STV2151 # FULL AUTOMATIC MULTISTANDARD CHROMA DECODER WITH EMBEDDED CHROMA DELAY LINE **ADVANCE DATA** - COLOR DECODER FOR STANDARDS: - SECAM - PAL B,G - NTSC 3.58 - PAL M - NTSC 4.43 - TWO MODES OF SELECTION OF THE STANDARDS, SELECTED BY BUS: - Automatic sequential selection mode on SECAM/PAL B, G with NTSC 3.58 selected by 60Hz bit only - BUS forced standard selection mode for : SECAM/PAL B, G / NTSC 3.58 / PAL M / NTSC 4.43 - AUTOMATIC STANDARD RECOGNITION - INTEGRATED CHROMA DELAY LINES IN BASE BAND - COLOR SUB-CARRIER REGENERATION WITH XTAL (4.43 and 3.58) - AGC FOR SECAM - HUE CONTROL ± 30deg FOR NTSC - S-VHS INPUT (Bus Selection) - AUTO ALIGNED CHROMA FILTERS - INTEGRATED AND ADJUSTMENT FREE TRAP FILTERS - BIDIRECTIONAL BUS INFORMATION: - Input Data : Standard bits 50/60Hz Bit Auto Mode for Standard Forced Killer Mode Killer On/Off Bell Filter Central Frequency Hue Control Bits S-VHS Mode - Output Data: Selected Standard Bits Identification Bit #### DESCRIPTION The STV2151 integrates in a single chip every circuitry to deliver the Y, R-Y, B-Y signals starting from a CVBS or Y/C signals. It can process PAL, SECAM and NTSC standards. It is controlled by I²C Bus. Inputs: one input is dedicated to the CVBS or Y signal. An other one inputs a C signal. An integrated switch, controlled by BUS, allows to chose the right input. According to the application, this operation can be automatically treated by the microprocessor, thanks a standard identification reply available in a PC Bus register. The synchronisation is done through a Super Sand Castle input. - Luminance Path: depending on the current decoding standard, a colour sub-carrier trap (notch filter), totally integrated and alignment free, can be used or by-passed (BUS control) to deliver the Youtput signal. - Chroma decoder: the chroma signal goes first through the band pass filter ("bell filter" for SE-CAM), which is automatically tuned by the STV2151. It is then directly fit into the multistandard decoder. At least, the demodulated signals are delayed in the integrated base band delay line or led into an adder to deliver the R-Y and B-Y signals. In NTSC, the hue control allows a typical phase shift of ±30°. January 1995 ### **PIN CONNECTIONS** #### **PIN DESCRIPTION** | Pin N° | Symbol | Function | |--------|-----------------|----------------------------------| | 1 | DESR | Red De-emphasis | | 2 | FOR | For Capacitor Memory | | 3 | NC | | | 4 | CLOCK | Clock Input I ² C Bus | | 5 | DATA | Data Input I ² C Bus | | 6 | R-Y | Output of R-Y Signal | | 7 | B-Y | Output of B-Y Signal | | 8 | V _{DD} | Supply of the Digital Part | | 9 | Vss | Ground of Digital Part | | 10 | SSC | Super-sand-castle Input | | 11 | V _{CQ} | 6MHz PLL Filter | | 12 | REG | Supply Regulation | | 13 | IREF | Current Reference | | 14 | TEST | Test Output | | 15 | DESB | Blue De-emphasis | | 16 | FOB | F0b Capacitor Memory | | 17 | BELL | RLC Input for Bell Filter | | 18 | Vcc | Supply of the Analog Part | | 19 | VERF1 | Internal Voltage Reference | | 20 | YOUT | Luminance Output | | 21 | AD_SEL | Address Selection | | 22 | SVHS | SVHS Input | | 23 | ID3 | Criteria