

SY22316PS32-G00 16-bit Proximity Sensor for TWS Application

General Description

SY22316PS32-G00 integrates an IR photodetector, a flexible data acquisition engine and a 940 nm Vertical Cavity Surface Emitting Laser diode (VCSEL) in a single package.

With the proximity photodiode and the high SNR processing circuitry integrated on the main chip, it can be used in low power applications where proximity sensing is required, and where space and low-power consumption are critical.

The digital interface consists of a 1 MHz SMBus compatible /I²C interface along with a configurable interrupt pin. A flexible interrupt scheme simplifies the system design complexity by eliminating the need to poll the device.

SY22316PS32-G00 design featuring low power operation, high SNR for proximity sensing, high data linearity, user friendly interface and a wide operating temperature range, is suitable for proximity sensing in battery-powered applications.

Applications:

- Smart Phones
- TWS (true wireless stereo) Headphones
- Home Appliances
- Robotics

Features

- Reliable Proximity Detection between 3mm and 15cm
- 16-bit ADC with Programmable Integration Time, Gain and Sleep Time Enables High SNR Measurements and Low Power Operation.
- 940 nm VCSEL Eliminates the "Red Glow"
- Programmable VCSEL Drive Current with Built-in Temperature Compensation.
- Uses Proprietary Design Techniques and Package to Reduce Optical Crosstalk
- Input Voltage Range: 2.8V to 3.6V
- Current Consumption (Max):
 - Inactive -2µA
 - Sleep Mode -13µA
 - ADC Conversion -1.1 mA
- -30°C to +85°C Operating Temperature
- Package Information
 - Size:2.55mm×1.50mm×0.60mm
 - Type: SMD BT with Transparent Molding Compound

Figure 1. Typical Application Schematic [1]

Note [1]. Bypass capacitors should be placed as close as possible to the device to eliminate noise.

Functional Block Diagram

Figure 2. Block Diagram

Pin No	Pin Name	Pin Description
1	VDD	Positive supply: 2.8V to 3.6V.
2	INTn	Interrupt output with open-drain configuration, low level active.
3	SDA	I ² C data line. The I ² C bus lines can be pulled from 1.7V to above VDD, 3.6V max.
4	SCL	I ² C clock line. The I ² C bus lines can be pulled from 1.7V to above VDD, 3.6V max.
5	PGND	Power supply ground. All voltages are referenced to PGND.
6	NC	No connection.

Absolute Maximum Ratings [1] T _A =25°C, unless otherwise specified	Min	Max	Unit	
Supply Voltage	-0.3	4	V	
I ² C Bus Voltage	-0.3	4	V	
I ² C Bus Current		10	mA	
INTn Voltage	-0.3	4	V	
INTn Current		10	mA	
Central Wavelength of VCSEL	40	nm		
Human Body Model	nan Body Model ±2000			
Charged Device Model	±5	V		

Recommended Operating Conditions	Min	Max	Unit
Supply Voltage	2.8	3.6	V
Storage Temperature	-40	+100	°C
Operating Temperature	-30	+85	C

Electrical Characteristics $V_{DD} = 3.0V$, $T_A = +25^{\circ}C$, unless otherwise specified									
Parmeter	Symbol	Test Condition	Min	Тур	Max	Unit			
Supply Voltage Range	V _{DD}		2.8	3.0	3.6	V			
Supply Current when Disabled	Idd_sd	PXS_EN=0			2	μΑ			
Supply Current when in Sleep State	I _{DD_SLP}	VCSEL current excluded, PXS_INT_TIME=0000,WAIT_EN=1, PXS_SLP=111		10	13	μΑ			
Supply Current when A-D Conversion is Ongoing	Idd_adc	VCSEL current excluded, PXS_INT_TIME=0000, WAIT_EN=0		0.9	1.1	mA			
Full Scale of Proximity ADC Output	DATA _{PXS_FS}				65535	counts			
Driving Current	T	PXS_DRV=0		10	10				
Driving Current	I _{IRDR}	PXS_DRV=1		15		mA			
Effective Proximity Reading	DATAPXS_3cm- DATAPXS_∞	PXS_DRV=0, VCSEL_DUTY=11, PXS_GAIN=01, PXS_INT_TIME=0100, PXS_BG=11, Kodak Grey Card, 18% Reflectivity, Distance is 3cm and ∞	20100	23700	27300	counts			
Sleep Time between Two Adjacent	t	PXS_SLP=000		6.25		ms			
Proximity ADC Conversions	t _{SLP}	PXS_SLP=111		800		ms			

