive
19	GND	Ground
20	RO_3-	LVDS Channel 1, pair 3, negative
21	RO_3+	LVDS Channel 1, pair 3, positive
22	RO_4-	LVDS Channel 1, pair 4, negative
23	RO_4+	LVDS Channel 1, pair 4, positive
24	GND	Ground
25	RE_0-	LVDS Channel 2, pair 0, negative
26	RE_0+	LVDS Channel 2, pair 0, positive
27	RE_1-	LVDS Channel 2, pair 1, negative
28	RE_1+	LVDS Channel 2, pair 1, positive
29	RE_2-	LVDS Channel 2, pair 2, negative
30	RE_2+	LVDS Channel 2, pair 2, positive
31	GND	Ground
32	RE_CLK-	LVDS Clock, Channel 2, negative

©Copyright AU Optronics Corp. 2009 All Rights Reserved. No Reproduction and Redistribution Allowed

T420HW04 V1

33	RE_CLK+	LVDS Clock, Channel 2, positive
34	GND	Ground
35	RE_3-	LVDS Channel 2, pair 3, negative
36	RE_3+	LVDS Channel 2, pair 3, positive
37	RE_4-	LVDS Channel 2, pair 4, negative
38	RE_4+	LVDS Channel 2, pair 4, positive
39	GND	Ground
40	NC (reserved)	No Connection (AUO internal use)
41	NC (reserved)	No Connection (AUO internal use)
42	NC (reserved)	No Connection (AUO internal use)
43	NC (reserved)	No Connection (AUO internal use)
44	MEMC_ON	MEMC ON/OFF Selection Low: MEMC OFF High/Open: MEMC ON
45	LVDS_FORMAT	LVDS Format Selection Low: Support JEIDA Mode 10/8bits High/Open: Support NS Mode 8bits
46	SCL_E	External I2C from customer's comment
47	NC (reserved)	No Connection (AUO internal use)
48	SDA_E	External I2C from customer's comment
49	NC (reserved)	No Connection (AUO internal use)
50	NC (reserved)	No Connection (AUO internal use)
51	NC (reserved)	No Connection (AUO internal use)


Note 1: All GND (ground) pins should be connected together and should also be connected to the LCD's metal frame.

Note 2: All V_{DD} (power input) pins should be connected together.

Note 3: All NC (no connection) pins should be open without voltage input.

LVDS Option = High/Open→NS

LVDS Option = Low→JEIDA

JEIDA

Previous Cycle Current Cycle Next Cycle Clock Rx_0+ Rx_0-Rx_1+ G5 B5 B4 G9 G8 G7 G5 B5 Rx_1-Rx_2+ B6 DE ٧S HS B9 B8 B7 B6 DE Rx_2-B3 **B2** G2 NA G3 R2 NA

BO

(X = O E)

Rx_4-

 $(x = 1 \sim 4)$

©Copyright AU Optronics Corp. 2009 All Rights Reserved. No Reproduction and Redistribution Allowed

T420HW04 V1

10/33

NA

MEMC function description 1. Setting by hardware

Pin name	Input/ ouptut	Content	Note	Default
MEMC_ON *1	I	MEMC ON/OFF Selection 0: MEMC OFF 1: MEMC ON	MEMC ON: 10 frames latency (~170ms) for film FLC, MBR + video MBR MEME OFF: 1 frame latency (~16.7ms)	1
LVDS_FORMAT	I	LVDS Format Selection 0: JEIDA Mode 10/8bits 1: NS Mode 8bits		1
SDA_MCU	I/O	Internal I2C to control MEMC		1
SCL_MCU	I/O	Internal I2C to control MEMC		
SDA_E *2	I/O	External I2C from customer's comment	When MCU gets external I2C signals from customer's comment, MCU will download	1
SCL_E *2	I/O	External I2C from customer's comment	register setting for MEMC chip by MCU_SDA and MCU_SCL. The sheet of register map shows detail register setting.	

Note 1.

