$\langle p \rangle$

T420HVN02.0 Product Specification Rev. 1.2

Model Name: T420HVN02.0

Issue Date: 2012/04/6

() Preliminary Specifications (*) Final Specifications

Customer Signature	Date	AUO	Date
Approved By		Approval By PM Director Peter Chiu Peter Chiu	1
Note		Reviewed By RD Director Eugene CC Chen Reviewed By Project Leader Jsn Hsiao	0 11 TS
		Prepared By PM Joyce Kuo	5 Kuo

© Copyright AUO Optronics Corp. 2010 All Rights Reserved. ith potha Pro trial version www.pdffactory.com OLED panel application: Datasheet, inventory and accessory! www.panelook.com On

Contents

No		
		CONTENTS
		RECORD OF REVISIONS
1		GENERAL DESCRIPTION
2		
3		ELECTRICAL SPECIFICATION
	3-1	
	3-2	INTERFACE CONNECTIONS
	3-3	SIGNAL TIMING SPECIFICATION
	3-4	SIGNAL TIMING WAVEFORM
	3-5	COLOR INPUT DATA REFERENCE
	3-6	POWER SEQUENCE
	3-7	BACKLIGHT SPECIFICATION
4		OPTICAL SPECIFICATION
5		MECHANICAL CHARACTERISTICS
6		RELIABILITY TEST ITEMS
7		INTERNATIONAL STANDARD
	7-1	SAFETY
	7-2	EMQ
8	000 1001 1003 111 1003	PACKING
	8-1	DEFINITION OF LABEL
	8-2	PACKING METHODS
	8-3	PALLET AND SHIPMENT INFORMATION
9		PRECAUTION
	9-1	MOUNTING PRECAUTIONS
	9-2	OPERATING PRECAUTIONS
	9-3	ELECTROSTATIC DISCHARGE CONTROL
	9-4	PRECAUTIONS FOR STRONG LIGHT EXPOSURE
	9-5	STORAGE
	9-6	HANDLING PRECAUTIONS FOR PROTECT FILM

© Copyright AUO Optronics Corp. 2010 All Rights Reserved.

PDF created with pdfFactory Pro trial version www.pdffactory.com One step solution for LCD / PDF / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

Record of Revision

Version	Date	Page	Description
0.0	2011/09/30		First release
		4	Add note 2
0.1	2011/10/21	16	Remove 3.7.1
		17	Update protection circuit SPEC
		4, 8	Note modified
		5	Input Voltage of T/BB updated/format modified
		6	Power consumption updated
		8	Weight updated
1.0	2011/12/29	16	Information of T/BB updated
		17	Lamp detection updated
		18	Lamp voltage updated
		23~24	Drawings updated
		25	Condition updated
1.1	2012/03/14	16	Add operation voltage
1.1	2012/03/14	18	Add starting voltage
1.2	2012/04/06	16~18	Modify TBB format
	1993. 1993. 1993.		
-			

© Copyright AUO Optronics Corp. 2010 All Rights Reserved.

PDF created with pdfFactory Pro trial version www.pdffactory.com One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

1. General Description

This specification applies to the 42.0 inch Color TFT-LCD Module T420HVN02.0. This LCD module has a TFT active matrix type liquid crystal panel 1,920x1,080 pixels, and diagonal size of 42.0 inch. This module supports 1,920x1,080 mode. Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with an 8-bit gray scale signal for each dot.

The T420HVN02.0 has been designed to apply the 8-bit 2 channel LVDS interface method. It is intended to support displays where high brightness, wide viewing angle, high color saturation, and high color depth are very important.

* General Information

Items	Specification	Unit	Note
Active Screen Size	42.02	inch	
Display Area	930.24(H) x 523.26(V)	mm	
Outline Dimension	983.0(H) x 576.0(∀) x 62.6(D)	mm	D: front bezel to T-con cover
Driver Element	a-Si TFT active matrix		
Bezel Opening	939 (H) x 531 (V)	mm	
Display Colors	8 bit, 16.7M	Colors	
Number of Pixels	1,920x1,080	Pixel	
Pixel Pitch	0.4845 (H) x 0.4845 (W)	mm	
Pixel Arrangement	RGB vertical stripe		
Display Operation Mode	Normally Black		
Surface Treatment	Anti-Glare, 3H		Haze=2%
Rotate Function	Unachievable		Note 1, 2

Note 1: Rotate Function refers to LCD display could be able to rotate.

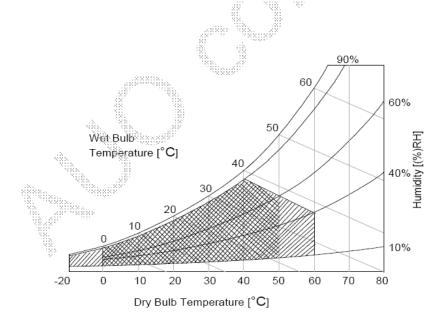
Note 2: Panel display when T-con up:

One step solution for LCD / PDP / OLED panel application. Datasheet, inventory and accessory! www.panelook.com

2. Absolute Maximum Ratings

The followings are maximum values which, if exceeded, may cause faulty operation or damage to the unit

Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive Voltage	V _{DD}	-0.3	14	V _{DC}	Note 1
Input Voltage of Signal	Vin	-0.3	4	V _{DC}	Note 1
T-B/B Input Voltage	V _{BB}	-	218	V _{rms}	Note 2
Supply control Voltage	Vcc	-0.3	15	V _{DC}	Note 2
Operating Temperature	TOP	0	+50	[°C]	Note 3
Operating Humidity	НОР	10	90	[%RH]	Note 3
Storage Temperature	TST	-20	+60	[ိုင်]	Note 3
Storage Humidity	HST	10	90	[%RH]	Note 3
Panel Surface Temperature	PST		65	[°C]	Note 4


Note 1: Duration: 50 msec.

Note 2: Duration: 2 sec.

Note 3: Maximum Wet-Bulb should be 39°C and No condensation.