I ² C Electrical Specifications [2] $V_{DD} = 3.0V$, $T_A = +25^{\circ}C$, unless otherwise specified								
Parameter	Symbol	Test Condition	Min	Тур	Max	Unit		
Supply Voltage Range for I ² C Interface	V _{I²C}		1.7		V _{DD} +0.3	V		
SCL Clock Frequency	fscl				400	kHz		
Low Level Input Voltage of SCL and SDA	VIL				0.55	V		
High Level Input Voltage of SCL and SDA	VIH		1.25			V		
SDA Current Sinking Capability	Isda	$V_{OL} = 0.4V$	2.7	5		mA		
Hysteresis of Schmitt Trigger Input	V _{hys}		$0.05 V_{DD}$			V		
Low-level Output Voltage of SDA	VOL	I _{OL} =4mA			0.4	V		
Input Leakage for SDA, SCL	Ii		-10		10	μΑ		
Pulse Width of Spikes Suppressed by the Input Filter	tsp				50	ns		
Capacitance for Each SDA and SCL Pin	Ci				10	pF		
Hold Time (repeated) START Condition	thd:sta		0.6			μs		
Low Period of the SCL Clock	tLOW		1.3			μs		
High Period of the SCL Clock	thigh		0.6			μs		
Set-up Time for a Repeated START Condition	tsu:sta		0.6			μs		
Data Hold Time	thd:dat		30			ns		
Data Set-up Time	t _{SU:DAT}		100			ns		
Set-up Time for STOP Condition	tsu:sto		0.6			μs		
Bus Free Time between a STOP and START Condition	tbuf		1.3			μs		
Rise Time of both SDA and SCL	t _R	$R_{pull-up} = 10k\Omega, C_b = 10pF$		95		ns		
Fall Time of SDA and SCL	tF	$R_{pull-up} = 10k\Omega, C_b = 10pF$		25		ns		
Capacitive Load for each Bus Line	C _b				0.4	nF		
SDA and SCL System Bus Pull-up Resistor	R _{pull-up}	Maximum is determined by t_R and t_F		10		kΩ		
Data Valid Time	t _{VD:DAT}				0.9	μs		
Data Valid to Acknowledge Time	tvd:ack				0.9	μs		
Noise Margin at the LOW Level	V _{nL}		$0.1 V_{DD}$			V		
Noise Margin at the HIGH Level	V _{nH}		$0.2V_{DD}$			V		

Note [1]. Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note [2]. The I²C bus protocol was developed by Philips (now NXP). For a complete description of the I²C protocol, please review the NXP I²C design specification at http://www.I²C-bus.org/references/.

Figure 3. I²C Timing Diagram

Typical Performance Curves

Proximity ADC Output Data vs. Card Distance (IT=0100, Duty=11, DRV=0, Gain=01, BG=11)

Proximity ADC Output Data vs. Card Distance for Different Duty Cycle (IT=0100, DRV=0, Gain=01)

Detailed Description

Current Consumption Estimation

The device average current consumption can be calculated by adding the following 3 parts if the wait function is enabled: ADC conversion, Sleep, pulsed VCSEL drive.

When the ADC performs a conversion, the current consumption is 0.9mA, for a duration consisting of the sum of the configured integration time and reset time (1.72ms).

$$I_{ADC} = \frac{900 \times (t_{IT} + 1.72)}{(t_{SIP} + t_{TT} + 1.72)} \,\mu A$$

When the wait time is enabled, the average current consumption can be calculated using the following formula:

$$I_{SLP} = \frac{10 \times t_{SLP}}{(t_{SLP} + t_{IT} + 1.72)} \,\mu A$$

Calculating the average current consumption to include the VCSEL current can be done using the following equation:

$$I_{DRV} = \frac{I_{DRV} \times (t_{IT} \times 1000 + 600) \times D}{(t_{SLP} + t_{IT} + 1.72)} \,\mu A$$

Where t_{SLP} represents the sleep time set by PXS_SLP bits, t_{IT} is the integration time for the ADC and 1.72ms represents the reset time for the internal circuitry, I_{DRV} is the VCSEL driving current, and D is duty cycle of the pulsed driving current.