C3 Output | | 24 | CVBS | CVBS Input | | 25 | ID1 | Criteria C1 Output | | 26 | FILT | Trap Filter Capacitor Memory | | 27 | VCOTC | 4.43/3.58 Oscillator Filter | | 28 | QZ1 | Crystal 3.58MHz | | 29 | GND | Ground of Analog Part | | 30 | QZ2 | Crystal 4.43MHz | #### **BLOCK DIAGRAM** 2/11 SGS-THOMSON MICROELECTRONICS ■ 7929237 0073941 397 **■** ### **FUNCTIONAL DESCRIPTION** #### Standard Selection Two ways selected by BUS (bit FSTD): - Selection by BUS (BUS mode) bits BS2, BS4, - Selection by an internal sequence (auto mode). When the circuit is set to "auto mode" the internal sequence is : PAL / SECAM. When the circuit is set to "BUS mode" the following standards can be selected: PAL B,G / SECAM / NTSC 3.58 / PAL M / NTSC 4.43. # Current Standard Information This information is always available on the BUS by the 3 bits: IS10, IS11, IS12. # Standard Identification The identification bit (bit IDENT) is set to 1 if the incoming signal standard corresponds to the selected standard. #### Color Killer The killer signal controls the suppression of the color at the outputs of the circuit (blanking) and the trap filter bypassing. If the killer is high, there is no color signal (B&W) and no trap filter in the luminance path (mode SVHS). If the killer is low, there are colors and the trap filter is in operation. Two modes for the killer selected by BUS (bit FKILL): - Auto killer mode (FKILL = 0). - Forced killer mode (FKILL = 1). In "auto killer mode" the killer signal depends on the ident signal: - IDENT = 0 killer high → B&W - IDENT = 1 killer low → color In "forced killer mode" the killer signal depends on the BUS bit: - MKILL = 0 killer low → color - MKILL = 1 killer high → B&W ## "Bell" and Band Pass Filter An internal loop, using the 4.43MHz Xtal oscillator as reference, locks the central frequency of the chroma filter on the frequency depending on the standard. The Q is automatically switched to the right value. In SECAM, the center frequency can be shifted by BUS by step of 7kHz from 0 to 100kHz. It is possible to stop the automatic bell filter calibration by bus. #### Trap Filter Integrated biquad filters are used to perform the trap filters. These filters are adjustment-free using also the 4.43MHz/3.58MHz Xtal oscillator reference. In SECAM, PAL B/G, and NTSC the IC uses two trap filters in series. In SECAM the first one is centered on 4.1MHz and the second one on 4.43MHz. In PAL the first one is centered on 4.43MHz and the second one on 4.8MHz. In NTSC the first one is centered on 3.58MHz and the second one on 3.87MHz. # Baseband Delay Line The circuit includes a double baseband delay line in a switched capacitors technology. The delay is automatically adjusted to the line duration by a PLL using the super-sand-castle signal as reference. # **ABSOLUTE MAXIMUM RATINGS** | B2OF015 | MAXIMUM HATINGO | | Unit | |------------------|-------------------------------------|------------|---------| | | Parameter | Value | Unit | | Symbol | | -40 to 150 | °C | | T _{stg} | Storage and Junction Temperature | 0 to 70 | °C | | Toper | Operating Temperature | 60 | •c/w | | Rth(i-a) | Thermal Resistance