The relative humidity must not exceed 90% non-condensing at temperatures of 40°C or less. At temperatures greater than 40° C, the wet bulb temperature must not exceed 39° C.

Note 4: Surface temperature is measured at 50°C Dry condition

Operation

3. Electrical Specification

The T420HVN02.0 requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The other is to power Back Light Unit.

3.1 Electrical Characteristics

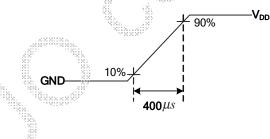
3.1.1: DC Characteristics

	Parameter	Symbol		Value		Unit	Note
	Falallielei	Symbol	Min.	Тур. 🍓	Max	, onn	Note
LCD							
Power Su	oply Input Voltage	V _{DD}	10.8	12	13.2	V _{DC}	
Power Su	pply Input Current	I _{DD}		1	1.2	А	1
Inrush Cu	rrent	I _{RUSH}			4	А	2
Permissibl	e Ripple of Power Supply Input Voltage	VRP			V _{DD} * 5%	mV_{pk-pk}	3
	Input Differential Voltage	V _{1D}	200	400	600	mV_{DC}	4
LVDS	Differential Input High Threshold Voltage	Vite	+100		+300	mV_{DC}	4
Interface	Differential Input Low Threshold Voltage	V _{TL}	-300		-100	mV_{DC}	4
	Input Common Mode Voltage	V _{ICM}	1.1	1.25	1.4	V_{DC}	4
смоѕ	Input High Threshold Voltage	V _{IH} (High)	2.7		3.3	V_{DC}	5
Interface	Input Low Threshold Voltage	V _⊫ (Low)	0		0.6	V_{DC}	5
Backlight	Power Consumption	P_{BL}		135		Watt	

One step solution for LCD / PDF / OLED panel application: Datasneet, inventory and accessory! www.panelook.com

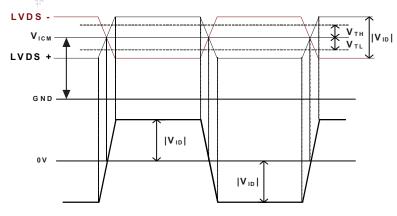
3.1.2: AC Characteristics

	Parameter	Symbol		Value		Unit	Note	
	Falallielei	Symbol	Min.	Тур.	Max	Onit	NOIC	
	Input Channel Pair Skew Margin	t _{skew (CP)}	-500		+500	ps	6	
LVDS	Receiver Clock : Spread Spectrum Modulation range	Fclk_ss	Fclk -3%		Fclk +3%	MHz	7	
Interface	Receiver Clock : Spread Spectrum Modulation frequency	Fss	30		200	KHz	7	
	Receiver Data Input Margin Fclk = 85 MHz Fclk = 65 MHz	tRMG	-0.4 -0.5		0.4 0.5	ns	8	


Note:

- 1. Test Condition:
 - (1) $V_{DD} = 12.0V$
 - (2) Fv = Type Timing, 60Hz
 - (3) Fclk= Max freq.
 - (4) Temperature = 25 $^{\circ}$ C
 - (5) Typ. Input current : White Pattern $_{\pm}$

Max. Input current: Heavy loading pattern defined by AUO


>> refer to "Section:3.3 Signal Timing Specification, Typical timing"

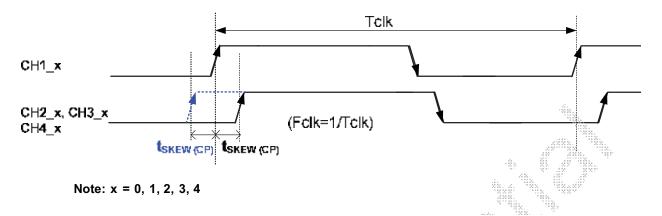
2. Measurement condition : Rising time = 400us

3. Test Condition

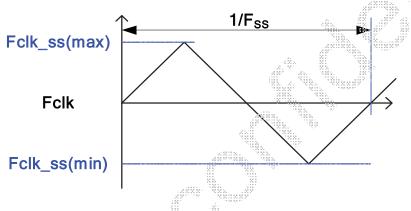
- (1) The measure point of V_{RP} is in LCM side after connecting the System Board and LCM.
- (2) Under Max. Input current spec. condition.
- **4.** V_{ICM} = 1.25V

© Copyright AUO Optronics Corp. 2010 All Rights Reserved.

Page 7 / 31


One step solution for LCD / PDP / OLED panel application. Datasheet, inventory and accessory! www.panelook.com

 $\langle p \rangle$



T420HVN02.0 Product Specification Rev. 1.2

- 5. The measure points of $V_{IH}\,and\,V_{IL}\,are$ in LCM side after connecting the System Board and LCM.
- 6. Input Channel Pair Skew Margin.

7. LVDS Receiver Clock SSCG (Spread spectrum clock generator) is defined as below figures.

8. Receiver Data Input Margin

Parameter	C-2005 b o l	1 00 00 00 M	Unit	Noto		
Parameter	Symbol	Min	Туре	Max	Unit	Note
Input Clock Frequency	Fclk	Fclk (min)		Fclk (max)	MHz	T=1/Fclk
Input Data Position0	tRIP1	- tRMG	0	tRMG	ns	
Input Data Position1	tRIP0	T/7- tRMG	T/7	T/7+ tRMG	ns	
Input Data Position2	tRIP6	2T/7- tRMG	2T/7	2T/7+ tRMG	ns	
Input Data Position3	tRIP5	3T/7- tRMG	3T/7	3T/7+ tRMG	ns	
Input Data Position4	tRIP4	4T/7- tRMG	4T/7	4T/7+ tRMG	ns	
Input Data Position5	tRIP3	5T/7- tRMG	5T/7	5T/7+ tRMG	ns	
Input Data Position6	tRIP2	6T/7- tRMG	6T/7	6T/7+ tRMG	ns	

© Copyright AUO Optronics Corp. 2010 All Rights Reserved.

