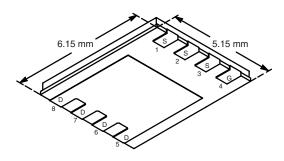


COMPLIANT

HALOGEN FREE



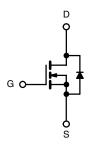
Vishay Siliconix

N-Channel 20-V (D-S) MOSFET

PRODU	DUCT SUMMARY				
V _{DS} (V)	$R_{DS(on)}\left(\Omega\right)$	I _D (A) ^a	Q _g (Typ.)		
	0.00160 at V _{GS} = 10 V	60			
20	0.00175 at $V_{GS} = 4.5 \text{ V}$	60	64.5 nC		
	0.00225 at $V_{GS} = 2.5 \text{ V}$	60			

PowerPAK® SO-8

Bottom View


Ordering Information: SiR404DP-T1-GE3 (Lead (Pb)-free and Halogen-free)

FEATURES

- Halogen-free According to IEC 61249-2-21 Definition
- TrenchFET® Gen III Power MOSFET
- 100 % R_g Tested
- 100 % UIS Tested
- 2.5 V and 3.3 V Gate Drive MOSFET for dc-to-dc Applications
- · Compliant to RoHS Directive 2002/95/EC

APPLICATIONS

- Fixed Telecom
- OR-ing
- POL

N-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS	T _A = 25 °C, unle	ss otherwise not	ted	
Parameter	Symbol	Limit	Unit	
Drain-Source Voltage		V_{DS}	20	V
Gate-Source Voltage		V_{GS}	± 12	7
	T _C = 25 °C		60 ^a	
Continuous Drain Current (T _{.1} = 150 °C)	T _C = 70 °C		60 ^a	7
Continuous Diain Current (1) = 130 C)	T _A = 25 °C	I _D	45.6 ^{b, c}	7
	T _A = 70 °C		36.6 ^{b, c}] A
Pulsed Drain Current	Pulsed Drain Current		100	7 ^
Continuous Source-Drain Diode Current	T _C = 25 °C	I _S	60 ^a	
Continuous Source-Diam Diode Current	T _A = 25 °C	'S	5.6 ^{b, c}	
Single Pulse Avalanche Current L = 0		I _{AS}	50	
Single Pulse Avalanche Energy	L = 0.1 IIII1	E _{AS}	125	mJ
	T _C = 25 °C		104	
Maximum Power Dissipation	T _C = 70 °C	P _D	66.6	\Box w
Maximum i ower bissipation	T _A = 25 °C	υ υ	6.25 ^{b, c}	□ **
	T _A = 70 °C		4.0 ^{b, c}	7
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 150	- °C
Soldering Recommendations (Peak Temperature) ^{d, e}			260	

THERMAL RESISTANCE RATINGS						
Parameter	Symbol	Typical	Maximum	Unit		
Maximum Junction-to-Ambient ^{b, f}	t ≤ 10 s	R_{thJA}	15	20	°C/W	
Maximum Junction-to-Case (Drain)	Steady State	R_{thJC}	0.9	1.2	O/ VV	

Notes:

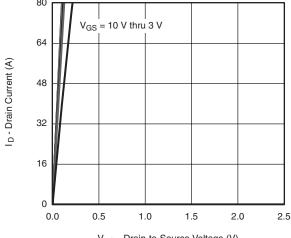
- a. Package limited.
- b. Surface Mounted on 1" x 1" FR4 board.
- c. t = 10 s
- d. See Solder Profile (www.vishay.com/ppg?73257). The PowerPAK SO-8 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.
- e. Rework Conditions: manual soldering with a soldering iron is not recommended for leadless components.
- f. Maximum under Steady State conditions is 54 °C/W.