MEMC ON/OFF can also control by external I2C. If users want to change the setting, only need to change hardware setting or provide external I2C command. Ex: When MEMC_ON of the hardware is L for MEMC OFF, external I2C can set address=0x79 and data=0x00 for MEMC ON.

Note 2.

The next figure shows the I2C format of customer's single-byte command. Ex. Address: 0x65.

			<u> </u>			
START 0>	XE4 ^(*1) ACK	(*2) Address	ACK	Data	ACK	STOP (*3)

The next figure shows the I2C format of customer's multi-byte command. Because of MCU buffer capacity multi-byte command has 20 bytes limitation per one time. Ex. Address: 0x23.

START	0XE4	ACK	Add ress	ACK	Data (Byte 0)	ACK	Data (Byte 1)	ACK	Data (Byte 2)	ACK	Data (Byte 3)	ACK	STOP (*3)	1
-------	------	-----	-------------	-----	------------------	-----	------------------	-----	------------------	-----	------------------	-----	--------------	---

Note (1)

Slave address of MEMC chip is 0x72 plus the least significant bit indicating a write (0xE4).

Shaded items are issued by the slave (MEMC chip).

Note (3)

The interval time between the two commands must longer than 100ms.

©Copyright AU Optronics Corp. 2009 All Rights Reserved. No Reproduction and Redistribution Allowed

T420HW04 V1

2. Setting by External I2C

Address (Hex)	Byte	Bit	Description	Note	Default
1B	0	7:0	Output black data 0x00: unblank (normal display) 0x01: blank (output black data)	Initial state is unblanked.	0x00
79	0	7:0	MEMC ON/OFF Selection 0x00: MEMC ON 0x02: MEMC OFF	MEMC ON: 10 frames latency (~170ms) for film FLC, MBR + video MBR MEME OFF: 1 frame latency (~16.7ms)	0x00
65	0:1	15:0	Control the demo option 0x0000: Demo OFF. 0x0004: Demo ON.	Demo OFF: Normal display; Demo ON: MEMC enable at Left side, and MEMC disable at right side.	0x0000
59	0	7:0	OSD ON/OFF control 0x00: OSD OFF 0x04: OSD ON	OSD On/Off Control	0x00
	0:1	15:0	OSD width define (Unit: pixel ; range 0~1920)		0x0000
	2:3	15:0	OSD height define (Unit: pixel ; range 0~1080)	-1. OSD Protection Size Define (Width, height, x, y) 2. Usable in OSD ON status. (The data of address 0x59 must	0x0000
23	4:5	15:0	The amount of H pixels that the left upper corner of the OSD is from the left top corner of the output window (Unit: pixel; range 0~1920)		0x0000
N	6:7	15:0	The amount of V pixels that the left upper corner of the OSD is from the left top corner of the output window (Unit: pixel; range 0~1080)	be 0x04.)	0x0000
25	0	6:0	Thickness of the OSD left and right border (Unit: pixel; range 0~127)	OSD border width and color decision	0x00
	1	6:0	Thickness of the OSD top and bottom border (Unit: pixel; range 0~127)	2. Usable in OSD ON status. (The data of address 0x59 must	0x00
	2:4	7:0 7:0	Red component of the OSD border color Green component of the OSD border color	be 0x04.)	0x00 0x00

©Copyright AU Optronics Corp. 2009 All Rights Reserved. No Reproduction and Redistribution Allowed