Junction-ambient | | 1 5, 1, | ### **ELECTRICAL CHARACTERISTICS** | Symbol | Pin N° | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | |-----------------|---------|--|--|------|----------|------------------------|------------------| | GENERAL | CONDIT | IONS | | | | | | | | | Voltage Supply | | | 12 | | ٧ | | | | Burst Gate Pulse | | | 4 | | μs | | | | Standard Color Bar Patterns | | | | | | | | | T _{amb} | | | 25 | | •C | | AD_SEL | 21 | Address Selection | 1000101
1000111 | 3 | 0 | V _{CC}
0.5 | V
V | | SUPPLY S | ECTION | | | | | | | | Vcc | 18 | Main Supply Section | V _{supply} = 12V | 7.4 | 7.7 | 8 | ٧ | | loc | 18 | Main Supply Current | $V_{CC} = V_{reg}$ | | | 45 | mA | | V _{DD} | 8 | MOS Supply Section | V _{supply} = 12V | | 7 | | ٧ | | I _{DD} | 8 | MOS Supply Current | V _{CC} = V _{reg} | | | 15 | mΑ | | IRM | 12 | Maximum Current by Pin REG | | | | 3.5 | mΑ | | CHROMIN | ANCE C | | | | | | | | Сррт | 22 | Peak to Peak Amplitude | Referred on burst period (blue lines in SECAM) | 15 | 150 | 300 | mV | | Ze22 | 22 | Input Impedance | | 4 | 7 | | kΩ | | CVBS INP | UT | | | | • | | | | YC | 24 | Peak to Peak Amplitude | Standard bar pattern 75% | | 500 | 700 | mV | | SC | 24 | Subcarrier Amplitude | Referred on burst period (blue lines in SECAM) | 15 | 150 | 300 | mV | | Ze24 | 24 | Input impedance | | 4 | 6.8 | | kΩ | | B-Y/R-Y O | UTPUT S | SIGNALS | | | | | | | R-Y | 6 | R-Y Amplitude | Color bar pattern 75% | 0.7 | 1 | 1.41 | ٧ | | B-Y | 7 | B-Y Amplitude | Burst amplitude 150mV
Burst gate duration 4µs | 0.84 | 1.2 | 1.7 | ٧ | | Tr1 | 6/7 | R-Y B-Y Rising Time PAL G Mode | Color bar pattern 75%
PAL G | | 600 | 700 | nS | | Tr2 | 6/7 | R-Y B-Y Rising Time SECAM Mode | Color bar pattern 75%
SECAM | | 650 | 1000 | nS | | Tr3 | 6/7 | R-Y B-Y Rising Time PAL M & NTSC 3.58 Mode | Color bar pattern 75%
PAL M & NTSC 3.58 | | 850 | 1000 | nS | | FRHF0 | 6/7 | Residual HF Signal at F0 | Color bar pattern 75% | | | 15 | mV₽₽ | | FRHF20 | 6/7 | Residual HF Signal at 2F0 | Burst amplitude 150mV All standards | | | 15 | mV _{PP} | | FRHF3 | 6/7 | Residual HF Signal at 3MHz | All Stationards | | <u> </u> | 15 | mV _{PP} | | BOFF | 6/7 | Blanking Offset | All standards | -20 | | 20 | m∨ | | RBYRY | 6/7 | Ratio B-Y/R-Y | Nominal input | 1.14 | 1.2 | 1.26 | | | DG | 6/7 | Differential Gain of the Delay Line | SECAM mode color bar pattern 75% | -6 | | 6 | % | | DCUVP | 24/6/7 | Delay between CVBS and B-Y/R-Y in PAL Mode | | | 520 | | nS | | DCUVS | 24/6/7 | Delay between CVBS and B-Y/R-Y in SECAM Mode | | | 500 | | nS | 4/11 SGS-THOMSON MICHGELECTRONICS # **ELECTRICAL CHARACTERISTICS (Continued)** | Symbol | Pin N° | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | |------------|----------|---|--|-------------|------|------|------| | GENERAL (| CONDITIC | DNS (Continued) | | | | | | | DCUVN | 24/6/7 | Delay between CVBS and B-Y/R-Y in NTSC Mode | | | 520 | | nS | | DCYS | 24/20 | Delay between CVBS and Y in SECAM Mode | | | 90 | | nS | | DCYP | 24/20 | Delay between CVBS and Y in PAL Mode | | | 90 | | nS | | DCYN | 24/20 | Delay between CVBS and Y in NTSC Mode | | | 90 | | nS | | BELL FILTE | R | | | | | | | | F0 | | Tuning Frequency | Nominal value | -20 | 4286 | +20 | kHz | | DF | | Maximum BUS Shift | Shift of the central frequency compared with the nominal value | | +100 | | kHz | | ST | | Minimum Shift Step | | | 7 | | kHz | | QB | | Quality Coefficient | Width external resistor
