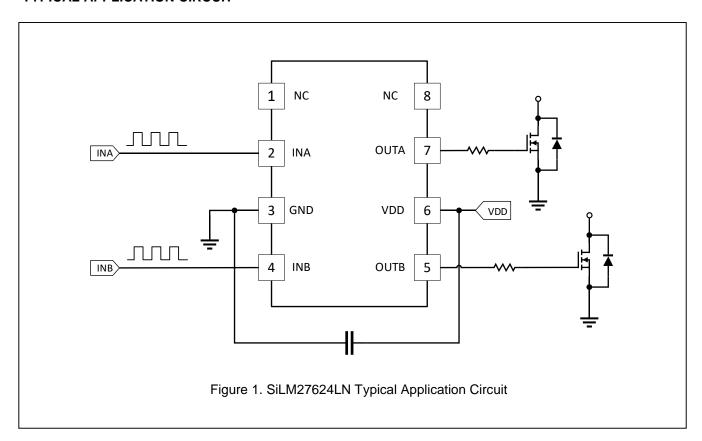


30V, 5A Dual-Channel Low-Side Gate Driver

GENERAL DESCRIPTION

The SiLM27624LN is a dual-channel, high-speed, low-side gate drivers that can effectively drive MOSFET and IGBT power switches. Using a design that inherently minimizes shoot-through current, SiLM27624LN can source and sink high peak-current pulses into capacitive loads offering rail-to-rail drive capability and extremely small propagation delay, typically 20ns.

The SiLM27624LN provides 5.0 A source, 5.0 A sink peak-drive current capability at 12V VDD supply.


APPLICATIONS

- Switching mode power supplies
- DC-to-DC converters
- · Motor Control, solar power
- Gate drive for emerging wide band-gap power devices such as GaN

FEATURES

- · Two independent gate drive channels
- 5.0 A peak source and 5.0 A peak sink current drive capability
- Fast propagation delay (20ns typical)
- Fast rise and fall time (7ns and 6ns typical)
- 4.5 to 30V single supply range
- Under-voltage lockout
- TTL and CMOS compatible input logic threshold
- Ability to handle negative voltages (-5V) at inputs
- 2ns typical delay matching between two channels
- Two outputs are paralleled for higher drive current
- Outputs held in low when inputs floating
- Operating temperature range of -40°C to 150°C
- SOP8 package

TYPICAL APPLICATION CIRCUIT

Table of Contents

General Description	1
Applications	1
Features	1
Typical Application Circuit	1
PIN Configuration	3
PIN Description	3
Functional Block Diagram	4
Absolute Maximum RatingS ^{1,2,3}	5
Recommended Operation Conditions	5
Ordering Information	5
Dynamic Electrical Characteristics	6
Static Electrical Characteristics	6
Feature Description	8
VDD and Under-Voltage Lockout	8
Input Stage	8
Output Stage	8
Package Case Outlines	9
Revision History	10

PIN CONFIGURATION

Package	Pin Configuration (Top View)	
SOP8		
	NC 1	8 NC
	INA 2	7 OUTA
	GND 3	6 VDD
	INB 4	5 OUTB

PIN DESCRIPTION

No.	Pin	Description
1,8	NC	No connect.
2	INA	Input of channel A. the OUTA is in phase with INA. OUTA is held low if INA is floating due to the internal pull down resistor. Recommend to connect the INB to ground if this pin is not used.
3	GND	Ground. All signals are referenced to this pin.
4	INB	Input of channel B. the OUTB is in phase with INB. OUTB is held low if INB is floating due to the internal pull down resistor. Recommend to connect the INB to ground if this pin is not used.
5	OUTB	Output of channel B.
6	VDD	Bias Supply Input.
7	OUTA	Output of channel A