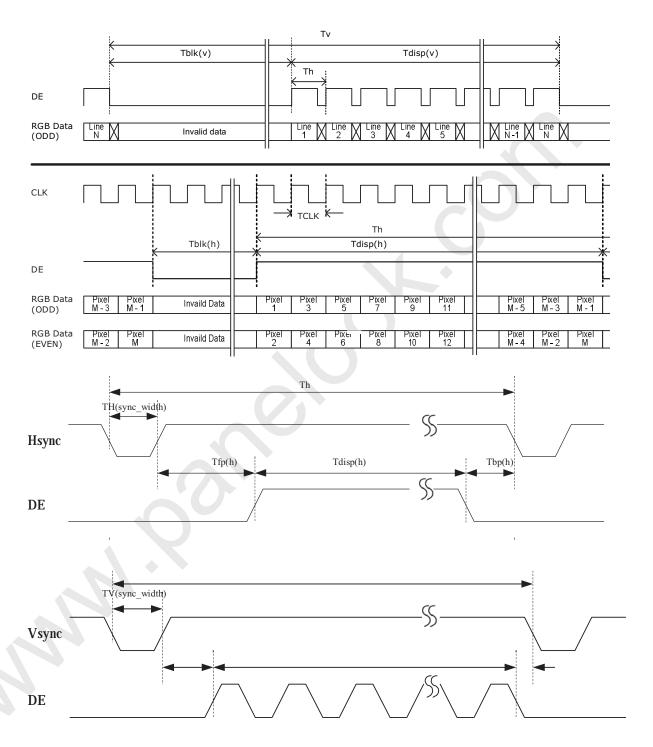
T420HW04 V1

		7:0	Blue component of the OSD border color		0x00	
			(Unit: 8 bit level ; range 0~255)			
6E	0	7:0	0x00: Normal MEMC level	Usable in MEMC ON status. (The data of address 0x79 must be 0x00.)	0x00	

3.3 Signal Timing Specification

This is the signal timing required at the input of the user connector. All of the interface signal timing should be satisfied with the following specifications for its proper operation.

Timing Table
Vertical Frequency Range (60Hz)


vertical Frequency Range (60Hz)								
Signal	Item	Symbol	Min.	Тур.	Max	Unit		
	Period	T _V	1100	1125	1308	T _H		
	Active	T _{DISP} (V)	1080			T _H		
Vertical Section	Blanking	T _{BLK} (V)	20	45	120	Тн		
Vertical dection	Front porch	Tfp(V)	1	4	110	Тн		
	Back porch	Tbp(V)	1	36	110	Тн		
	V_sync	TVsync_wdth	2	5	110	Тн		
	Period	T _H	1050	1100	1150	T _{CLK}		
	Active	T _{DISP} (H)		960				
Horizontal Section	Blanking	T _{BLK} (H)	90	140	190	T _{CLK}		
Horizontal Section	Front porch	Tfp(H)	5	44	180	T _{CLK}		
	Back porch	T(H)	5	74	180	T _{CLK}		
	H_sync	THsync_wdth	5	22	180	T _{CLK}		
Clock	Period	T _{CLK}		13.47		ns		
Olock	Frequency	F _{CLK}	70.875	74.25	76	MHz		
Vertical Frequency	Frequency	F _V	59.5	60	60.5	Hz		
Horizontal Frequency	Frequency	F _H	65.64	67.5	72	KHz		

Note 1:
$$T_{BLK}(V) = Tfp(V) + TVsync_wdth + Tbp(V)$$

$$T_{BLK}(H) = Tfp(H) + THsync_wdth + T(H)$$

3.4 Signal Timing Waveforms

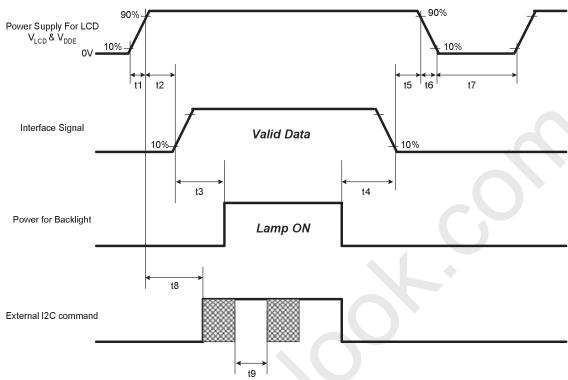
©Copyright AU Optronics Corp. 2009 All Rights Reserved. No Reproduction and Redistribution Allowed

T420HW04 V1

3.5 Color Input Data Reference

The brightness of each primary color (red, green and blue) is based on the 10 bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