One step solution for LCD / PDF / OLED panel application. Datasheet, inventory and accessory! www.panelook.com

友達光電 AU Optronics **T420HVN02.0 Product Specification** Rev. 1.2 tRIP2 tRIP3 tRIP4 tRIP5 tRIP6 tRIP0 tRIP1 LVDS-Rx Rx3 X Rx2 Rx0 Rx6 Rx1 Rx0 Rx6 Rx5 Rx4 Rx3 Rx2 Rx1 Input Data LVDS-Rx V_{diff}=0V Input Clock 1/Fclk=T *****

 $\langle P \rangle$

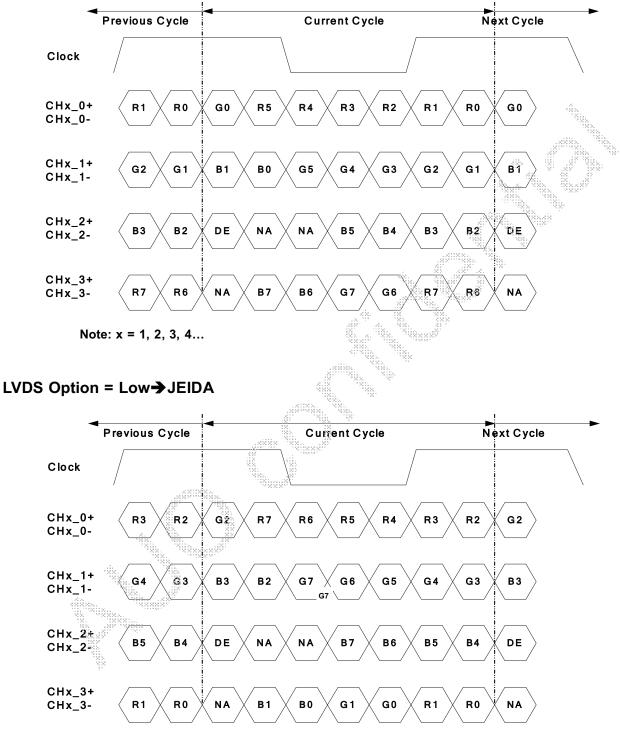
T420HVN02.0 Product Specification Rev. 1.2

3.2 Interface Connections

LCD connector: FI-RE51S-HF (JAE, LVDS connector)

		COLLECTORE (JAE, LVDS COLLE	,0101)		
PIN	Symbol	Description	PIN	Symbol	Description
1	Open	No connection (Internal Open)	26	GND	Ground
2	N.C.	AUO Internal Use Only	27	GND	Ground
3	N.C.	AUO Internal Use Only	28	CH2_0-	LVDS Channel 2, Signal 0-
4	N.C.	AUO Internal Use Only	29	CH2_0+	LVDS Channel 2, Signal 0+
5	N.C.	AUO Internal Use Only	30	CH2_1-	LVDS Channel 2, Signal 1-
6	N.C.	AUO Internal Use Only	31	CH2_1+	LVDS Channel 2, Signal 1+
7	LVDS_SEL	Open/High(3.3V) for NS, Low(GND) for JEIDA	32	CH2_2-	LVDS Channel 2, Signal 2-
8	N.C.	No connection (Internal Open)	33	CH2_2+	LVDS Channel 2, Signal 2+
9	N.C.	No connection	34	GND	Ground
10	GND	Ground	35	CH2_CLK-	LVDS Channel 2, Clock -
11	GND	Ground	36	CH2_CLK+	LVDS Channel 2, Clock +
12	CH1_0-	LVDS Channel 1, Signal 0-	37	GND	Ground
13	CH1_0+	LVDS Channel 1, Signal 0+	38	CH2_3-	LVDS Channel 2, Signal 3-
14	CH1_1-	LVDS Channel 1, Signal 1-	39	CH2_3+	LVDS Channel 2, Signal 3+
15	CH1_1+	LVDS Channel 1, Signal 1+	40	N.C.	AUO Internal Use Only
16	CH1_2-	LVDS Channel 1, Signal 2-	41	N.C.	AUO Internal Use Only
17	CH1_2+	LVDS Channel 1, Signal 2+	42	GND	Ground
18	GND	Ground	43	GND	Ground
19	CH1_CLK-	LVDS Channel 1, Clock -	44	GND	Ground
20	CH1_CLK+	LVDS Channel 1, Clock +	45	GND	Ground
21	GND	Ground	46	GND	Ground
22	CH1_3-	LVDS Channel 1, Signal 3-	47	N.C.	No connection
23	CH1_3+	LVDS Channel 1, Signal 3+	48	V _{DD}	Power Supply, +12V DC Regulated
24	N.C.	AUO Internal Use Only	49	V _{DD}	Power Supply, +12V DC Regulated
25	N.C.	AUO Internal Use Only	50	V _{DD}	Power Supply, +12V DC Regulated
			51	V _{DD}	Power Supply, +12V DC Regulated

Note: N.C. please leave this pin unoccupied. It can not be connected by any signal (Low/GND/High).


One

 \oslash

T420HVN02.0 Product Specification Rev. 1.2

LVDS Option = High/Open→NS

Note: x = 1, 2, 3, 4...

© Copyright AUO Optronics Corp. 2010 All Rights Reserved.

PDF created with pdfFactory Pro trial version www.pdffactory.com One step solution for LCD / PDP / OLED panel application. Datasheet, inventory and accessory! www.panelook.com

3.3 Signal Timing Specification

This is the signal timing required at the input of the user connector. All of the interface signal timing should be satisfied with the following specifications for its proper operation.