8.2kΩ | 14 | 16 | 18 | | | BAND PAS | SFILTER | | | | | | | | F0PB | | F0 PAL 4.43 | | -100 | 4433 | +100 | kHz | | F0N1 | | F0 NTSC4.43 | | -100 | 4433 | +100 | kHz | | F0PM | | F0 PAL 3.58 | | -100 | 3579 | +100 | kHz | | F0N2 | † | F0 NTSC 3.58 | | -100 | 3579 | +100 | kHz | | Q | | Quality Coefficient | - | 2.5 | 3.0 | 3.5 | | | ACC | 1 | 1 | | | · | · | | | GD | T | Gain Dynamic | | -6 | | +20 | dB | | REFV | 24/22 | 0 dB Reference Voltage | Burst amplitude on
standard PAL bar
pattern 75% | - | 150 | | mV₽₽ | | AREG | 6/7 | Amplitude Regulation | Burst amplitude at the input changing from 15 to 300mV _{PP} on PAL bar pattern. Measured on output R-Y/B-Y. | -3 | 0 | +3 | dB | | INTC | | Internal Time Constant | | 5 | | 8 | mS | | HUE CONT | ROL | | | | | | | | MADP | | Maximum Value of Phase Change | BUS controlled | +20 | +30 | +40 | ۰ | | MIDP | | Minimum Value of Phase Change | BUS controlled | -20 | -30 | -40 | • | | MSTP | | Maximum Step | | | 1.9 | | • | | VCO FOR F | PAL | | | • | | | | | PCR | | Positive Catching | fq0 = quartz frequency
See quartz specification | fq0
+450 | | | Hz | | NCR | | Negative Catching | fq0 = quartz frequency
See quartz specification | fq0
-450 | | -900 | Hz | | PH | | Phase Hold | | | | 0.04 | °/Hz | | PHO | 1 | U axes/f0 Phase Offset | | -5 | Ì | 7 | ۰ | | | | | | | | | | -THOMSON 7929237 0073944 OT6 🚥 2151-06.EPS Figure 1: **SECAM Trap Filter Frequency Response** (Maximum group delay time at 3.9MHz: 240ns (typical 220ns)) Figure 2: PAL Trap Filter Frequency Response (Maximum group delay time at 3.9MHz: 240ns (typical 220ns)) Figure 3: NTSC 3.58 Trap Filter Frequency Response # **ELECTRICAL CHARACTERISTICS (Continued)** | Symbol | Pin N° | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | |------------|---------|---|---|----------|-------|------|------| | DEEMPHAS | IS SECA | M | | | | | | | FD | | Cut-off Frequency | | -15% | 85 | +15% | kHz | | ATT | | Attenuation | | -9 | -9.54 | -10 | dB | | TDR | | Temperature Drift | | -2% | | +2% | | | TRAP FILTE | R | | | | | | | | SFR | 20 | SECAM Frequency Response | See Figure 1 | | | | | | PFR | 20 | PAL Frequency Response | See Figure 2 | | | | | | NFR | 20 | NTSC Frequency Response | See Figure 3 | | | | | | ZOT | 20 | Output Impedance | CVBS or SVHS mode | | | 400 | Ω | | YG | 20 | Y Output Gain | Referred to CVBS input signal Freq < 1MHz | -1 | 0 | 1 | dB | | YOFF | 20 | Y Output DC Offset in SVHS | Referred to CVBS mode | | | 0.2 | > | | YDC | 20 | Y Output DC Level | | 2 | 2.5 | 4 | ٧ | | SUPER SAN | ND CAST | LE DETECTOR | | | | | | | FR | 10 | Blanking Threshold | | 0.5 | 0.75 | 0.9 | ٧ | | LR | 10 | Line Threshold | | 1.6 | 1.8 | 1.9 | > | | BG | 10 | Burst Gate Threshold | | 3.2 | 3.5 | 3.8 | ٧ | | FBD | 10 | Frame Blanking Duration | | 1.3 | | 1.5 | ms | | TG | 10 | Burst Gate Duration | | 3.7 | 4 | 4.3 | μς | | DTG | 10 | Delay between Middle of Sync