COLOR DATA REFERENCE


														lı	nput	Col	or E	Data													
Co	olor					RE	ΕD									GRE	EEN									BL	UE				
	Oloi	MS	В							LS	В	MS	В							LSI	3	MS	В							LSI	В
		R9	R8	R7	R6	R5	R4	R3	R2	R1	R0	G9	G8	G7	G6	G5	G4	G3	G2	G1	G0	В9	B8	В7	В6	B5	В4	ВЗ	В2	В1	В0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Basic	Blue(1023)	0	0	0	0	0	0	0	0	0	0 <	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(001)	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RED																															
	RED(1022)	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(001)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
GREEN																															
	GREEN(1022)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	GREEN(1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	BLUE(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE(001)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
BLUE																															
	BLUE(1022)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0
	BLUE(1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
		Ц				نك						Ц					نك											Щ	نــــــــــــــــــــــــــــــــــــــ	لــــــــــــــــــــــــــــــــــــــ	1

©Copyright AU Optronics Corp. 2009 All Rights Reserved. No Reproduction and Redistribution Allowed

T420HW04 V1

3.6 Power Sequence

Parameter		Values							
Farameter	Min.	Тур.	Max.	Unit					
t1	0.4		30	ms					
t2	2480		2980	ms					
t3	1300			ms					
t4	10	1	1	ms					
t5	0.1	1	50	ms					
t6	-	1	300	ms					
t7	500	-	-	ms					
t8	2500	-	-	ms					
t9	100			ms					

Apply the lamp voltage within the LCD operating range. When the backlight turns on before the LCD operation or the LCD turns off before the backlight turns off, the display may momentarily become abnormal.

Caution: The above on/off sequence should be applied to avoid abnormal function in the display. In case of handling, make sure to turn off the power when you plug the cable into the input connector or pull the cable out of the connector.

©Copyright AU Optronics Corp. 2009 All Rights Reserved. No Reproduction and Redistribution Allowed

T420HW04 V1

3.7 Backlight Power Specification

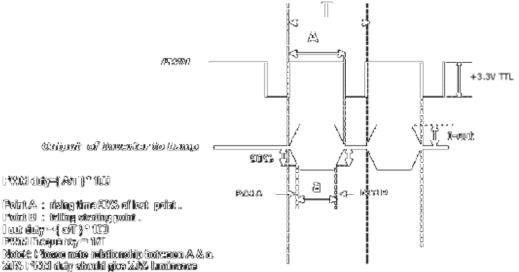
Electrical specification

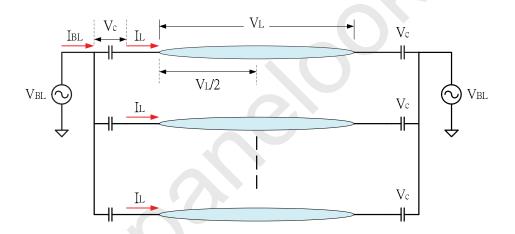
	Des	cription		Min	Тур	Max	Unit	Condition
1	BL Operating Voltage		VBL	1000	1200	1400	Vrms	BL one side operating voltage at dimming ratio 100% Calculation method: (notes 1) fo=58KHz, IBL= 144mArms
2	BL Operating Current		IBL	134	144	154	mArms	BL one side operating current at dimming ratio 100%
2	Ctanting Valtage	0℃	\/-	1600		-	\/=====	BL one side striking voltage.
3	Starting Voltage	25 ℃	Vs	1450		-	Vrms	2. Measurement by disconnect IPB and BL
4	Operating frequency		fo	60	62	64	kHz	
5	Striking time		St	1000	-	-	msec	
6	Power Consumption		PBL	162	170	178	Watt	
7	PWM Operating Frequency		F_PWM	140	-	240	Hz	95~140Hz might cause waterfall noise but not influence panel function
8	PWM Dimming Duty ratio		D_PWM	10	-	100	%	1. luminance is from 20% to 100% 2. note 2
9	Lamp type			St	raight ty	ре		
10	Number of lamps				16			
11	Type of current balance				Capacito	r		
12	C ballast		Cb	21	22	23	pF	

(Ta=25 \pm 5 $^{\circ}$ C , Turn on for 45minutes)