Timing Table (DE only Mode)

Signal	Item	Symbol	Min.	Тур.	Max	Unit				
	Period	Τv	1096	1125	1480	Th				
Vertical Section	Active	Tdisp (v)		1080						
	Blanking	Tblk (v)	16	45	400	Th				
	Period	Th	1030	1100	1325	Tclk				
Horizontal Section	Active	Tdisp (h)		960						
	Blanking	Tblk (h)	70	140	365	Tclk				
Clock	Frequency	Fclk=1/Tclk	50	74.25	82	MHz				
Vertical Frequency	Frequency	Fv	47	60	63	Hz				
Horizontal Frequency	Frequency	Fh	60	67.5	73	KHz				

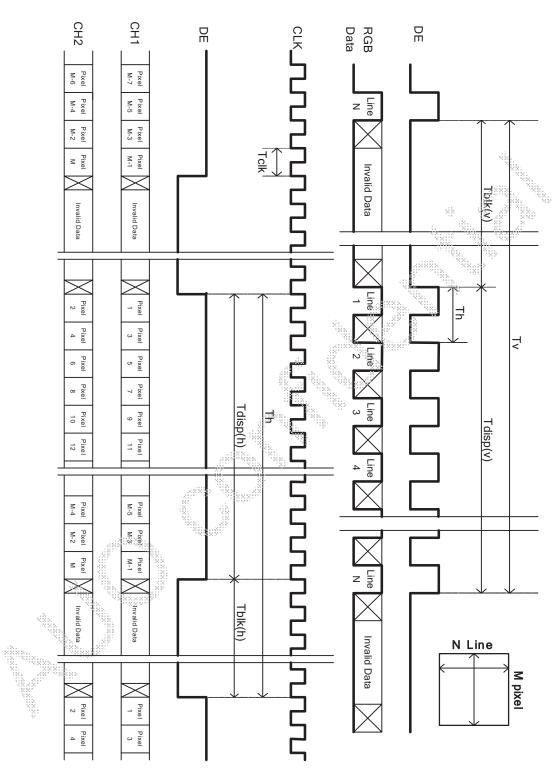
Notes:

(1) Display position is specific by the rise of DE signal only.

Horizontal display position is specified by the rising edge of 1st DCLK after the rise of 1st DE, is displayed on the left edge of the screen.

(2)Vertical display position is specified by the rise of DE after a "Low" level period equivalent to eight times of horizontal period. The 1st data corresponding to one horizontal line after the rise of 1st DE is displayed at the top line of screen.

(3)If a period of DE "High" is less than 1920 DCLK or less than 1080 lines, the rest of the screen displays black.


(4)The display position does not fit to the screen if a period of DE "High" and the effective data period do not synchronize with each other.

AU Optronics

T420HVN02.0 Product Specification Rev. 1.2

© Copyright AUO Optronics Corp. 2010 All Rights Reserved.

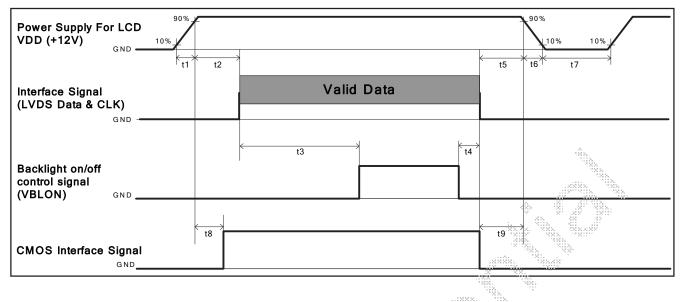
3.5 Color Input Data Reference

The brightness of each primary color (red, green and blue) is based on the 8 bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

										-	I	npu	t Co	olor	Data	a									
	Color				R	ED							GRI	EEN	l						BL	UE			
	000	MS	В					LS	BB	MS	В					LS	SB	MS	В		K IIX			LS	ЗB
			R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	Β7	B6	B5	B 4	В3	B2	B1	В0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ò	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	Q	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	া	1	- 	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	Ŷ	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	а. З 1	100 1000	.1	1	1	1	1	1	1	1	1	1	1	1
	RED(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(001)	0	0	0	0	0	0	0	1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R									13) 855. 81935.																
	RED(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(255)	1	1	1	1	1	1	1	°1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(001)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
G		0.00																							
	GREEN(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	GREEN(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	BLUE(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE(001)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
В	100 000	1																							
	BLUE(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	BLUE(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

COLOR DATA REFERENCE

© Copyright AUO Optronics Corp. 2010 All Rights Reserved.


One step solution for LCD / PDP / OLED panel application. Datasneet, inventory and accessory! www.panelook.com

 $\langle p \rangle$

T420HVN02.0 Product Specification Rev. 1.2

Power Sequence for LCD

Devenator		Values							
Parameter	Min.	Туре	Max.	Unit					
t1	0.4		30	ms					
t2	0.1		50	ms					
t3	450			ms					
t4	0*1			ms					
t5	0			ms					
t6			*2	ms					
t7	500			ms					
t8	10 ^{*3}		50	ms					
t9	0 O			ms					

Note:

(1) t4=0 : concern for residual pattern before BLU turn off.

(2) t6 : voltage of VDD must decay smoothly after power-off. (customer system decide this value)

(3) When CMOS Interface is N.C. (no connection), opened in Transmitted end, T8 timing spec can be negligible

One step solution for LCD / PDP / OLED panel application. Datasneet, inventory and accessory! www.panelook.com

3.7 T-BB Product Type

The backlight unit contains 10-I type CCFLs (Cold Cathode Fluorescent Lamp)

3.7.1

ltem	Symbol	Condition		Spec		Unit	Note
item	Symbol	Condition	Min	Тур	Max	Unit	Note
	VBL+					Vrms	
Operating Voltage	VBL-		90V sii	ne wave		Vrms	
Operating Current	lo	-	1.425	1.5	1.575	Arms	
BL Total Power Dissipation	PBL	-	-	135		Watt	
Charting voltage	Vstk	At 0℃	1660	-	2240		
Starting voltage	VSLK	At 25 ℃	1320	-	1780	Vrms –	
Striking Time	Ts	-	1	1.5	2	sec	
Operating Frequency	fo	-	43	45	47	kHz	
PWM Operating Frequency	F_PWM	-	140	150	160	Hz	
PWM Dimming Duty Ratio	D_PWM	-	10		100	%	Note 1&2
Lamp Type				Straight			
Number of Lamps				10		pcs	
Type of current	t balance			T-balance			

Note 1: Dimming range

Note 2: Low dimming ratio operation

When PWM dimming duty ratio is operated lower than recommended value, feedback signal and all protection functions should be confirmed by LIPS design. Display performance should also be confirmed by customer's implement.

