STM32H562xx and STM32H563xx

life.augmented

Arm[®] Cortex[®]-M33 32-bit MCU + TrustZone[®] + FPU, 375 DMIPS, 250 MHz, 2-Mbyte flash, 640-Kbyte RAM, math accelerators

Features

Includes ST state-of-the-art patented technology

Core

 Arm[®] Cortex[®]-M33 CPU with TrustZone[®], FPU, frequency up to 250 MHz, MPU, 375 DMIPS (Dhrystone 2.1)

ART Accelerator

- 8-Kbyte instruction cache allowing
 0-wait-state execution from flash and external memories
- 4-Kbyte data cache for external memories

Benchmarks

- 1.5 DMIPS/MHz (Drystone 2.1)
- 1023 CoreMark[®] (4.092 CoreMark[®]/MHz)

Memories

- Up to 2 Mbytes of embedded flash memory with ECC, two banks read-while-write
- Up to 48-Kbyte per bank with high-cycling capability (100 K cycles) for data flash
- 2-Kbyte OTP (one-time programmable)
- 640 Kbytes of SRAM (64-Kbyte SRAM2 with ECC and 320-Kbyte SRAM3 with flexible ECC)
- 4 Kbytes of backup SRAM available in the lowest power modes
- Flexible external memory controller with up to 16-bit data bus: SRAM, PSRAM, FRAM, SDRAM/LPSDR SDRAM, NOR/NAND memories
- One Octo-SPI memory interface with support for serial PSRAM/NAND/NOR, hyper RAM/flash frame formats
- Two SD/SDIO/MMC interfaces

Datasheet - production data

Clock management

- Internal oscillators: 64 MHz HSI, 48 MHz HSI48, 4 MHz CSI, 32 kHz LSI
- External oscillators: 4-50 MHz HSE, 32.768 kHz LSE

General-purpose inputs/outputs

- Up to 140 fast I/Os with interrupt capability (most of them 5 V-tolerant)
- Up to ten I/Os with independent supply down to 1.08 V

Low-power consumption

- Sleep, Stop, and Standby modes
- V_{BAT} supply for RTC, 32 backup registers (32-bit)

Security

- Arm[®] TrustZone[®] with Armv8-M mainline security extension
- Up to eight configurable SAU regions
- TrustZone[®] aware and securable peripherals
- Flexible life cycle scheme with secure debug authentication
- SFI (secure firmware installation)
- Secure firmware upgrade support with TF-M

January 2025

DS14258 Rev 5

This is information on a product in full production.

- HASH hardware accelerator
- ECDSA signature verification
- True random number generator, NIST SP800-90B compliant
- 96-bit unique ID
- Active tampers

Two DMA controllers to offload the CPU

Two dual-port DMAs with FIFO

Mathematical acceleration

- CORDIC for trigonometric functions
 acceleration
- FMAC (filter mathematical accelerator)

Reset and supply management

- 1.71 V to 3.6 V application supply and I/O
- POR, PDR, PVD, and BOR
- Embedded regulator (LDO) or SMPS stepdown converter regulator with configurable scalable output to supply the digital circuitry

Up to 24 timers

- 18 16-bit timers (including six low-power 16-bit timers available in Stop mode)
- Two 32-bit timers with up to four IC/OC/PWM or pulse counters and quadrature (incremental) encoder input
- Two watchdogs
- Two SysTick timers

Up to 34 communication interfaces

• Up to four I2Cs Fm+ (SMBus/PMBus[®])

- One I3C
- Up to 12 U(S)ARTs (ISO7816 interface, LIN, IrDA, modem control) and one LPUART
- Up to six SPIs, including three muxed in full-duplex I2S audio class accuracy via internal audio PLL or external clock, and up to five additional SPIs from five USARTs when configured in Synchronous mode (one additional SPI with OctoSPI)
- Two SAIs
- Two FDCANs
- One 8- to 14-bit camera interface
- One 16-bit parallel slave synchronousinterface
- One HDMI-CEC
- One Ethernet MAC interface with DMA controller
- One USB 2.0 full-speed host and device
- One USB Type-C[®]/USB Power Delivery r3.1