SiR404DP

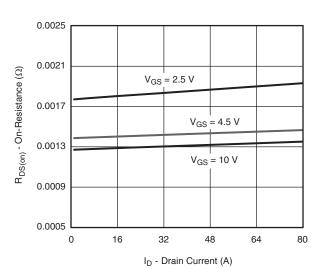
Vishay Siliconix

SPECIFICATIONS $T_J = 25 ^{\circ}\text{C}$,			841	T		
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Static Drain Source Breakdown Voltage		V - 0 V I - 250 uA	20	<u> </u>		1/
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	20	47		V
V _{DS} Temperature Coefficient	ΔV _{DS} /T _J	I _D = 250 μA		17		mV/°(
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	V V I 050 A		- 4.4		
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	0.6	1	1.5	V
Gate-Source Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 12 \text{ V}$			± 100	nA
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}$			1	μΑ
	500	$V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 ^{\circ}\text{C}$			10	-
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	30			Α
		$V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}$		0.0013	0.00160	
Drain-Source On-State Resistance ^a	R _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_D = 20 \text{ A}$		0.0014	0.00175	Ω
		$V_{GS} = 2.5 \text{ V}, I_D = 15 \text{ A}$		0.0018	0.00225	
Forward Transconductance ^a	9 _{fs}	V _{DS} = 10 V, I _D = 20 A		150		S
Dynamic ^b						
Input Capacitance	C _{iss}			8130		
Output Capacitance	C _{oss}	$V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		1570		pF
Reverse Transfer Capacitance	C _{rss}			735		٠.
· · · · · · · · · · · · · · · · · · ·	100	V _{DS} = 10 V, V _{GS} = 2.5 V, I _D = 20 A		36.5		
Total Gate Charge	Q_g	V _{DS} = 10 V, V _{GS} = 3.3 V, I _D = 20 A		47.5		
G	g	25 7 GS 7 D		64.5	97	nC
Gate-Source Charge	Q _{qs}	$V_{DS} = 10 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 20 \text{ A}$		11.4	-	
Gate-Drain Charge	Q _{gd}	20 1 00 1 2		12.1		
Gate Resistance	R _g	f = 1 MHz	0.2	1.0	2	Ω
Turn-On Delay Time	t _{d(on)}		-	14	28	
Rise Time	t _r	$V_{DD} = 10 \text{ V, R}_{1} = 1.0 \Omega$		9	18	
Turn-Off Delay Time	t _{d(off)}	$I_D \cong 10 \text{ A}, V_{GEN} = 10 \text{ V}, R_q = 1 \Omega$		68	120	
Fall Time	t _f	<u> </u>		9	18	
Turn-On Delay Time	t _{d(on)}			35	60	ns
Rise Time	t _r	$V_{DD} = 10 \text{ V}, R_{L} = 1.0 \Omega$		20	40	
Turn-Off Delay Time	t _{d(off)}	$I_D \cong 10 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \Omega$		123	210	
Fall Time	t _f	D ALIN 9		26	50	
Drain-Source Body Diode Characteristic					30	
Continuous Source-Drain Diode Current	I _S	T _C = 25 °C			60	
Pulse Diode Forward Current ^a	I _{SM}	0 =			100	Α
Body Diode Voltage	V _{SD}	I _S = 5 A		0.65	1.1	V
Body Diode Reverse Recovery Time		13 - 2 1			75	-
	t _{rr}	_		38		ns
Body Diode Reverse Recovery Charge	Q _{rr}	$I_F = 10$ A, $dI/dt = 100$ A/ μ s, $T_J = 25$ °C		36	72	nC ns
Reverse Recovery Fall Time	ta			21		
Reverse Recovery Rise Time	t _b			17		

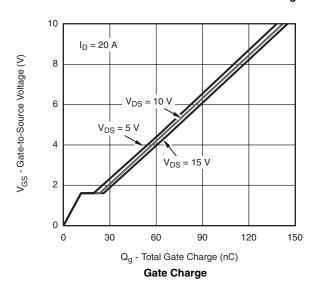
Notes:

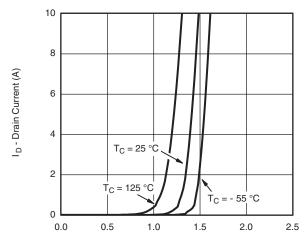

- a. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2 %.
- b. Guaranteed by design, not subject to production testing.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