One step solution for LCD / PDF / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

 $\langle p \rangle$

T420HVN02.0 Product Specification Rev. 1.2

3.7.2: Input Pin Assignment

CN1 CI0112M1HRL-NH (CviLux)

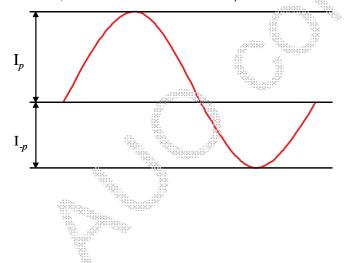
Pin	Symbol	Description	
12	FB2	Lamp Current Feedback Signal 2	
11	FB1	Lamp Current Feedback Signal 1	
10	PT	Protection Signal over +2V	
9	CNT_PRT	Open Connector Protection +5V	
8	VCC	Power Supply for Protection Circuit 5V	
7	S_GND	Signal Ground	
6	NC	NC	
5	-VBL	-90 Sine Wave	
4	-VBL		
3	NC	NC	
2	+VBL		
1	+VBL	+90 Sine Wave	

3.7.3: Protection Circuit specification

ltem	Symbol		Spec		Unit	Note
item		Min	Тур	Тур Мах		Note
Supply control voltage	Vcc	<u>, , , , , , , , , , , , , , , , , , , </u>	5	5.5	VDC	
Input Current of VCC		0.1	-	10	mADC	
Open Connector	CNT_PRT(H)		5		VDC	Lamp normal status
Detection	CNT_PRT(L)	0	-	0.8	VDC	Lamp abnormal status
Lema Detection	LD(H)	2	-		VDC	Lamp abnormal status
Lamp Detection	LD(L)	0	-	1.4	VDC	Lamp normal status

© Copyright AUO Optronics Corp. 2010 All Rights Reserved.

PDF created with pdfFactory Pro trial version www.pdffactory.com One step solution for LCD / PDF / OLED panel application: Datasheet, inventory and accessory! www.panelook.com


3.7.4: Lamp specification

Item	Symbol	Condition		Spec		Unit	Note
nem	Symbol	Condition	Min	Min Typ M		Unit	Note
Lamp voltage	VL		726	926	1126	Vrms	
Lamp current	IL		-	13	-	mArms	
Lamp frequency	fL		30	-	80	kHz	
Charting values	Vs	At 0°C		-	1660	Vrms	
Starting voltage		At 25 ℃		-	1320	Vrms	
Delayed discharge time	TD		-	-	0.5	sec	
Life time	TL		50K	-		ំ hr	
Unsymmetrical ratio	UR		-	-	10%	-	Note 1
Crest factor	C.F.		$\sqrt{2} - 10\%$	$\sqrt{2}$	$\sqrt{2} + 10\%$	-	Note 1.

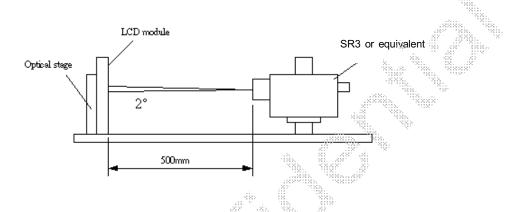
The above characteristics are measured under the conditions: Ambient temperature: 25±2°C, Relative Humidity: 65±20%RH,

Note 1: Waveform definition

Please light on the lamp with symmetrical voltage and current waveform (unsymmetrical ratio is less than 10%, crest factor within $\sqrt{2}\pm10\%$).

Unsymmetrical Ratio = $|I_p - I_{-p}| / I_{rms} * 100\%$ Crest Factor = I_p (or I_{-p}) / I_{rms} I_p : High side peak value I_{-p} : Low side peak value

I_{rms}: Root mean square value


Or

4. Optical Specification

Optical characteristics are determined after the unit has been 'ON' and stable for approximately 45 minutes in a dark environment at 25°C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of ϕ and θ equal to 0°.

Fig.1 presents additional information concerning the measurement equipment and method.

	Parameter	Symbol		Values		11:4	Netes
	Falameter		Miñ.	Тур.	Max	- Unit	Notes
Contrast	Ratio	CR	1600	2000			1
Surface	Luminance (White)	L _{WH}	240	300		cd/m ²	2
Luminan	ce Variation	δ _{WHITE(9P)}			1.33		3
Respons	e Time (G to G)	Тү		6.5		Ms	4
Color Ga	amut	NTSC		72		%	
Color Co	oordinates						
	Red	R _x		0.640			
		R _Y		0.330			
	Green	G _X		0.290			
		G _Y	T 0.02	0.600	T		
	Blue	B _X	Тур0.03	0.150	Тур.+0.03		
		B _Y		0.060			
	White	W _x		0.280			
		W _Y		0.290			
Viewing	Angle						5
	x axis, right(φ=0°)	θ _r		89		degree	
	x axis, left(φ=180°)	θι		89		degree	
	y axis, up(φ=90°)	θ _u		89		degree	
	y axis, down (φ=270°)	θ _d		89		degree	

© Copyright AUO Optronics Corp. 2010 All Rights Reserved.