Analog

- Two 12-bit ADCs with up to 5 Msps in 12-bit
- One 12-bit DAC with two channels
- Digital temperature sensor

Debug

- Authenticated debug and flexible device life cycle
- Serial wire-debug (SWD), JTAG, Embedded Trace Macrocell[™] (ETM)

ECOPACK2 compliant packages

Table 1. Device summary						
Reference	Part numbers					
STM32H562xx	STM32H562AG, STM32H562AI, STM32H562IG, STM32H562II, STM32H562RG, STM32H562RI, STM32H562VG, STM32H562VI, STM32H562ZG, STM32H562ZI					
STM32H563xx	STM32H563AG, STM32H563AI, STM32H563IG, STM32H563II, STM32H563MI, STM32H563RG, STM32H563RI, STM32H563VG, STM32H563VI, STM32H563ZG, STM32H563ZI					

Contents

1	Intro	duction		13
2	Desc	ription		14
3	Func	tional o	verview	19
	3.1	Arm Co	rtex-M33 core with TrustZone and FPU	19
	3.2	ART Ac	celerator (ICACHE and DCACHE)	19
		3.2.1	Instruction cache (ICACHE)	. 19
		3.2.2	Data cache (DCACHE)	. 20
	3.3	Memory	y protection unit	21
	3.4	Embed	ded flash memory	21
		3.4.1	FLASH security and protections	. 22
		3.4.2	FLASH privilege protection	. 22
	3.5	Embed	ded SRAMs	22
		3.5.1	SRAMs TrustZone security	. 23
		3.5.2	SRAMs privilege protection	. 23
	3.6	Security	y overview	23
	3.7	Boot m	odes	24
		3.7.1	STM32H562/H563xx boot modes	. 24
	3.8	Global	TrustZone controller (GTZC)	25
	3.9	TrustZc	ne security architecture	26
		3.9.1	TrustZone peripheral classification	. 26
2 3		3.9.2	Default TrustZone security state	. 26
	3.10	Powers	supply management	27
		3.10.1	Power supply schemes	. 28
		3.10.2	Power supply supervisor	. 31
		3.10.3	Reset mode	. 32
		3.10.4	VBAT operation	. 32
		3.10.5	PWR TrustZone security	. 33
	3.11	Periphe	eral interconnect matrix	33
	3.12	Reset a	and clock controller (RCC)	33
		3.12.1	RCC TrustZone security	. 34
	3.13	Clock r	ecovery system (CRS)	34

3.14	General-purpose inputs/outputs (GPIOs)							
	3.14.1	GPIOs TrustZone security	35					
3.15	Multi-AF	IB bus matrix	35					
3.16	General	purpose direct memory access controller (GPDMA)	35					
3.17	Interrup	ts and events	37					
	3.17.1	Nested vectored interrupt controller (NVIC)	37					
	3.17.2	Extended interrupt/event controller (EXTI)	37					
3.18	Cyclic re	edundancy check calculation unit (CRC)	38					
3.19	CORDIO	C coprocessor (CORDIC)	38					
3.20	Filter ma	ath accelerator (FMAC)	38					
3.21	Flexible	memory controller (FMC)	39					
	3.21.1	LCD parallel interface	39					
	3.21.2	FMC TrustZone security	39					
3.22	Octo-SF	PI interface (OCTOSPI)	40					
	3.22.1	OCTOSPI TrustZone security	40					
3.23	Delay bl	lock (DLYB)	41					
3.24	Analog-	to-digital converters (ADC1 and ADC2)	41					
	3.24.1	Analog temperature sensor	42					
	3.24.2	Internal voltage reference (VREFINT)	42					
	3.24.3	VBAT battery voltage monitoring	42					
3.25	Digital te	emperature sensor (DTS)	42					
3.26	Digital to	o analog converter (DAC)	42					
3.27	Voltage	reference buffer (VREFBUF)	43					
3.28	Digital c	amera interface (DCMI)	43					
3.29	Parallel	synchronous slave interface (PSSI)	44					
3.30	True rar	ndom number generator (RNG)	44					
3.31	HASH h	ardware accelerator (HASH)	45					
3.32	Public k	ey accelerator (PKA)	45					
3.33	Timers a	and watchdogs	46					
	3.33.1	Advanced-control timers (TIM1, TIM8)	46					
	3.33.2	General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM15, TIM16, TIM17)	47					
	3.33.3	Basic timers (TIM6, TIM7)	47					
	3.33.4	Low-power timers (LPTIM1, LPTIM2, LPTIM3, LPTIM4, LPTIM5, LPTIM6)	47					