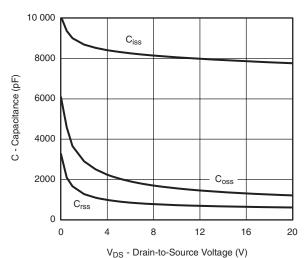

Vishay Siliconix

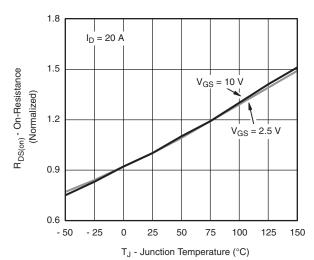
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted




 $V_{\mbox{\scriptsize DS}}$ - Drain-to-Source Voltage (V)

Output Characteristics

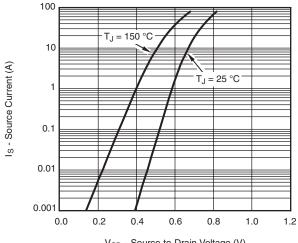

On-Resistance vs. Drain Current and Gate Voltage


V_{GS} - Gate-to-Source Voltage (V)

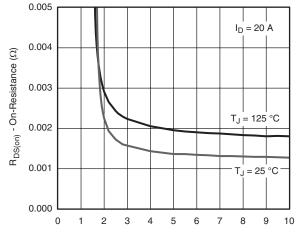
Transfer Characteristics

VDS - Dialit-to-Source voltage (v

Capacitance

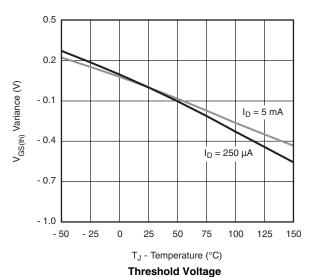

On-Resistance vs. Junction Temperature

SiR404DP

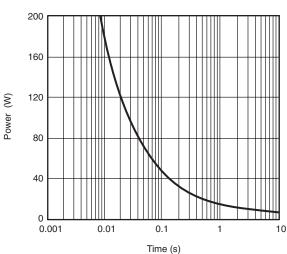

Vishay Siliconix

VISHAY.

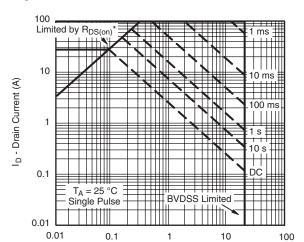
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted



 V_{SD} - Source-to-Drain Voltage (V)

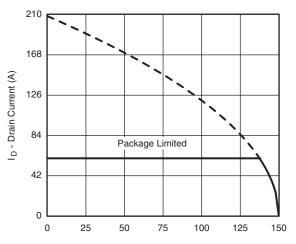


V_{GS} - Gate-to-Source Voltage (V)

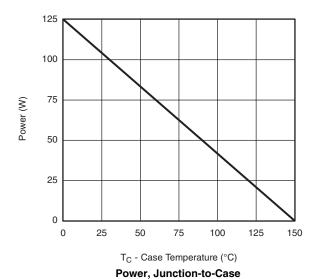

Source-Drain Diode Forward Voltage

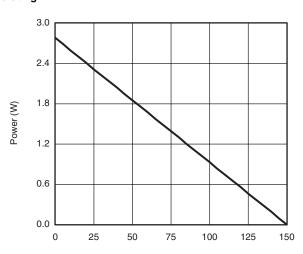
On-Resistance vs. Gate-to-Source Voltage

Single Pulse Power, Junction-to-Ambient


 $$V_{DS}$$ - Drain-to-Source Voltage (V) * V_{GS} > minimum V_{GS} at which $R_{DS(on)}$ is specified

Safe Operating Area, Junction-to-Ambient


Vishay Siliconix

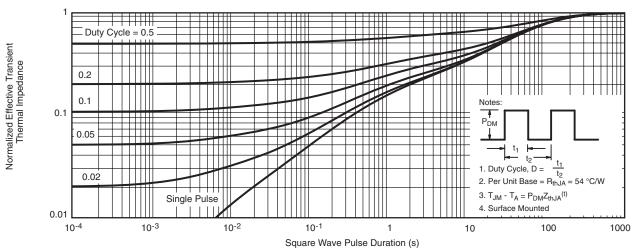

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

T_C - Case Temperature (°C)