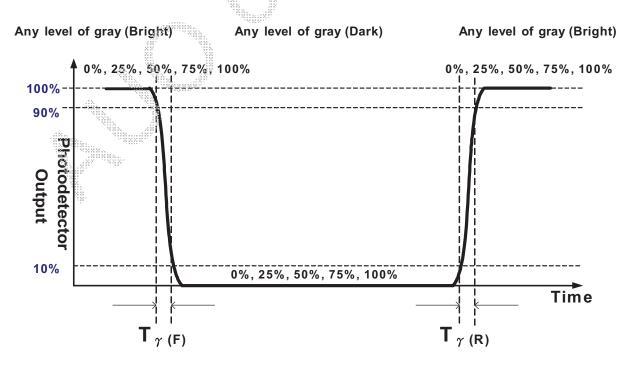
One step solution for LCD / PDF / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

Note:

1. Contrast Ratio (CR) is defined mathematically as:

Surface Luminance of L_{on5}

Contrast Ratio= Surface Luminance of Loff5

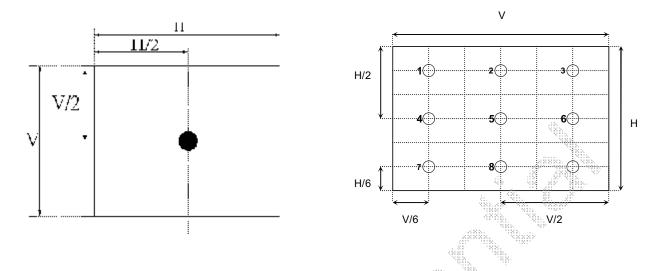

- 2. Surface luminance is luminance value at point 5 across the LCD surface 50cm from the surface with all pixels displaying white. From more information see FIG 2. When lamp current $I_H = 11$ mA. L_{WH} =Lon5 where Lon5 is the luminance with all pixels displaying white at center 5 location.
- 3. The variation in surface luminance, δ WHITE is defined (center of Screen) as:

 $\delta_{\text{WHITE(9P)}} = \text{Maximum}(L_{\text{on1}}, L_{\text{on2}}, \dots, L_{\text{on9}}) / \text{Minimum}(L_{\text{on1}}, L_{\text{on2}}, \dots, L_{\text{on9}})$

4. Response time T_{γ} is the average time required for display transition by switching the input signal for five luminance ratio (0%,25%,50%,75%,100% brightness matrix) and is based on F_v=50Hz to optimize.

Measured Response Time				Target		
		0%	25%	50%	75%	100%
	0%		0% to 25%	0% to 50%	0% to 75%	0% to 100%
	25%	25% to 0%		25% to 50%	25% to 75%	25% to 100%
Start	50%	50% to 0%	50% to 25%		50% to 75%	50% to 100%
	75%	75% to 0%	75% to 25%	75% to 50%		75% to 100%
	100%	100% to 0%	100% to 25%	100% to 50%	100% to 75%	

T γ is determined by 10% to 90% brightness difference of rising or falling period. (As illustrated) The response time is defined as the following figure and shall be measured by switching the input signal for "any level of grey(bright) " and "any level of gray(dark)".



© Copyright AUO Optronics Corp. 2010 All Rights Reserved.

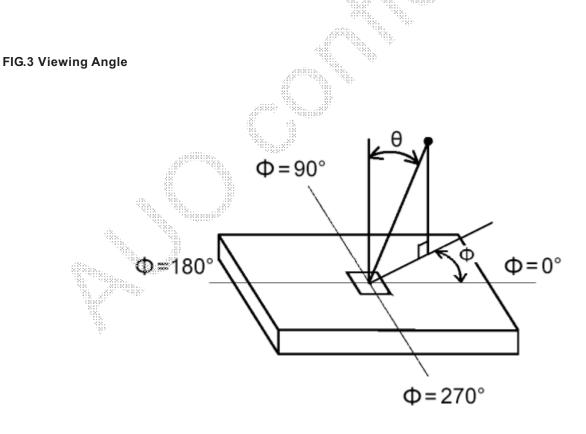
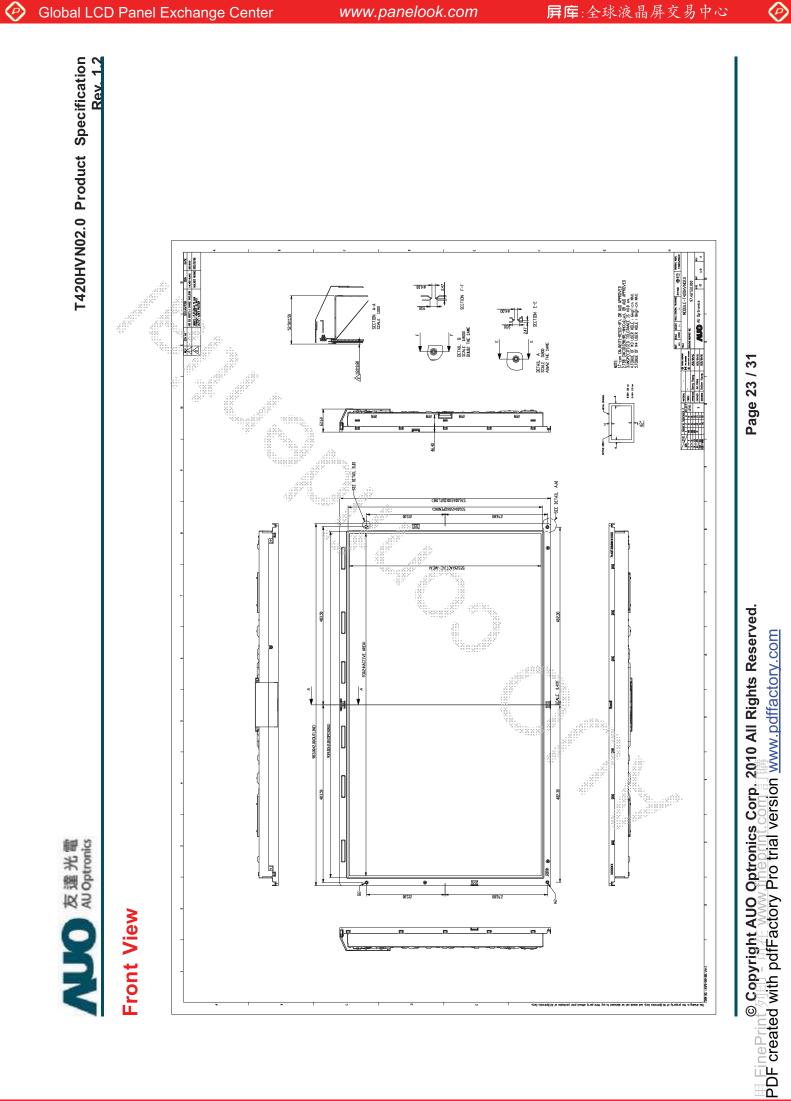

One step solution for LCD / PDP / OLED panel application. Datasheet, inventory and accessory! www.panelook.com

FIG. 2 Luminance

5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG3.