	3.33.5	Independent watchdog (IWDG)	. 48
	3.33.6	Window watchdog (WWDG)	. 48
	3.33.7	SysTick timer	. 48
3.34	Real-tin	ne clock (RTC), tamper and backup registers	49
	3.34.1	Real-time clock (RTC)	. 49
	3.34.2	Tamper and backup registers (TAMP)	. 50
3.35	Inter-int	egrated circuit interface (I ² C)	51
3.36	Improve	ed inter-integrated circuit (I3C)	52
3.37	Univers (USART receiver	al synchronous/asynchronous receiver transmitter I/UART) and low-power universal asynchronous r transmitter (LPUART)	. 53
	3.37.1	Universal synchronous/asynchronous receiver transmitter (USART/UART)	. 53
	3.37.2	Low-power universal asynchronous receiver transmitter (LPUART)	. 55
3.38	Serial p	eripheral interface (SPI) / inter-integrated sound interfaces (I2S)	56
3.39	Serial a	udio interface (SAI)	. 57
3.40	Secure	digital input/output and MultiMediaCards interface (SDMMC)	59
3.41	Controll	er area network (FDCAN)	60
3.42	USB ful	I speed (USB)	. 60
3.43	USB Ty	pe-C/USB Power Delivery controller (UCPD)	. 61
3.44	Etherne	et MAC interface with dedicated DMA controller (ETH)	61
3.45	High-de electror	finition multimedia interface (HDMI) - consumer	. 62
3.46	Develop	oment support	62
	3.46.1	Serial-wire/JTAG debug port (SWJ-DP)	. 62
	3.46.2	Embedded Trace Macrocell	. 62
Pinou	ıt, pin d	escription, and alternate functions	63
4.1	Pinout/t	pallout schematics	63
4.2	Pin des	cription	. 75
4.3	Alternat	e functions	103
Electr	rical cha	aracteristics	121
5.1	Parame	eter conditions	121
	5.1.1	Minimum and maximum values	121
	5.1.2	Typical values	121

4

5

	5.1.3	Typical curves
	5.1.4	Loading capacitor
	5.1.5	Pin input voltage
	5.1.6	Power supply scheme
5.2	Absolute	e maximum ratings 124
5.3	Operatii	ng conditions 125
	5.3.1	General operating conditions
	5.3.2	VCAP external capacitor
	5.3.3	SMPS step-down converter
	5.3.4	Operating conditions at power-up/down
	5.3.5	Embedded reset and power control block characteristics
	5.3.6	Embedded reference voltage
	5.3.7	Supply current characteristics
	5.3.8	External clock source characteristics
	5.3.9	Internal clock source characteristics
	5.3.10	PLL characteristics
	5.3.11	Memory characteristics
	5.3.12	EMC characteristics
	5.3.13	Absolute maximum ratings (electrical sensitivity)
	5.3.14	I/O current injection characteristics
	5.3.15	I/O port characteristics
	5.3.16	NRST pin characteristics
	5.3.17	Extended interrupt and event controller input (EXTI) characteristics 175
	5.3.18	FMC characteristics
	5.3.19	Octo-SPI interface characteristics
	5.3.20	Delay block (DLYB) characteristics
	5.3.21	DCMI interface characteristics
	5.3.22	PSSI interface characteristics
	5.3.23	12-bit ADC characteristics
	5.3.24	DAC characteristics
	5.3.25	Analog temperature sensor characteristics
	5.3.26	Digital temperature sensor characteristics
	5.3.27	V _{CORE} monitoring characteristics
	5.3.28	Temperature and V _{BAT} monitoring
	5.3.29	Voltage booster for analog switch
	5.3.30	V _{REFBUF} characteristics
	5.3.31	Timer characteristics