$$I_{AVG} = I_{ADC} + I_{SLP} + I_{DRV}$$

For example, if t_{SLP} is set 100ms and t_{IT} is 1.2ms, driving current I_{DRV} is 15mA and duty cycle is 8.3%, the average current consumption can be calculated as:

$$I_{AVG} = I_{ADC} + I_{SLP} + I_{DRV}$$

= $\frac{900 \times (1.2 + 1.72)}{100 + 1.2 + 1.72} + \frac{10 \times 100}{100 + 1.2 + 1.72} + \frac{15 \times (1200 + 600) \times 8.3\%}{100 + 1.2 + 1.72}$
 $\approx 57 \mu A$

Interrupt Configuration

Both window type and hysteresis type interrupts are available in SY22316PS32-G00. The Interrupt scheme is controlled by PXS_INT_TYPE bit in the register PINT_CON.

The proximity interrupt flag (PXS_FLAG) is governed by the low and high thresholds stored in registers PXS_LTx and PXS_HTx at addresses 0x06 through 0x09. The SY22316PS32-G00 also provides a persistence filter which allows the user to specify the number of consecutive readings to meet the interrupt conditions before an interrupt is generated.

If PI_EN is set the INTn pin will also assert. If not, INTn will be in high impedance (HZ) state, independent of the status of the PXS_FLAG signal. Figure 4 shows the logic connections for the different blocks used to generate an interrupt.

INTn=! (PXS_FLAG && PI_EN)

Figure 4. Interrupt Scheme

If the interrupt is configured for window detection, the PXS_FLAG bit will be asserted when the PXS reading is above the high threshold or below the low threshold. The interrupt flag can be cleared by the user via the special command code. Refer to Figure 5 for details (PRST is 1).

Figure 5. Proximity Window Interrupt

For the hysteresis type interrupt, the PXS_FLAG will be asserted once the PXS reading is above the high threshold. The PXS_FLAG bit will be auto-cleared when a PXS reading is below the low threshold, or cleared by the user via command code. Refer to Figure 6 for details (PRST is 1).

The PXS_INT_LOGIC flag in the register INT_FLAG is only valid for window type interrupt. The status of this bit can show whether proximity reading is above the high threshold or below the low threshold, indicating that the target is near or far from sensor.

The PXS_DATA_VALID flag is set when an ADC conversion is completed, and data is available in the PXS_DATAL and PXS_DATAH registers. Reading these registers through the I²C interface will reset the bit.

Power on Sequence

(1) To release the Power on Reset (POR), a duration of at least 2ms is required after the supply voltage goes above 2.0V from less than 0.4V;

(2) The POR is triggered when the supply voltage drops to less than 0.4V for longer than 1ms.

(3) For proper operation, the slew rate for the power supply rail must be greater than 0.5V/ms.

Figure 7. Power on Sequence

Register Map

There are 15 8-bit registers accessible via I²C. Each of the registers and configuration bits are described in more detail below. Registers 0x02 to 0x05 define the operation mode of the device. Registers 0x06 to 0x09 store the thresholds which trigger interrupt events. Registers 0x0A and 0x0B store the offset cancellation data. Registers 0x12 and 0x13 store the proximity reading and register 0x18 stores the status bits. Register 0x25 controls the background saturation (maximum level when the photodetectors are exposed to direct sunlight).

Register	Registers and Register Bits									
REG	REG					Bit				
Address	Name	7	6	5	4	3	2	1	0	Default
0x00	COM_TEST				Ch	ip ID				0x29
0x02	PXS_CON1	PXS_EN	PXS_GA	IN[1:0]	(Write 0)		PXS_IN7	[_TIME[3:0]		0x00
0x03	PXS_CON2		(Write 0)		VCSEL_E	DUTY[1:0]	(Wri	te 0)	PXS_DRV	0x00
0x04	WAIT_CON	WAIT_EN	PZ	XS_SLP [2:0]]		(W	rite 0)		0x00
0x05	PINT_CON	PI_EN	PXS_INT_T YPE		(Wr	ite 0)		PXS_l	PRST[1:0]	0x00
0x06	PXS_LTL				PXS_	LT[7:0]		•		0x00
0x07	PXS_LTH				PXS_	LT[15:8]				0x00
0x08	PXS_HTL				PXS_	HT[7:0]				0xFF
0x09	PXS_HTH				PXS_	HT[15:8]				0xFF
0x0A	P_OFFSETL				PXS_OF	F_DIG[7:0]				0x00
0x0B	P_OFFSETH	(Wı	rite 0)	PXS_OF F_ANA		РХ	S_OFF_DIG	[12:8]		0x00
0x12	P_DATAL		PXS_DATA[7:0]						0x00	
0x13	P_DATAH		PXS_DATA[15:8]						0x00	
0x18	INT_FLAG		(unused)			PXS_FL AG	PXS_INT _LOGIC	BOF	PXS_DATA _Valid	0x00
0x25	BG_CON	(Wı	rite 0)	PXS_E	BG[1:0]		(W	rite 0)		0x00