Pulse and Leading Edge of the
Burst Gate Pulse | See Figure 4 | 2.5 | | 3.1 | μs | | CRYSTAL D | DATA | | | | | | | | | | Frequency Tolerance | At 25°C | | | 30 | ppm | | | | Frequency Tolerance | From 0 to 70°C | | | 50 | ppm | | | | F0 for PAL G and NTSC 4.43 | Serial mode | 4.433619 | | | MHz | | | | F0 for PAL M | Serial mode | 3.575611 | | | MH | | | | F0 for NTSC 3.58 | Serial mode | 3.579545 | | | MH | # Figure 4 #### 12C BUS INTERFACE DESCRIPTION The 2-wires serial interface of the I²C bus uses a clock line (CLOCK) and a data line (DATA). Both lines work bidirectionally. The I²C bus protocol prescribes a full-byte transmission. In this I²C bus circuit the first byte after the start condition is used to transmit only the IC-address (7 bits) and read/write-bit. WRITE MODE: R/W = 0 In write mode the second byte contains the sub-address of the addressed latch and the third byte the data belonging to it. Two modes are possible: - Stopping the transmission by sending the stop-condition. - Incrementing the sub-address by sending one or more additional data bytes. • READ MODE: R/W = 1 In read mode the second and third byte contain information from the IC. #### I²C BUS FORMAT | Г | | | ı | C-A | DDF | RES | SS | STV | /21 | 51 | | | | SL | JB-A | DDI | RES | S | | | | | | נ |)AT | Ą | | | | | |---|---|---|---|-----|-----|-----|----|-----|-----|-----|---|------------|-------------------|----|------|-----|-----|---|---|---|----|----|----|----|-----|----|----|----|---|---| | 8 | ; | 1 | 0 | 0 | 0 | 1 | а | a | 1 | R/W | Α | s 1 | s2 | Х | Х | Х | Х | Х | Х | Α | d8 | d7 | d6 | d5 | d4 | d3 | d2 | d1 | Α | E | | Г | | | | | 157 | BY | TE | | | | | | 2ST BYTE 3RD BYTE | | | | | Έ | | | | | | | | | | | | | S: Start A : Acknowledge E : End/stop a:0 or 1 according to Pin 21 biasing s1, s2 : Sub addresses All transmission with MSB first. ## **INPUT BYTES** #### R/W = 0 | | | SU | B-AC | DRE | SS | | | | | | D/ | ATA | | | | |----|----|----|------|------|----|---|---|-------|-------|------|------|------|------|-----|--------| | S1 | S2 | X | X | Х | X | Х | Х | d8 | d7 | d6 | d5 | d4 | d3 | d2 | d1 | | 0 | 0 | Х | Х | Х | Х | Х | Х | BT4 | ВТ3 | BT2 | BT1 | BS2 | 60HZ | BS4 | 1 | | 0 | 1 | Х | Х | Х | Х | Х | Х | FKILL | MKILL | HC5 | HC4 | НСЗ | HC2 | HC1 | BELLEN | | 1 | 0 | Х | Х | Х | Х | Х | Х | FSTD | FSVHS | SHB3 | SHB2 | SHB1 | SHB0 | 1 | 1 | | | | 2 | 2ST | BYTI | = | | | | | | 3RD | BYTE | | | | # Bus Controlled Adjustment | Symbol | Pin N° | Parameter | BUS Setting | |--------------|--------|-------------------|------------------------| | HC1HC5 | | Hue Control | HC1 : LSB
HC5 : MSB | | SHB0
SHB3 | | Bell Filter Shift | SHB0: LSB
SHB3: MSB | ### **Bus Controlled Switches** | Symbol | Pin Nº | Parameter | BUS Setting | |--------------------------|--------|--------------------------------|--| | FSTD | | Standard Selection Mode | Auto mode : FSTD = 0 Manual mode : FSTD = 1 | | FKILL | | Killer Mode | Auto by ident bit : FKILL = 0 Forced by MKILL : FKILL = 1 | | MKILL | | Killer Status | B&W: MKILL= 0