2. Lamp specification (Recommendation)

	Description		Min	Тур	Max	Unit
1	Lamp Voltage	Vlamp	-	1192	-	Vrms
2	Lamp Current	Current Ilamp		9	-	mArms
3	Lamp frequency flamp		40	-	80	KHz
4	04-41-27/-14-22	0 °C	-	-	2140	Vrms
4	Starting Voltage	25 ℃	-	-	1780	Vrms
5	Striking time	St	1000	-	-	msec
6	Discharge Stabiliza	Discharge Stabilization Time			3	Min
7	Life time	50K	-	-	hr	


Notes 1:


$$V_{BL} = \sqrt{\left(\frac{V_L}{2}\right)^2 + \left(V_C\right)^2}$$

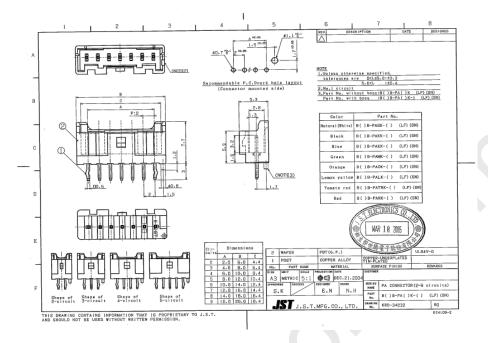
©Copyright AU Optronics Corp. 2009 All Rights Reserved. No Reproduction and Redistribution Allowed

T420HW04 V1

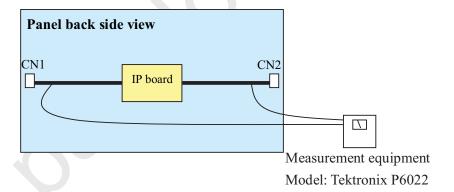
Notes 2:

3. Pin assignment, connector drawing and connection configuration

CN1: B03B PASK-1 (JST) or equivalent


PIN#	Symbol	Description			
1	High	I/P board high voltage supply			
2	N.C.	No connection			
3	High	I/P board high voltage supply			

CN2: B03B PASK-1 (JST) or equivalent


PIN#	Symbol	Description			
1	High	/P board high voltage supply			
2	N.C.	No connection			
3	High	I/P board high voltage supply			

©Copyright AU Optronics Corp. 2009 All Rights Reserved.

2009 Áll Rights Reserved. T420HW04 V1 No Reproduction and Redistribution Allowed

4. Measurement method

4. Optical Specification

Optical characteristics are determined after the unit has been 'ON' and stable for approximately 60 minutes in a dark environment at 25 $^{\circ}$ C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and θ equal to 0 $^{\circ}$.

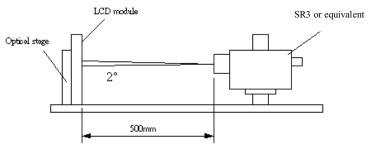


Fig.4-1 Optical measurement equipment and method

Parame	eter				Values		Units	Notes	
		Symbol		Min.	Тур.	Max.			
Contrast Ratio		CF	?	4000	5000			1	
Surface Luminand	ce, white	LW	Н	400	500		cd/m²	2	
Luminance Variat	ion	δ white	5р			1.3		3	
Response Time (A	Average)	Тγ	,		5.5		ms	4,5 (Gray to Gray	
Color Coordinates	3								
	RED	R ₂	(0.640				
		R			0.330				
	GREEN	G ₂	(-	0.290	-			
		G ₁	·		0.600	T .0.00			
	BLUE	В	(Typ0.03	0.150	Typ.+0.03			
		В	,	-	0.060	-			
	WHITE	W	κ	-	0.280	-			
		W	Υ	-	0.290	-			
Viewing Angle	. 							Contrast Ratio>1	
x axis, rig	pht(φ=0°)	θ	r		89		Degree	6	
x axis, lef	t(φ =180°)	θ	1		89				
y axis, up	(φ=90°)	θ	и		89				
y axis, do	wn (φ=0°)	θ	d		89				

©Copyright AU Optronics Corp. 2009 All Rights Reserved. No Reproduction and Redistribution Allowed

T420HW04 V1

Note:

1. Contrast Ratio (CR) is defined mathematically as:

2. Surface luminance is luminance value at point 1 across the LCD surface 50cm from the surface with all pixels displaying white. From more information see Fig. 4-2. When $V\ DDB = 24V$, IDDB = 6.4A. $L_{WH} = L_{on1}$, Where L_{on1} is the luminance with all pixels displaying white at center 1 location.