Register Description

Comma	Command Code								
Bit	Access	Default	Name	Function / Operation					
7:6				Unused register bits - write 0					
5:4	5.4			11, special function					
5.4				others, register address					
			Desister Address	Special function:					
3:0			Register Address /Special Function	0000: clears proximity interrupt flag					
5:0			-	0010: set registers to default value					
			Register	others: reserved					

Registe	Register 0x00 (COM_TEST) – Communication Test Register								
Bit	Access	Default	Name	Function / Operation					
7:0	RO	0x29	Chip ID	Read this register through I ² C interface to identify the device with chip ID is 0x29. It can also help to test whether the communication link is established or not.					

Register	Register 0x02 (PXS_CON1) – Proximity Sensing Configuration								
Bit	Access	Default	Name	Function / Operation					
7	RW	0x00	PXS_EN	When =0, proximity sensing is disabled					
/	IX VV	0,000	TA5_LIV	When =1, proximity sensing is enabled					
				For bits $6:5 =$ (see the following)					
				00, proximity ADC gain is 1x					
6:5	RW	0x00	PXS_GAIN	01, gain is 2x					
				10, gain is 4x					
				11, gain is 8x					
4	RW	0x00	Reserved	Reserved. Write as 0					
				For bits $3:0 =$ (see the following)					
				0000, proximity ADC integration time is 0.6ms					
				0001, integration time is 1.2ms					
				0010, integration time is 4.8ms					
				0011, integration time is 9.6ms					
3:0	RW	0x00	PXS_INT_TIME	0100, integration time is 19ms					
				0101, integration time is 38ms					
				0110, integration time is 77ms					
				0111, integration time is 154ms					
				1000, integration time is 308ms					
				others, reserved					

Registe	Register 0x03 (PXS_CON2) – Proximity Sensing Configuration 2								
Bit	Access	Default	Name	Function / Operation					
7:5	RW	0x00	Reserved	Reserved. Write as 0					
			For bits $4:3 =$ (see the following)						
				00, duty cycle of pulsed driving current is 8.3%					
4:3	RW	0x00	VCSEL_DUTY	01, duty cycle of pulsed driving current is 16.6%					
				10, duty cycle of pulsed driving current is 33.2%					
				11, duty cycle of pulsed driving current is 50%					
2:1	RW	0x00	Reserved	Reserved. Write as 0					
0	0 RW 0x00	0x00	00 PXS DRV	When=0, driving current for VCSEL is 10mA					
0		0,00	TAS_DKV	When=1, driving current is 15mA					

Registe	Register 0x04 (WAIT_CON) – Wait Configuration							
Bit	Access	Default	Name	Function / Operation				
7	RW	0x00	WAIT_EN	When =0, wait function is disabled When =1, wait function is enabled and proximity sleep time is inserted to two adjacent proximity ADC cycle				
6:4	RW	0x00	PXS_SLP	For bits 6:4 = (see the following) 000, proximity sleep time is 6.25ms 001, sleep time is 12.5ms 010, sleep time is 25ms 011, sleep time is 50ms 100, sleep time is 100ms 101, sleep time is 200ms 110, sleep time is 400ms 111, sleep time is 800ms				
3:0	RW	0x00	Reserved	Reserved. Write as 0				

Registe	Register 0x05 (PINT_CON) – Proximity Interrupt Configuration							
Bit	Access	Default	Name	Function / Operation				
7	RW	0x00	PI EN	When =0, interrupt pin is HZ and irrelevant to internal logic				
/	IX VV	0x00	FI_LIN	When =1, interrupt pin shall react according to PXS_FLAG bit				
6	RW	0x00	PXS INT TYPE	When =0, interrupt is of Window type				
6	K W	0x00	FAS_INT_TIFE	When =1, interrupt is of Hysteresis type				
5:2	RW	0x00	Reserved	Reserved. Write as 0				
				For bits $1:0 =$ (see the followings)				
				00, every proximity ADC cycle generates an interrupt				
1:0	RW	0x00	PXS_PRST	01, set PXS_FLAG if 1 proximity reading trips the threshold value				
				10, set PXS_FLAG if 4 proximity reading trip the threshold value				
				11, set PXS_FLAG if 8 proximity reading trip the threshold value				