Color: MKILL = 1 | | SVHS | | CVBS / SVHS Selection | CVBS mode : SVHS = 0 SVHS mode : SVHS = 1 | | BS2
60Hz
BS4 | | Standard Selection Bits | See Table 1 | | bt1
bt2
bt3
bt4 | 14 | Test pin Selection Bits | See Table 3 | | BELLEN | | Bell Filter Calibration on/off | BELLEN = 1 → calibration refresh BELLEN = 0 → no calibration refresh | #### STANDARD SELECTION # Table 1: Input Bits | | BS2 | 60Hz | BS4 | |-----------|-----|------|-----| | SECAM | 0 | 0 | 0 | | PAL BG | 1 | 0 | 0 | | NTSC 3.58 | 0 | 1 | n | | PAL M | 0 | 1 | 1 | | NTSC 4.43 | 1 | 1 | 1 | # Table 2 : Output Bits | | IS10 | IS11 | IS12 | |-----------|------|------|---------------------------------------| | SECAM | 0 | 0 | 0 | | PAL BG | 1 | 0 | 0 | | NTSC 3.58 | 0 | 1 | 0 | | PAL M | 0 | 1 | 1 | | NTSC 4.43 | 1 | 1 | · · · · · · · · · · · · · · · · · · · | #### Table 3: Test Pin | | BT1 | BT2 | втз | BT4 | |-------------------------------------|-----|-----|-----|-----| | High Impedance | 0 | 0 | 0 | 0 | | $V = 7V \pm 0.5V$, $Z0 < 2k\Omega$ | 1 | 1 | 1 | 1 | SG5-THOMSON MICROLLECTRONICS ### **OUTPUT BYTES** #### R/W = 1 | d7 | d6 | d5 | d4 | d3 | d2 | d1 | |------|------|------|----------------|----|--------------------|----------------------| | IS10 | IS11 | IS12 | Х | Х | Х | Х | | | | | IS10 IS11 IS12 | | IS10 IS11 IS12 X X | IS10 IS11 IS12 X X X | ### RECOMMENDED BIT CONFIGURATIONS DURING INITIALIZATION | BT1 = 0 | SVHS = 0 | FKILL = 0 | FSTD = 0 | |---------------|----------|-----------|------------| | BT2 = 0 | | MKILL = 0 | BELLEN = 1 | | BT3 = 0 | HC1 = 0 | | SHBO = 0 | | BT4 = 0 | HC2 = 0 | | SHB1 = 0 | | BS2 = not def | HC3 = 0 | | SHB2 = 0 | | 60Hz = 0 | HC4 = 0 | | SHB3 = 0 | | BS4 = not def | HC5 = 1 | | | ### TYPICAL APPLICATION 10/11 SGS-THOMSON MICROELECTRONICS #### PACKAGE MECHANICAL DATA 30 PINS - PLASTIC SHRINK DIP | Dimensions | Millimeters | | | Inches | | | | |------------|-----------------------|-------|--------|--------|-------|-------|--| | | Min. | Тур. | Max. | Min. | Тур. | Max. | | | Α | | | 5.08 | | | 0.20 | | | A1 | 0.51 | | | 0.020 | | 0.20 | | | A2 | 3.05 | 3.81 | 4.57 | 0.12 | 0.15 | 0.18 | | | В | 0.36 | 0.46 | 0.56 | 0.014 | 0.018 | 0.022 | | | B1 | 0.76 | 0.99 | 1.40 | 0.030 | 0.039 | 0.055 | | | С | 0.20 | 0.25 | 0.36 | 0.008 | 0.01 | 0.014 | | | D | 27.43 | 27.94 | 28.45 | 1.08 | 1.10 | 1.12 | | | E | 10.16 | 10.41 | 11.05 | 0.400 | 0.410 | 0.435 | | | E1 | 8.38 | 8.64 | 9.40 | 0.330 | 0.340 | 0.370 | | | е | | 1.78 | | | 0.070 | | | | e1 | | 10.16 | | | 0.400 | | | | L | 2.54 | 3.30 | 3.81 | 0.10 | 0.13 | 0.15 | | | M | 0° (min.), 15° (max.) | | | | | | | | S | 0.31 | | , ,,,, | 0.012 | | | | Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics. # © 1995 SGS-THOMSON Microelectronics - All Rights Reserved Purchase of I²C Components of SGS-THOMSON Microelectronics, conveys a license under the Philips I²C Patent. Rights to use these components in a I²C system, is granted provided that the system conforms to the FC Standard Specifications as defined by Philips. ### SGS-THOMSON Microelectronics GROUP OF COMPANIES Australia - Brazil - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A. 11/11 7929237 0073950 3TT **=**