		5.3.32 Low-power timer characteristics
		5.3.33 Communication interfaces
6	Packa	age information
	6.1	Device marking
	6.2	LQFP64 package information (5W) 240
	6.3	VFQFPN68 package information (B029) 243
	6.4	WLCSP80 package information (B0D4) 245
	6.5	LQFP100 package information (1L) 248
	6.6	LQFP144 package information (1A) 251
	6.7	UFBGA169 package information (A0YV) 255
	6.8	LQFP176 package information (1T) 258
	6.9	UFBGA(176+25) package information (A0E7) 262
	6.10	Package thermal characteristics
		6.10.1 Reference documents
7	Order	ing information
8	Impor	tant security notice
9	Revis	ion history

List of tables

Table 1.	Device summary	2
Table 2.	STM32H56xxx features and peripheral counts	15
Table 3.	STM32H562/H563 boot mode when TrustZone is disabled (TZEN = 0xC3)	24
Table 4.	STM32H562/H563 boot mode when TrustZone is enabled (TZEN = 0xB4)	25
Table 5.	ADC features	41
Table 6.	Timer features.	46
Table 7.	I2C implementation	51
Table 8.	I3C peripheral controller/target features versus MIPI v1.1	52
Table 9.	USART, UART and LPUART features	53
Table 10.	SPI features	57
Table 11.	SAI implementation.	58
Table 12.	SDMMC features	59
Table 13.	Legend/abbreviations used in the pinout table	75
Table 14.	STM32H562xx and STM32H563xx pin/ball definition	76
Table 15.	Alternate functions AF0 to AF7	. 103
Table 16.	Alternate functions AF8 to AF15	. 112
Table 17.	Voltage characteristics	. 124
Table 18.	Current characteristics	. 125
Table 19.	Thermal characteristics.	. 125
Table 20.	General operating conditions	. 125
Table 21.	Maximum allowed clock frequencies	. 128
Table 22.	Supply voltage and maximum frequency configuration	. 130
Table 23.	Characteristics of SMPS step-down converter external components	. 130
Table 24.	Operating conditions at power-up/down (regulator ON)	. 133
Table 25.	Embedded reset and power control block characteristics.	. 133
Table 26.	Embedded reference voltage	. 135
Table 27.	Internal reference voltage calibration value	. 135
Table 28.	Typical and maximum current consumption in Run mode, code with data processing	
	running from flash memory, 2-way instruction cache ON, PREFETCH ON	. 136
Table 29.	Typical and maximum current consumption in Run mode, code with data processing	
	running from flash memory, 1-way instruction cache ON, PREFETCH ON	. 137
Table 30.	Typical and maximum current consumption in Run mode, code with data processing	
	running from SRAM with cache 1-way	. 137
Table 31.	Typical and maximum current consumption in Run mode, code with data processing	
	running from SRAM with cache 2-way	. 138
Table 32.	Typical consumption in Run mode with CoreMark running	
	from flash memory and SRAM	. 139
Table 33.	Typical consumption in Run mode with SecureMark running from	
	flash memory and SRAM	. 140
Table 34.	Typical and maximum current consumption in Sleep mode	. 140
Table 35.	Typical and maximum current consumption in Stop mode	. 141
Table 36.	Typical and maximum current consumption in Standby mode	. 141
Table 37.	Typical and maximum current consumption in VBAT mode	. 142
Table 38.	Peripheral current consumption in Sleep mode	. 143
Table 39.	Low-power mode wake-up timings	. 147
Table 40.	High-speed external user clock characteristics.	. 147
Table 41.	Low-speed external user clock characteristics	. 148
Table 42.	4-50 MHz HSE oscillator characteristics.	. 150