Register 0x06 (PXS_LTL) – Lower Byte of Proximity Low Threshold									
Bit	Access	Default	Name	Function / Operation					
7:0	RW	0x00	PXS_LTL	Lower 8 bits of proximity low threshold					

Register	r 0x07 (PXS_	LTH) – Up	per Byte of Proximit	ty Low Threshold
Bit	Access	Default	Name	Function / Operation
7:0	RW	0x00	PXS_LTH	Upper 8 bits of proximity low threshold

Registe	Register 0x08 (PXS_HTL) – Lower Byte of Proximity High Threshold							
Bit	Access	Default	Name	Function / Operation				
7:0	RW	0xFF	PXS_HTL	Lower 8 bits of proximity high threshold				

Registe	r 0x09 (PXS	_HTH) – Up	oper Byte of Proximit	ty High Threshold
Bit	Access	Default	Name	Function / Operation
7:0	RW	0xFF	PXS_HTH	Upper 8 bits of proximity high threshold

Registe	Register 0x0A (P_OFFSETL) – Lower Byte of Proximity Offset							
Bit	Access	Default	Name	Function / Operation				
7:0	RW	0x00	PXS_OFF_DIGL	Low 8 bits of proximity digital offset. Each count will decrease proximity data by 4 counts				

Registe	Register 0x0B (P_OFFSETH) – Upper Byte of Proximity Offset						
Bit	Access	Default	Name	Function / Operation			
7:6	RW	0x00	Reserved	Reserved. Write as 0			
5	RW	0x00	PXS_OFF_ANA	1 bit of proximity analog offset. Setting 1 will decrease proximity data by 17500 counts			
4:0	RW	0x00	PXS_OFF_DIGH	Upper 5 bits of proximity digital offset. Refer to Table 11 for details			

Registe	r 0x12 (P_D	ATAL) -Pro	oximity Reading	
Bit	Access	Default	Name	Function / Operation
7:0	RO	0x00	PXS_DATA	Lower 8 bits of proximity reading

Registe	Register 0x13 (P_DATAH) –Proximity Reading									
Bit	Access	Default	Name	Function / Operation						
7:0	RO	0x00	PXS_DATA	Upper 8 bits of proximity reading						

Registe	Register 0x18 (INT_FLAG) – Interrupt Flag							
Bit	Access	Default	Name	Function / Operation				
7:4	RO	0x00	Unused	Unused				
3	RO	0x00	PXS_FLAG	When =0, no proximity interrupt has occurred since power-on or last "clear" When =1, a proximity interrupt event occurred				
2	RO	0x00	PXS_INT_LOGIC	When =0, proximity data is below its low threshold (object is far) When =1, proximity data is above its high threshold (object is close)				
1	RO	0x00	BOF	When =0, background light does not overflow When =1, background light overflows (refer to PXS_BG at register 0x25) and PXS_DATA shall change to 0				
0	RO	0x00	PXS_DATA_VA LID	When =0, proximity data is not updated after sensing enabled or last data reading When =1, proximity data is updated after sensing enabled or last data reading				

Registe	Register 0x25 (BG_CON) – Interrupt Flag								
Bit	Access	Default	Name	Function / Operation					
7:6	RW	0x00	Reserved	Reserved. Write as 0					
5:4	RW	0x00	PXS_BG	For bits 5:4 = (see the followings) When the PXS senses the BG (background) light overflow, PXS_data will be 0 for "object is far" judgement					
3:0	3:0 RW 0x00 Reserved Reserved. Write as 0								

I²C Read / Write Register Data

The SY22316PS32-G00's I²C slave address is 0x39 (7-bit, 0b' 0111001). Figures 8 and 9 graphically depict the protocol used for writing or reading the device register data. The first 8-bit of data following the write-operation can be either the register address or special function. Refer to Table 2 for details.