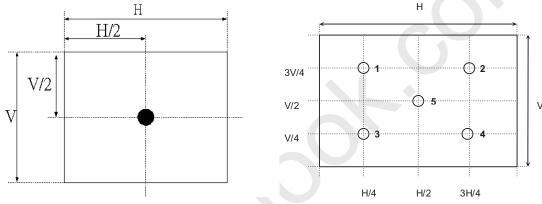


Fig.4-2 Optical measurement point

3. The variation in surface luminance, δ_{WHITE} is defined under 100% brightness as: $\delta_{\text{WHITE(5P)}} = \text{Maximum}(L_{\text{on1}}, L_{\text{on2}}, ..., L_{\text{on5}}) / \text{Minimum}(L_{\text{on1}}, L_{\text{on2}}, ... L_{\text{on5}})$

- 4. Response Time:
- (a) Tr = full black to full white, $10\%\sim90\%$
- (b) Tf = full white to full black, $90\%\sim10\%$
- (c) G-to-G: average response time among brightness of 0%, 25%, 50%, 75% &100%.

	0%	25%	50%	75%	100%
0%		tr: 0%→25%	tr: 0%→50%	tr: 0%→75%	tr: 0%→100%
25%	tf: 25%→0%		tr: 25%→50%	tr: 25%→75%	tr: 25%→100%
50%	tf: 50%→0%	tf: 50%→25%		tr: 50%→75%	tr: 50%→100%
75%	tf: 75%→0%	tf: 75%→25%	tf: 75%→50%		tr: 75% →100%
100%	tf: 100% →0%	tf: 100%→25%	tf: 100%→50%	tf: 100% > 75%	

5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see Fig. 4-3. (Optical measurement by SR3)

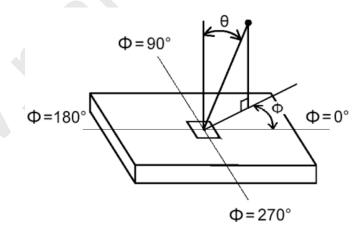
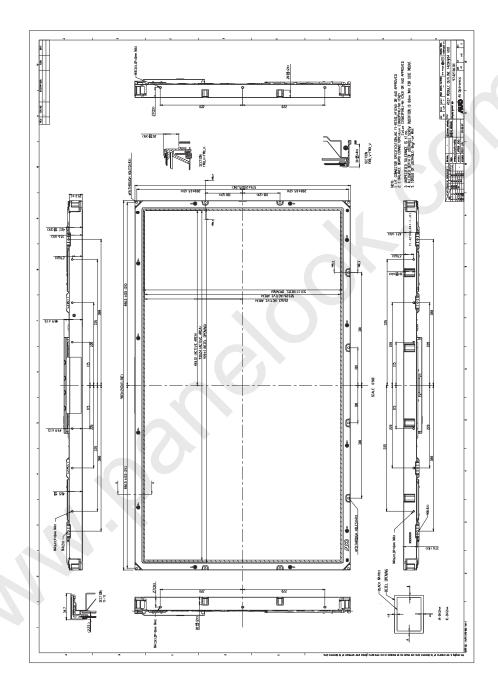
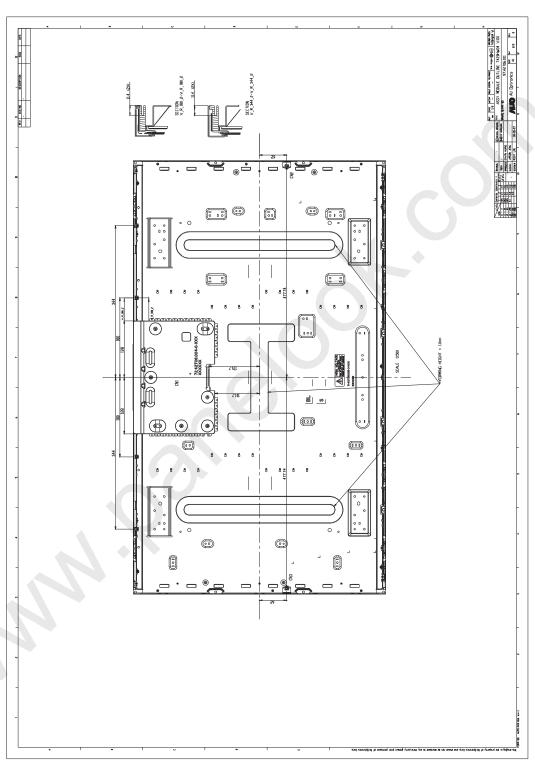


