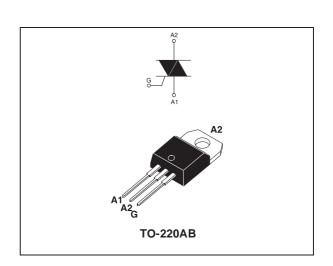


T2550H-600T

SNUBBERLESS™ HIGH TEMPERATURE

25A TRIACs


MAIN FEATURES:

Symbol	Value	Unit	
I _{T(RMS)}	25	А	
V _{DRM} /V _{RRM}	600	V	
I _{GT (Q1)}	50	mA	

DESCRIPTION

Specifically designed for use in high temperature environment (found in hot appliances such as cookers, ovens, hobs, electric heaters, coffee machines...), the new 25 Amps T25500H triacs provide an enhanced performance in terms of power loss and thermal dissipation. This allows optimization of the heatsinking dimensioning, leading to space and cost effectivness when compared to electro-mechnical solutions.

Based on ST snubberless technology, they offer high commutation switching capabilities and high noise immunity levels. And, thanks to their clip assembly technique, they provide a superior performance in surge current handling.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter			Value	Unit
I _{T(RMS)}	RMS on-state current (full sine wave) Tc = 125°C		Tc = 125°C	25	Α
I _{TSM}	Non repetitive surge peak on-state current	F = 60 Hz	t = 16.7 ms	260	А
	(full cycle, Tj initial = 25°C)	F = 50 Hz	t = 20 ms	250	
l ² t	I ² t Value for fusing	tp = 10 ms		340	A ² s
dl/dt	Critical rate of rise of on-state current $I_G = 2 \times I_{GT}$, tr $\leq 100 \text{ ns}$	F = 120 Hz Tj = 150°C		50	A/µs
V _{DSM} /V _{RSM}	Non repetitive surge peak off-state voltage	Non repetitive surge peak off-state voltage tp = 10 ms		700	V
I _{GM}	Peak gate current tp = 20 µs Tj = 15		Tj = 150°C	4	Α
P _{G(AV)}	Average gate power dissipation Tj = 150°C			1	W
T _{stg} T _j	Storage junction temperature range Operating junction temperature range			- 40 to + 150 - 40 to + 150	°C

April 2002 - Ed: 5A 1/5

T2550H-600T

ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise specified)

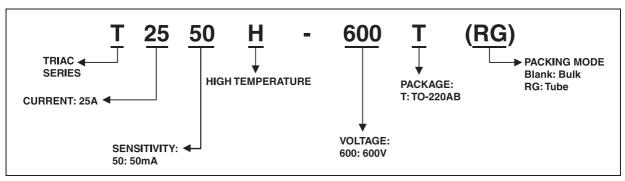
Symbol	Test Conditions	Quadrant		Value	Unit
I _{GT} (1)	$V_D = 12 \text{ V}$ $R_1 = 33 \Omega$	1 - 11 - 111	MAX.	50	mA
V _{GT}	V _D = 12 V	1 - 11 - 111	MAX.	1.3	V
V_{GD}	$V_D = V_{DRM}$ $R_L = 3.3 \text{ k}\Omega$ $Tj = 150 ^{\circ}\text{C}$	1 - 11 - 111	MIN.	0.15	V
I _H (2)	I _T = 500 mA		MAX.	75	mA
IL	I _G = 1.2 I _{GT}	1 - 11 - 111	MAX.	90	mA
dV/dt (2)	V _D = 67 % V _{DRM} gate open Tj = 150°C		MIN.	500	V/µs
(dl/dt)c (2)	Without snubber Tj = 150°C		MIN.	11.1	A/ms

STATIC CHARACTERISTICS

Symbol	Test Conditions			Value	Unit
V _{TM} (2)	$I_{TM} = 35 \text{ A}$ tp = 380 µs	Tj = 25°C	MAX.	1.5	V
V _{to} (2)	Threshold voltage	Tj = 150°C	MAX.	0.80	V
R _d (2)	Dynamic resistance	Tj = 150°C	MAX.	19	mΩ
	$V_{DRM} = V_{RRM}$	Tj = 25°C		5	μΑ
I _{DRM}		Tj = 150°C	MAX.	8.5	
I _{RRM}	V _{DRM} / V _{RRM} = 400 V (at mains peak voltage)	Tj = 150°C		5.5	mA

Note 1: minimum IGT is guaranted at 10% of IGT max.