Table 43.	Low-speed external user clock characteristics 1	151
Table 44.	HSI48 oscillator characteristics1	152
Table 45.	HSI oscillator characteristics1	152
Table 46.	CSI oscillator characteristics	153
Table 47.	LSI oscillator characteristics	154
Table 48.	PLL characteristics (wide VCO frequency range)1	154
Table 49.	PLL characteristics (medium VCO frequency range) 1	155
Table 50.	Flash memory characteristics	156
Table 51.	Flash memory programming.	156
Table 52.	Flash memory endurance and data retention	157
Table 53.	EMS characteristics	157
Table 54.		158
Table 55.		159
Table 56.		159
Table 57.		160
Table 58.		160
Table 59.	Output voltage characteristics for all I/Os except PC13, PC14, PC15, and PI8	163
Table 60.	Output voltage characteristics for FI_c I/Os	164
Table 61.	Output voltage characteristics for PC13 and PI8	164
Table 62.	Output voltage characteristics for PC14 and PC15	165
Table 63.	Output timing characteristics (HSLV OFF)	166
Table 64.		170
Table 65.	Output timing characteristics VDDIO2 1.2 V range (HSLV OFF)	1/1
Table 66.	Output timing characteristics VDDIO2 1.2 V (HSLV ON)	173
Table 67.	Output timing characteristics for FI_c I/Os (PB13/PB14).	1/4
Table 68.	NRST pin characteristics	1/5
Table 69.	EXIT input characteristics	175
Table 70.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings	177
Table 71.	Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings	177
Table 72.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings	178
Table 73.	Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings	179
Table 74.	Asynchronous multiplexed PSRAM/NOR read timings.	180
Table 75.	Asynchronous multiplexed PSRAM/NOR read-NWAIT timings	180
Table 76.	Asynchronous multiplexed PSRAM/NOR write timings	182
Table 77.	Asynchronous multiplexed PSRAM/NOR write-NWAIT timings	182
Table 78.	Synchronous multiplexed NOR/PSRAM read timings	184
Table 79.	Synchronous multiplexed PSRAM write timings	186
Table 80.	Synchronous non-multiplexed NOR/PSRAM read timings	187
Table 81.	Synchronous non-multiplexed PSRAM write timings	188
Table 82.		191
Table 83.		191
Table 84.		192
Table 85.		193
Table 86.		194
Table 87.		194
Table 88.		195
Table 89.		196
Table 90.	DCTOSPI characteristics in DTR mode (with DQS) / HyperBus	197
Table 91.	Delay block characteristics	199
Table 92.		200
Table 93.		201
i able 94.	PSSI receive characteristics	201