FUNCTIONAL BLOCK DIAGRAM

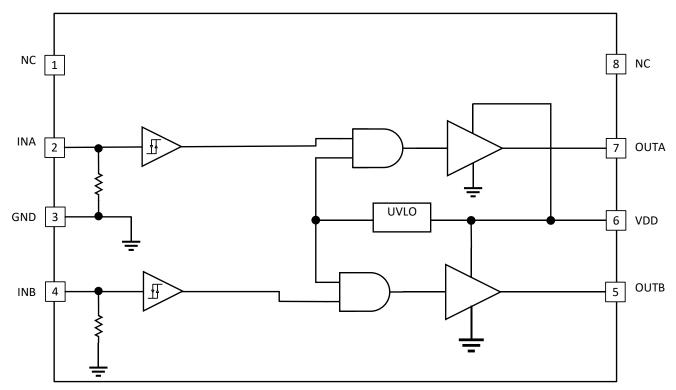


Figure 2. SiLM27624LN Block Diagram

ABSOLUTE MAXIMUM RATINGS^{1,2,3}

Symbol	Description	Min.	Max.	Units
V_{DD}	Supply voltage	-0.3	33	
OUTA, OUTB	Continuous voltage on OUTx	-0.3	V _{DD} +0.3	V
001A, 001B	Repetitive pulse less than 200ns ⁴	-2	V _{DD} +0.3	
INA, INB	Voltage on INA, INB.	-6	33	V
TJ	Operation junction temperature range	-40	150	
TL	Lead temperature (soldering, 10 seconds)		300	°C
Ts	Storage temperature	-55	150	

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only
and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions
is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- 2) All voltages are with respect to GND unless otherwise noted.
- 3) These devices are sensitive to electrostatic discharge; follow proper device-handling procedures.
- 4) Values are verified by characterization on bench.

RECOMMENDED OPERATION CONDITIONS

Over operating free-air temperature range (unless otherwise noted)

Symbol	Definition	Min	Max	Units
V_{DD}	Supply voltage	4.5	30	V
INA, INB	Input voltage	-5	30] '
TJ	Operation junction temperature range	-40	150	°C

ORDERING INFORMATION

Order Part No.	UVLO	Package	QTY
SiLM27624LNCA-DG	4.2V	SOP8, Pb-Free	2500/Reel

DYNAMIC ELECTRICAL CHARACTERISTICS

 V_{DD} = 12V, T_A = T_J = - 40°C to 125°C, typical values are specified at 25 °C unless otherwise noted.

Symbol	Parameter	Condition	Min	Тур	Max	Unit
t _R	Rise time ¹	C _{LOAD} = 1.8 nF		7	11	
t⊧	Fall time ¹	C _{LOAD} = 1.8 nF		6	8.4	
t _M	Delay matching between two channels	INA = INB, OUTA and OUTB at 50% transition point			2	ns
t _{PW}	Minimum input pulse width that changes the output state			13	15	
t _{D1} , t _{D2}	Input to output propagation delay ¹	C _{LOAD} = 1.8 nF, 5 V input pulse		20	27	

STATIC ELECTRICAL CHARACTERISTICS

 V_{DD} = 12V, T_A = T_J = - 40°C to 125°C, typical values are specified at 25 °C unless otherwise noted.

Symbol	Parameter	Condition	Min	Тур	Max	Unit
IVDD_OFF	VDD startup current	V _{DD} = 3.4 V, INA=INB=3.3V		110	270	μΑ
lypp	VDD static current	INA=INB=3.3V		810	1300	μΑ
1000	VBB statio surront	INA=INB=0V		600	900	μΑ
I _{VDD_OP}	VDD operating current	INA = INB =PWM, 1000kHz, no load at output		3.6	4.1	mA
Under Volta	ge Lockout (UVLO)				1	
$V_{DD_UV_R}$	VDD UVLO rising threshold	SiLM27624LNLN	3.9	4.2	4.5	V
$V_{DD_UV_F}$	VDD UVLO falling threshold	SiLM27624LNLN	3.6	3.9	4.2	V
V _{DD_UV_HYS}	VDD UVLO hysteresis	SiLM27624LNLN		0.3		V
Input (INA,	INB)	,		•	•	
V _{IN_H}	Input signal high threshold		1.8	2	2.3	V
V _{IN_L}	Input signal low threshold		0.8	1	1.2	V
V _{IN_HYS}	Input signal hysteresis			1		V
Rin	Inx pin pulldown resistor	INx=3.3V		120		kΩ
Output (OU	Output (OUTA, OUTB)					
Isrc	Source peak current	C _L = 0.22 µF		5.0		Α
I _{SNK}	Sink peak current	C _L = 0.22 µF		5.0		А

Symbol	Parameter	Condition	Min	Тур	Max	Unit
Vон	High level output voltage	$I_O = -10 \text{ mA}, V_{DD}-V_O$		7.2	14	mV
V _{OL}	Low output voltage	I _O = 10 mA		4.5	8.5	mV
Rон	Output pull-up resistance	$I_0 = -10 \text{ mA}$	0.52	0.72	1.2	Ω
RoL	Output pull-down resistance	Io = 10 mA	0.26	0.45	0.74	Ω