Note 2: for both polarities of A2 referenced to A1

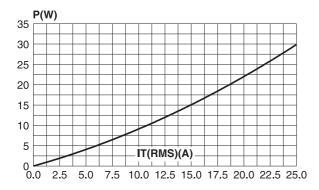

THERMAL RESISTANCE

Symb	I Parameter	Value	Unit
R _{th(j-}	Junction to case (AC)	0.8	°C/W

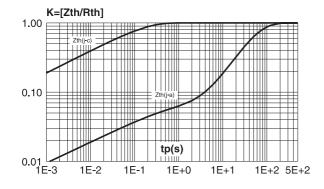
PRODUCT SELECTOR

Part Number	Voltage	Sensitivity	Туре	Package
T2550H-600T	600 V	50 mA	Snubberless	TO-220AB

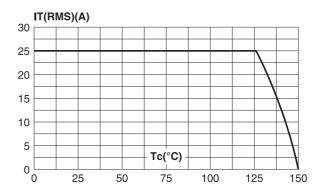
ORDERING INFORMATION



2/5


OTHER INFORMATION

Part Number	Marking	Weight	Base quantity	Packing mode
T2550H-600T	T2550H600T	2.3 g	250	Bulk
T2550H-600TRG	T2550H600T	2.3 g	50	Tube


Fig. 1: Maximum power dissipation versus RMS on-state current (full cycle).

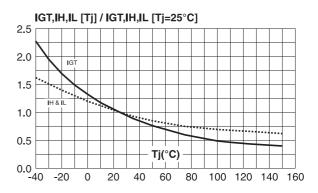

Fig. 3: Relative variation of thermal impedance versus pulse duration.

Fig. 2: RMS on-state current versus case temperature (full cycle).

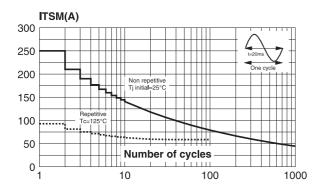


Fig. 4: Relative variation of gate trigger current, holding current and latching current versus junction temperature (typical values).

3/5

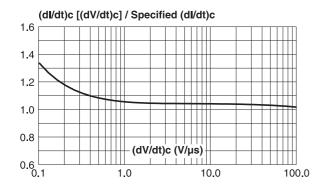
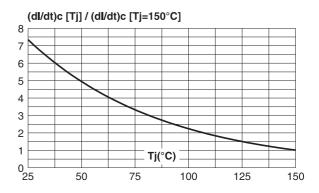

Fig. 5: Surge peak on-state current versus number of cycles.

Fig. 7: On-state characteristics (maximum values).


Fig. 9: Relative variation of critical rate of decrease of main current versus (dV/dt)c (typical values).

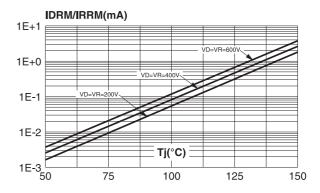

Fig. 6: Non-repetitive surge peak on-state current for a sinusoidal pulse with width tp < 10ms, and corresponding value of l^2t .

Fig. 8: Relative variation of critical rate of decrease of main current versus junction temperature (typical values).

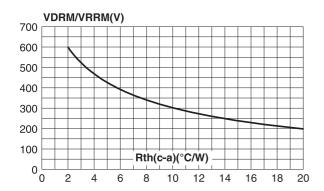


Fig. 10: Leakage current versus junction temperature for different values of blocking voltage (typical values).

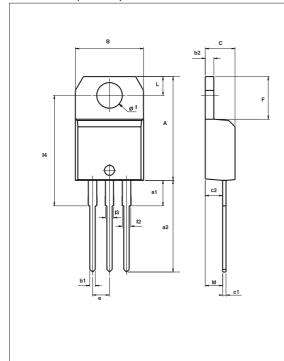

4/5

Fig. 11: Acceptable repetitive peak off-state voltage versus case-ambient thermal resistance.

PACKAGE MECHANICAL DATA

TO-220AB (Plastic)

	DIMENSIONS					
REF.	М	illimete	rs	Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	15.20		15.90	0.598		0.625
a1		3.75			0.147	
a2	13.00		14.00	0.511		0.551
В	10.00		10.40	0.393		0.409
b1	0.61		0.88	0.024		0.034
b2	1.23		1.32	0.048		0.051
С	4.40		4.60	0.173		0.181
c1	0.49		0.70	0.019		0.027
c2	2.40		2.72	0.094		0.107
е	2.40		2.70	0.094		0.106
F	6.20		6.60	0.244		0.259
I	3.75		3.85	0.147		0.151
14	15.80	16.40	16.80	0.622	0.646	0.661
L	2.65		2.95	0.104		0.116
I2	1.14		1.70	0.044		0.066
13	1.14		1.70	0.044		0.066
М		2.60			0.102	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany
Hong Kong - India - Isreal - Italy - Japan - Malaysia - Malta - Morocco - Singapore
Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