Table 95.	12-bit ADC characteristics	203
Table 96.	Minimum sampling time versus R _{AIN}	205
Table 97.	ADC accuracy	207
Table 98.	DAC characteristics	210
Table 99.	DAC accuracy	212
Table 100.	Analog temperature sensor characteristics	214
Table 101.	Temperature sensor calibration values	214
Table 102.	Digital temperature sensor characteristics	215
Table 103.	V _{CORE} monitoring characteristics	215
Table 104.	V _{BAT} monitoring characteristics	215
Table 105.	V _{BAT} charging characteristics	216
Table 106.	Temperature monitoring characteristics	216
Table 107.	Voltage booster for analog switch characteristics.	216
Table 108.	V _{REFBUF} characteristics	216
Table 109.	TIMx characteristics	218
Table 110.	LPTIMx characteristics	218
Table 111.	I2C analog filter characteristics	219
Table 112.	USART characteristics	220
Table 113.	I3C open-drain measured timing	222
Table 114.	I3C push-pull measured timing	222
Table 115.	SPI characteristics	223
Table 116.	I ² S dynamic characteristics	225
Table 117.	USB DC electrical characteristics	227
Table 118.	USB startup time	228
Table 119.	USB electrical characteristics	228
Table 120.	USB BCD DC electrical characteristics.	228
Table 121.	SAI characteristics	229
Table 122.	Dynamic characteristics: SD/MMC, VDD = 2.7 to 3.6 V	231
Table 123.	Dynamic characteristics: eMMC, VDD = 1.71 to 1.9 V	232
Table 124.	Dynamic characteristics: Ethernet MAC signals for SMI	234
Table 125.	Dynamic characteristics: Ethernet MAC signals for RMII	234
Table 126.	Dynamic characteristics: Ethernet MAC signals for MII	235
Table 127.	Dynamic JTAG characteristics	237
Table 128.	Dynamic SWD characteristics	237
Table 129.	LQFP64 - Mechanical data	241
Table 130.	VFQFPN68 - Mechanical data	244
Table 131.	WLCSP80 - Mechanical data	246
Table 132.	WLCSP80 - Example of PCB design rules	247
Table 133.	LQFP100 - Mechanical data	249
Table 134.	LQFP144 - Mechanical data	252
Table 135.	UFBGA169 - Mechanical data	256
Table 136.	UFBGA169 - Example of PCB design rules (0.5 mm pitch BGA)	257
Table 137.	LQFP176 - Mechanical data	259
Table 138.	UFBGA(176+25) - Mechanical data	262
Table 139.	UFBGA(176+25) - Example of PCB design rules (0.65 mm pitch BGA)	263
Table 140.	Package thermal characteristics	264
Table 141.	Document revision history	268