Fig.4-3 Viewing Angle Definition


5.Mechanical Characteristics

The contents provide general mechanical characteristics for the model T420HW04. In addition the figures in the next page are detailed mechanical drawing of the LCD.

	Horizontal (typ.)	983.0mm			
Outline Dimension	Vertical (typ.)	576.0mm			
	Depth (typ.)	49.9mm (without inverter)			
Bezel Area	Horizontal (typ.)	939.0mm			
	Vertical (typ.)	531.26mm			
Activo Display Area	Horizontal	930.24mm			
Active Display Area	Vertical	523.26mm			
Weight	12600g (typ.)				
Surface Treatment	AG, 3H				



2D drawing

©Copyright AU Optronics Corp. 2009 All Rights Reserved. No Reproduction and Redistribution Allowed

T420HW04 V1

©Copyright AU Optronics Corp. 2009 All Rights Reserved. No Reproduction and Redistribution Allowed

T420HW04 V1

6.Reliability

Panel condition in RA test

Brightness: 500nits

No	Test Item	Condition				
1	High temperature storage test	Ta=60 °C 300h				
2	Low temperature storage test	Ta= -20 ℃ 300h				
3	High temperature operation test	Ta=50 °C 300h				
4	Low temperature operation test	Ta=-5 °C 300h				
5	Vibration test (non-operating)	Wave form: random Vibration level: 1.5G RMS Bandwidth: 10-300Hz, Duration: X, Y, Z 30min One time each direction				
6	Shock test (non-operating)	Shock level: 50G Waveform: half since wave, 11ms Direction: ±X, ±Y, ±Z One time each direction				
7	Vibration test (with carton)	Wave form: random Vibration level: 1.5G RMS Bandwidth: 10-200Hz, Duration: X, Y, Z 30min One time each direction				
8	Drop test (with carton)	Height: 25.4cm 1 corner, 3 edges, 6 surfaces (ASTMD4169-I)				

Result Evaluation Criteria

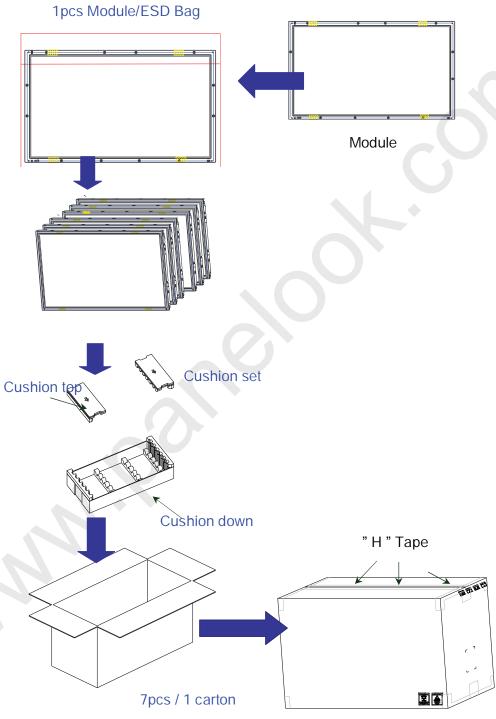
There should be no change which might affect the practical display function when the display quality test is conducted under normal operating condition.