© Copyright AUO Optronics Corp. 2010 All Rights Reserved.

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

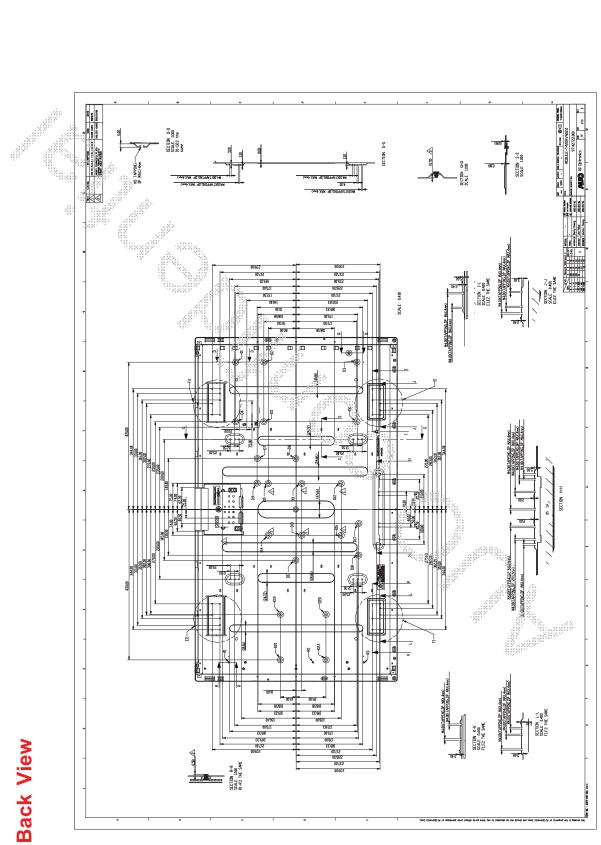


5. Mechanical Characteristics

The contents provide general mechanical characteristics for the model T420HVN02.0. In addition the figures in the next page are detailed mechanical drawing of the LCD.

I	tem	Dimension	Unit	Note
	Horizontal	983.0	mm	
Outline Dimension	Vertical	576.0	mm 🗼 🧯	
Outline Dimension	Depth (Dmin)	52.5	mm	to rear
	Depth (Dmax)	62.5	mm	to T-con cover
Weight	800	00	9	

© Copyright AUO Optronics Corp. 2010 All Rights Reserved. Page 22 / 31 PDF created with pdfFactory Pro trial version www.patienter.com One step solution for LCD / PDF / OLED panel application. Datasneet, inventory and accessory! www.panelook.com


 \oslash

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

Global LCD Panel Exchange Center

 $\langle \! \rangle$

www.panelook.com

© Copyright AUO Optronics Corp. 2010 All Rights Reserved.

 \oslash

T420HVN02.0 Product Specification Rev. 1.2

6. Reliability Test Items

	Test Item	Q'ty	Condition
1	High temperature storage test	3	60℃ , 300hrs
2	Low temperature storage test	3	-20℃ , 300hrs
3	High temperature operation test	3	50℃, 300hrs
4	Low temperature operation test	3	-5℃ , 300hrs
			Wave form: random
			Vibration level: 1.5G RMS
5	Vibration test (non-operation)	3	Bandwidth: 10-300Hz,
			Duration: X, Y, Z 30min
			One time each direction
			Shock level: 50G
6	Shock test (non-operation)	3	Waveform: half since wave, 11ms
			Direction ±X, ±Y, ±Z, One time each direction
			Random wave (1.5G RMS, 10-200Hz)
7	Vibration test (With carton)	6	10mins/ Per each X,Y,Z axes
			Height: 25.4cm (ASTMD4169-I)
8	Drop test (With carton)	6	Surround four flats (Front,Rear,Left,Right flat)
		1000	one time, Bottom flat two times.