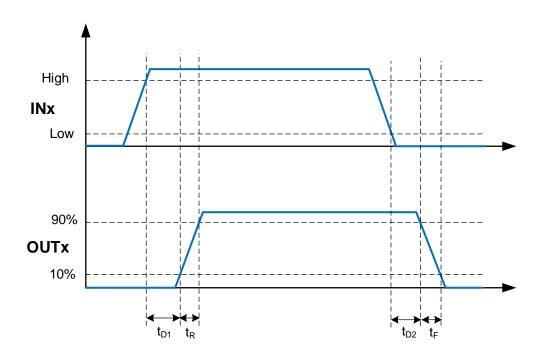


Figure 3. Input and Output Operation

FEATURE DESCRIPTION

VDD and Under-Voltage Lockout

The SiLM27624LN device has internal UVLO protection feature on the VDD pin supply. Whenever the driver is in UVLO condition (for example when V_{DD} voltage is less than $V_{DD_UV_R}$ during power up and when VDD voltage is less than $V_{DD_UV_F}$ during power down), this circuit holds all outputs low, regardless of the status of the inputs. This hysteresis helps prevent chatter when low V_{DD} supply voltage have noise from the power supply and also when there are droops in the VDD bias voltage when the system starts switching and there is a sudden increase in I_{DD} .

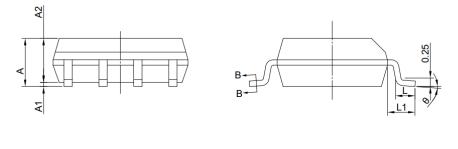
Input Stage

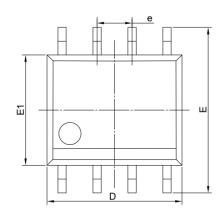
The input pins of the SiLM27624LN gate-driver are based on a TTL and CMOS compatible input threshold logic that is independent of the VDD supply voltage. With typically high threshold = 2 V and typically low threshold = 1 V, the logic level thresholds are conveniently driven with PWM control signals derived from 3.3V and 5V digital power-controller devices. SiLM27624LN also features tight control of the input pin threshold voltage levels which eases system design considerations and ensures stable operation across temperature.

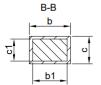
The SiLM27624LN features an important safety feature wherein, whenever any of the input pins is in a floating condition, the output of the respective channel is held in the low state. This is achieved using pull-down resistors on the INA and input pins.

The input stage of each driver is driven by a signal with a short rise or fall time. This condition is satisfied in typical power supply applications, where the input signals are provided by a PWM controller or logic gates with fast transition times (<200 ns) with a slow changing input voltage, the output of the driver may switch repeatedly at a high frequency. While the wide hysteresis offered in SiLM27624LN definitely alleviates this concern over most other TTL input threshold devices, extra care is necessary in these implementations. If limiting the rise or fall times to the power device is the primary goal, then an external resistance is highly recommended between the output of the driver and the power device.

Output Stage


Each output stage in the SiLM27624LN device is capable of supplying 5.0 A peak source and 5.0 A peak sink current pulses. The output voltage swings between VDD and GND providing rail-to-rail operation, thanks to the MOS-output stage which delivers very low drop-out.


The channel A and channel B outputs can be paralleled to provide higher driver current capability. In such application, the INA and INB need to be connected together.


For example, in applications that have zero voltage switching during power MOSFET turn-on or turn-off interval, the driver supplies high-peak current for fast switching even though the miller plateau is not present. This situation often occurs in synchronous rectifier applications because the body diode is generally conducting before power MOSFET is switched on.

PACKAGE CASE OUTLINES

Dimension	MIN	NOM	MAX	
Α	-	-	1.75	
A1	0.1	-	0.25	
A2	1.25	-	-	
L	0.4	0.835	1.27	
L1	-	1.04	-	
θ	0	-	8	
b	0.31	-	0.51	
b1	0.28	-	0.48	
С	0.1	-	0.25	
c1	0.1	-	0.25	
D	4.7	4.9	5.1	
Е	5.8	6	6.2	
E1	3.8	3.9	4	
е	1.02	1.27	1.52	
Unit : mm				

Figure 4. SOP8 Package Outline Dimensions

REVISION HISTORY

Note: page numbers for previous revisions may differ from page numbers in current version

Page or Item Subjects (major changes since previous revision)		
Rev 1.0 datasheet, Sep/2023		
Whole document	Initial released	