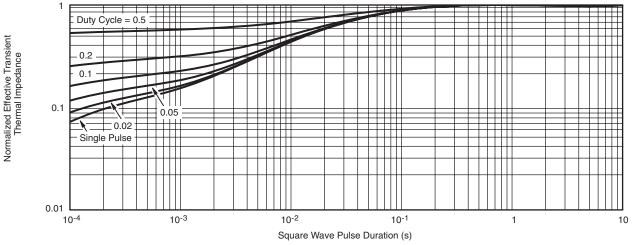
Current Derating*

T_A - Ambient Temperature (°C)

Power, Junction-to-Ambient

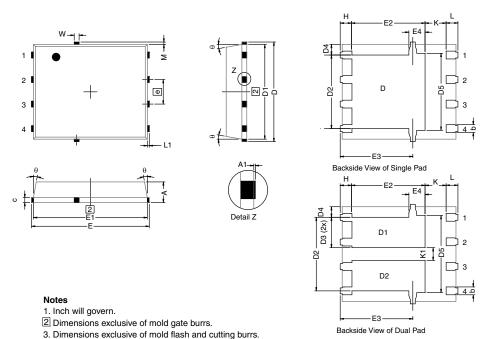

^{*} The power dissipation P_D is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

SiR404DP


Vishay Siliconix

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

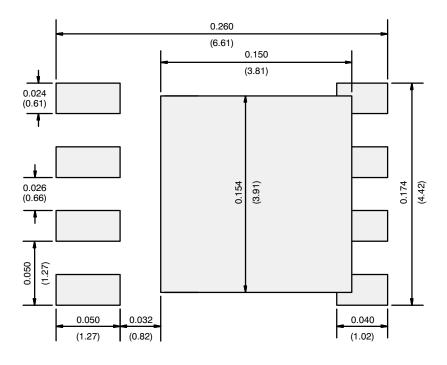
Normalized Thermal Transient Impedance, Junction-to-Ambient


Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?64815.

DWG: 5881

PowerPAK® SO-8, (Single/Dual)



	MILLIMETERS			INCHES			
DIM.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
Α	0.97	1.04	1.12	0.038	0.041	0.044	
A1		-	0.05	0	-	0.002	
b	0.33	0.41	0.51	0.013	0.016	0.020	
С	0.23	0.28	0.33	0.009	0.011	0.013	
D	5.05	5.15	5.26	0.199	0.203	0.207	
D1	4.80	4.90	5.00	0.189	0.193	0.197	
D2	3.56	3.76	3.91	0.140	0.148	0.154	
D3	1.32	1.50	1.68	0.052	0.059	0.066	
D4	0.57 typ. 0.0			0.0225 typ.			
D5		3.98 typ.		0.157 typ.			
E	6.05	6.15	6.25	0.238	0.242	0.246	
E1	5.79	5.89	5.99	0.228	0.232	0.236	
E2 (for AL product)	3.30	3.48	3.66	0.130	0.137	0.144	
E2 (for other product)	3.48	3.66	3.84	0.137	0.144	0.151	
E3	3.68	3.78	3.91	0.145	0.149	0.154	
E4 (for AL product)		0.58 typ.			0.023 typ.		
E4 (for other product)		0.75 typ.		0.030 typ.			
е		1.27 BSC		0.050 BSC			
K (for AL product)	1.45 typ.			0.057 typ.			
K (for other product)	1.27 typ.			0.050 typ.			
K1	0.56	-	-	0.022	-	-	
Н	0.51	0.61	0.71	0.020	0.024	0.028	
L	0.51	0.61	0.71	0.020	0.024	0.028	
L1	0.06	0.13	0.20	0.002	0.005	0.008	
θ	0°	-	12°	0°	-	12°	
W	0.15	0.25	0.36	0.006	0.010	0.014	
M	0.125 typ.			0.005 typ.			

Revison: 20-May-13 Document Number: 71655

RECOMMENDED MINIMUM PADS FOR PowerPAK® SO-8 Single

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

APPLICATION NOTE

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000