7. International Standard

7-1. Safety

- UL60065, Underwriters Laboratories, Inc. (AUO file number : E204356)
 Standard for Safety of Information Technology Equipment Including electrical Business Equipment.
- (2) CSA E60065, Canadian Standards Association Standard for Safety of Information Technology Equipment Including Electrical Business Equipment.
- (3) IEC 60065 ver. 7th, European Committee for Electro technical Standardization (CENELEC) EUROPEAN STANDARD for Safety of Information Technology Equipment Including Electrical Business Equipment.

7-2. EMC


- (1) ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHz to 40GHz. "American National standards Institute(ANSI), 1992
- (2) C.I.S.P.R "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." International Special committee on Radio Interference.
- (3) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." European Committee for Electro technical Standardization. (CENELEC), 1998

8.Packing

8-1 Packing Instruction

Package information:

Carton outside dimension: 1060x560x678mm , Carton/Package weight: 6 kg

©Copyright AU Optronics Corp. 2009 All Rights Reserved. No Reproduction and Redistribution Allowed

T420HW04 V1

Shipping label

Sample Stage (without green & safety mark):

Mass Production Stage (with green & safety mark) :

Green Mark Description:

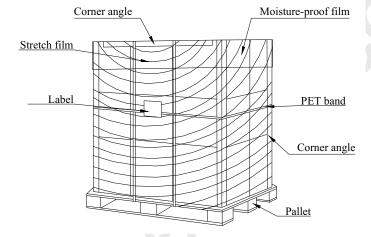
For Pb Free products, AUO will add b for identification.

For RoHS compatible products, AUO will add for identification.

Note: The Green Mark will be present only when the green documents have been ready by AUO Internal Green Team. (The definition of green design follows the AUO green design checklist.)

Carton label

Pallet information


By air cargo : : (2x1) x1 layers, one pallet put 2 boxes, 1layers(1pallet) total 14 pcs module.

By sea : (2x1) x3 layers, one pallet put 2 boxes, 3layers(3pallet) total 42 pcs module.

 $Pallet\ dimension: 1150x1070x132mm$

Pallet weight : 10kg

By air total weight : 95kg/box X 2 boxes=190 kg (with 1 pallet weight 200kg)
By sea total weight : 95kg/box X 6 boxes=570 kg (with 3 pallet weight 600kg)

Please pay attention to the followings when you use this TFT LCD module.

9-1 MOUNTING PRECAUTIONS

- (1) You must mount a module using holes arranged on back side of panel.
- (2) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (3) You should adopt radiation structure to satisfy the temperature specification.
- (4) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (5) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth. (Some cosmetics are detrimental to the polarizer.)
- (6) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front/ rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (7) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (8) Do not open the case because inside circuits do not have sufficient strength.

9-2 OPERATING PRECAUTIONS

- (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage: $V = \pm 200 \text{mV}(\text{Over and under shoot voltage})$
- (2) Response time depends on the temperature. (In lower temperature, it becomes longer...)
- (3) Brightness depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time (required time that brightness is stable after turned on) becomes longer.
- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimize the interface.

9-3 ELECTROSTATIC DISCHARGE CONTROL

No Reproduction and Redistribution Allowed

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don 't touch interface pin ©Copyright AU Optronics Corp.

2009 All Rights Reserved.

T420HW04 V1

31/33

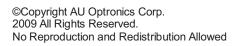
9-4 PRECAUTIONS FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

9-5 STORAGE

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.


9-6 HANDLING PRECAUTIONS FOR PROTECTION FILM

- (1) The protection film is attached to the bezel with a small masking tape. When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of flue still on the Bezel after the protection film is peeled off.
- (3) You can remove the glue easily. When the glue remains on the Bezel or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.

Impedance of Pin7 of LVDS : 4.2K(Ω)

T420HW04 V1