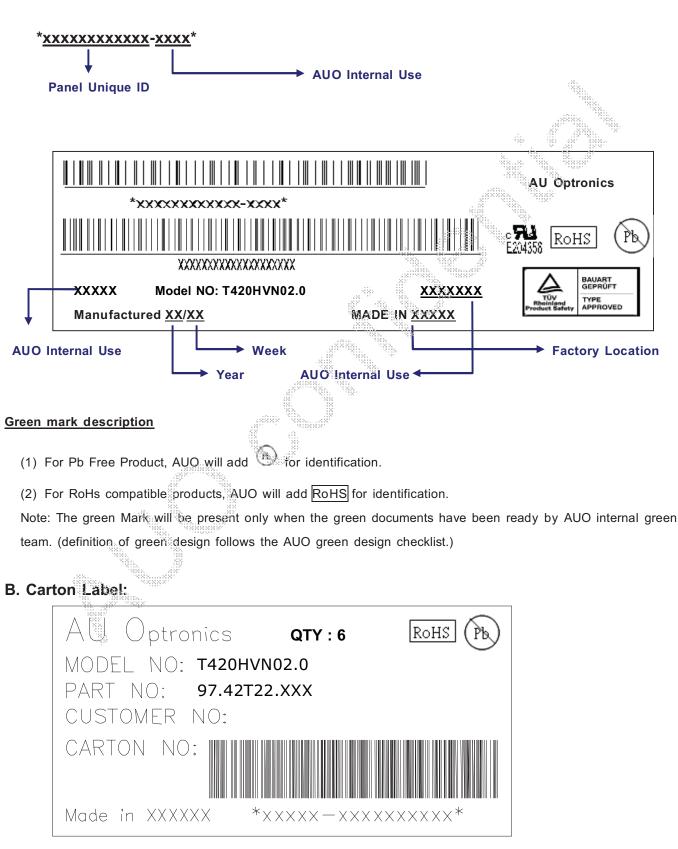
7. International Standard

7.1 Safety

- (1) UL 60950-1, UL 60065; Standard for Safety of Information Technology Equipment Including electrical Business Equipment.
- (2) IEC 60950-1 : 2001, IEC 60065:2001 ; Standard for Safety of International Electrotechnical Commission
- (3) EN 60950 : 2001+A11, EN 60065:2002+A1:2006; European Committee for Electrotechnical Standardization (CENELEC), EUROPEAN STANDARD for Safety of Information. Technology Equipment Including Electrical Business Equipment.

7.2 EMC

- (1) ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHz to 40GHz. "American National standards Institute(ANSI), 1992
- (2) C.I.S.P.R "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." International Special committee on Radio Interference.
- (3) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." European Committee for Electrotechnical Standardization. (CENELEC), 1998



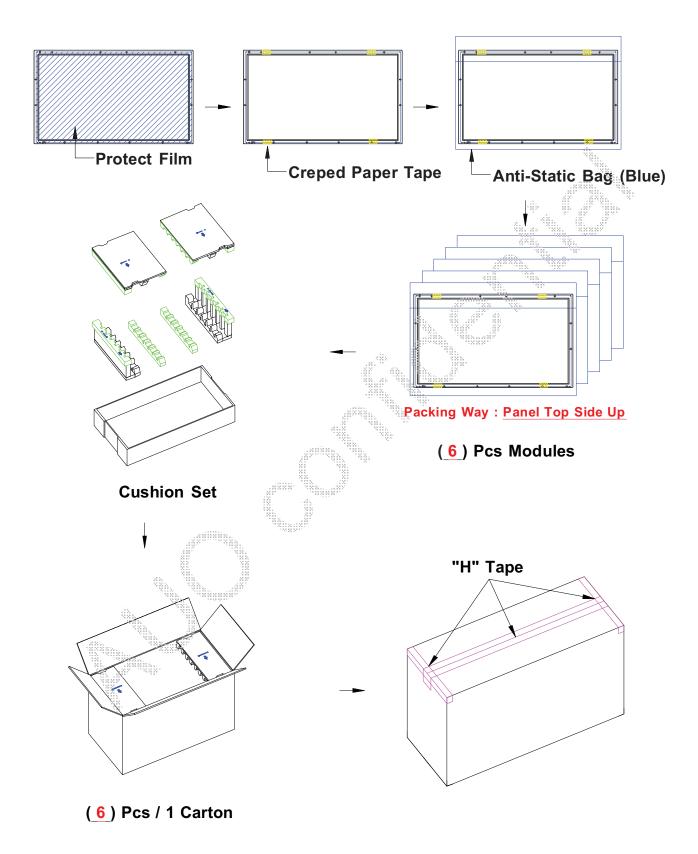
8. Packing

8-1 DEFINITION OF LABEL:

A. Panel Label:

© Copyright AUO Optronics Corp. 2010 All Rights Reserved.

Page 27 / 31


One step solution for LCD / PDP / OLED panel application. Datasheet, inventory and accessory! www.panelook.com

 \oslash

T420HVN02.0 Product Specification
Rev. 1.2

8-2 PACKING METHODS:

8-3 Pallet and Shipment Information

	ltem		Packing Remark					
	nem	Qty.	Dimension	Weight (kg)	Facking Remark			
1	Packing BOX	6pcs/box	1060(L)*560(W)*670(H)	60				
2	Pallet	1	1150(L)*1070(W)*132(H)	14.5	45.			
3	Boxes per Pallet		2 boxes/pallet					
4	Panels per Pallet		12pcs/pallet					
	Pallet after packing	12	1150(L)*1070(W)*802(H)	134.5				
FET Strap Argie Protector Labe Stretch Flin Wooden Pallet Yooden Pallet Figle pallet 打棧示意圖 Single pallet packaging illustration								

© Copyright AUO Optronics Corp. 2010 All Rights Reserved. One step solution for LCD / ctory Pro trial version www.pdffactory.com PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

9. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

9-1 MOUNTING PRECAUTIONS

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. twisted stress) is not applied to module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter cause circuit broken by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizer with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth. (Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front/ rear polarizer. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva of water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

9-2 OPERATING PRECAUTIONS

- (1) The device listed in the product specification sheets was designed and manufactured for TV application
- (2) The spike noise causes the mis-operation of circuits. It should be lower than following voltage: V=±200mV(Over and under shoot voltage)
- (3) Response time depends on the temperature. (In lower temperature, it becomes longer.)
- (4) Brightness of CCFL depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time (required time that brightness is stable after turned on) becomes longer.
- (5) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (6) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (7) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall

One step solution for LCD / PDP / OLED panel application. Datasheet, inventory and accessory! www.panelook.com

be done by system manufacturers. Grounding and shielding methods may be important to minimize the interface.

9-3 ELECTROSTATIC DISCHARGE CONTROL

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wristband etc. And don't touch interface pin directly.

9-4 PRECAUTIONS FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

9-5 STORAGE

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to surjight or fluorescent light. Keep the temperature between 5 $^{\circ}$ C and 35 $^{\circ}$ C at normal humiditive
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped

9-6 HANDLING PRECAUTIONS FOR PROTECTION FILM

- (1) The protection film is attached to the bezel with a small masking tape. When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of gue still on the bezel after the protection film is peeled off.
- (3) You can remove the glue easily. When the glue remains on the bezel or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.