Package Outline Drawing

Edge View

Side View

Recommended Land Pattern

Notes 1: All tolerances are ± 0.1 mm, unless otherwise specified. **Notes 2:** Proximity sensing center is at point A (x, y) = (1.35, 0.31). **Notes 3:** Proximity sensing area: 318μ m×265 μ m. **Notes 4:** VCSEL emitting center is at point B (x, y) = (0.37, 0.31). **Notes 5:** Unit is mm.

3D Drawing of Product

Refer to below 3D drawing of SY22316PS32-G00 with the VCSEL's emitting beam and proximity's FOV (field of view).

Side-view

Packaging Quantity Specifications

Dimensions of Tape (Unit: mm)

Recommended Method of Storage

Storage is recommended as soon as the bag has been opened to prevent moisture absorption. The following conditions should be observed, if bags are not available:

- Storage temperature: 10°C to 30°C
- Storage humidity: ≦60%RH max
- Storage Time: ≦168hr max

Moisture-Proof Package

To avoid moisture absorption by the resin, the product should be stored under the following conditions:

- Temperature: $23 \pm 5^{\circ}C$
- Relative humidity: 60% (max)
- Baking is required if the devices have been stored unopen for more than six months.

ESD Precaution

Proper storage and handling procedures should be followed to prevent ESD damage to the devices especially when they are removed from the Anti-static bag. Electro-Static Sensitive Devices warning labels are on the packing.

Make any necessary soldering correction manually

Temperature shall be no more than 350°C (25W for soldering iron) within 3 sec. Make sure do not do this more than one time for any given pin.

Recommended Solder Profile

Notes 1: Reflow soldering should not be done more than twice.

Notes 2: Do not put stress on the devices during heating stage while soldering.

Notes 3: Do not warp the circuit board after soldering.

Revision History

Revision Number	Revision Date	Description	Pages changed		
0.9	01/18/2021	Initial Release			
1.0	01/18/2022	Production Release			
Pavicion history is for reference only and may not be comprehensive or complete					

Revision history is for reference only and may not be comprehensive or complete.

IMPORTANT NOTICE

1. **Right to make changes.** Silergy and its subsidiaries (hereafter Silergy) reserve the right to change any information published in this document, including but not limited to circuitry, specification and/or product design, manufacturing or descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to Silergy's standard terms and conditions of sale.

2. Applications. Application examples that are described herein for any of these products are for illustrative purposes only. Silergy makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Buyers are responsible for the design and operation of their applications and products using Silergy products. Silergy or its subsidiaries assume no liability for any application assistance or designs of customer products. It is customer's sole responsibility to determine whether the Silergy product is suitable and fit for the customer's applications and products planned. To minimize the risks associated with customer's products and applications, customer should provide adequate design and operating safeguards. Customer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Silergy assumes no liability related to any default, damage, costs or problem in the customer's applications or products, or the application or use by customer's third-party buyers. Customer will fully indemnify Silergy, its subsidiaries, and their representatives against any damages arising out of the use of any Silergy components in safety-critical applications. It is also buyers' sole responsibility to warrant and guarantee that any intellectual property rights of a third party are not infringed upon when integrating Silergy products into any applications. Silergy assumes no responsibility for any said applications or for any use of any circuitry other than circuitry entirely embodied in a Silergy product.

3. Limited warranty and liability. Information furnished by Silergy in this document is believed to be accurate and reliable. However, Silergy makes no representation or warranty, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall Silergy be liable for any indirect, incidental, punitive, special or consequential damages, including but not limited to lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges, whether or not such damages are based on tort or negligence, warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, Silergy' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Standard Terms and Conditions of Sale of Silergy.

4. **Suitability for use.** Customer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safetyrelated requirements concerning its products, and any use of Silergy components in its applications, notwithstanding any applications-related information or support that may be provided by Silergy. Silergy products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Silergy product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Silergy assumes no liability for inclusion and/or use of Silergy products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

5. **Terms and conditions of commercial sale**. Silergy products are sold subject to the standard terms and conditions of commercial sale, as published at http://www.silergy.com/stdterms, unless otherwise agreed in a valid written individual agreement specifically agreed to in writing by an authorized officer of Silergy. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Silergy hereby expressly objects to and denies the application of any customer's general terms and conditions with regard to the purchase of Silergy products by the customer.

6. **No offer to sell or license**. Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Silergy makes no representation or warranty that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right. Information published by Silergy regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Silergy under the patents or other intellectual property of Silergy.

For more information, please visit: www.silergy.com

© 2023 Silergy Corp.

All Rights Reserved.