List of figures

Figure 1.	STM32H562xx and STM32H563xx block diagram	18
Figure 2.	STM32H562xx and STM32H563xx power supply overview (with SMPS)	29
Figure 3.	STM32H562xx and STM32H563xx power supply overview (with LDO)	30
Figure 4.	Power-up/down sequence	31
Figure 5.	LQFP64 pinout	63
Figure 6.	VFQFPN68 pinout	64
Figure 7.	WLCSP80 SMPS ballout	64
Figure 8.	LQFP100 pinout	65
Figure 9.	LQFP100 SMPS pinout	66
Figure 10.	LQFP144 pinout	67
Figure 11.	LQFP144 SMPS pinout	68
Figure 12.	UFBGA169 ballout	69
Figure 13.	UFBGA169 SMPS ballout.	70
Figure 14.	LQFP176 pinout	71
Figure 15.	LQFP176 SMPS pinout	72
Figure 16.	UFBGA176+25 ballout	73
Figure 17.	UFBGA176+25 SMPS ballout.	74
Figure 18.	Pin loading conditions.	121
Figure 19.	Pin input voltage	121
Figure 20.	Power supply scheme with SMPS	122
Figure 21.	Power supply scheme with LDO.	123
Figure 22.	External capacitor C _{EXT}	129
Figure 23.	SMPS efficiency versus load current in Run, Sleep, and Stop modes	
0	with SVOS3 mode $T_1 = 30$ °C	131
	mar evede mode, 1 - 00 - 0	101
Figure 24.	SMPS efficiency versus load current in Run, Sleep, and Stop modes	
Figure 24.	SMPS efficiency versus load current in Run, Sleep, and Stop modes with SVOS3 mode, T_{J} = 130 °C	131
Figure 24. Figure 25.	SMPS efficiency versus load current in Run, Sleep, and Stop modes with SVOS3 mode, $T_J = 130$ °C SMPS efficiency versus load current in stop SVOV4, SVOS5, $T_J = 30$ °C	131
Figure 24. Figure 25. Figure 26.	SMPS efficiency versus load current in Run, Sleep, and Stop modes with SVOS3 mode, $T_J = 130$ °C SMPS efficiency versus load current in stop SVOV4, SVOS5, $T_J = 30$ °C SMPS efficiency versus load current in stop SVOV4, SVOS5, $T_J = 130$ °C	131 132 132
Figure 24. Figure 25. Figure 26. Figure 27.	SMPS efficiency versus load current in Run, Sleep, and Stop modes with SVOS3 mode, $T_J = 130$ °C SMPS efficiency versus load current in stop SVOV4, SVOS5, $T_J = 30$ °C SMPS efficiency versus load current in stop SVOV4, SVOS5, $T_J = 130$ °C High-speed external clock source AC timing diagram	131 132 132 132 148
Figure 24. Figure 25. Figure 26. Figure 27. Figure 28.	SMPS efficiency versus load current in Run, Sleep, and Stop modes with SVOS3 mode, $T_J = 130$ °C SMPS efficiency versus load current in stop SVOV4, SVOS5, $T_J = 30$ °C SMPS efficiency versus load current in stop SVOV4, SVOS5, $T_J = 130$ °C High-speed external clock source AC timing diagram	131 132 132 132 148 149
Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29.	SMPS efficiency versus load current in Run, Sleep, and Stop modes with SVOS3 mode, $T_J = 130$ °C SMPS efficiency versus load current in stop SVOV4, SVOS5, $T_J = 30$ °C SMPS efficiency versus load current in stop SVOV4, SVOS5, $T_J = 130$ °C High-speed external clock source AC timing diagram Low-speed external clock source AC timing diagram Typical application with an 8 MHz crystal	131 132 132 132 148 149 150
Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30.	SMPS efficiency versus load current in Run, Sleep, and Stop modes with SVOS3 mode, $T_J = 130$ °C SMPS efficiency versus load current in stop SVOV4, SVOS5, $T_J = 30$ °C SMPS efficiency versus load current in stop SVOV4, SVOS5, $T_J = 130$ °C High-speed external clock source AC timing diagram Low-speed external clock source AC timing diagram Typical application with an 8 MHz crystal Typical application with a 32.768 kHz crystal	131 132 132 132 148 149 150 151
Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31.	SMPS efficiency versus load current in Run, Sleep, and Stop modes with SVOS3 mode, $T_J = 130$ °C. SMPS efficiency versus load current in stop SVOV4, SVOS5, $T_J = 30$ °C. SMPS efficiency versus load current in stop SVOV4, SVOS5, $T_J = 130$ °C. High-speed external clock source AC timing diagram Low-speed external clock source AC timing diagram. Typical application with an 8 MHz crystal. Typical application with a 32.768 kHz crystal.	131 132 132 132 148 149 150 151 162
Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32.	SMPS efficiency versus load current in Run, Sleep, and Stop modes with SVOS3 mode, $T_J = 130$ °C. SMPS efficiency versus load current in stop SVOV4, SVOS5, $T_J = 30$ °C. SMPS efficiency versus load current in stop SVOV4, SVOS5, $T_J = 130$ °C. High-speed external clock source AC timing diagram Low-speed external clock source AC timing diagram. Typical application with an 8 MHz crystal. Typical application with a 32.768 kHz crystal. VIL/VIH for all I/Os except BOOT0. Recommended NRST pin protection	131 132 132 132 148 149 150 151 162 175
Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33.	SMPS efficiency versus load current in Run, Sleep, and Stop modes with SVOS3 mode, $T_J = 130 ^{\circ}C$. SMPS efficiency versus load current in stop SVOV4, SVOS5, $T_J = 30 ^{\circ}C$. SMPS efficiency versus load current in stop SVOV4, SVOS5, $T_J = 130 ^{\circ}C$. High-speed external clock source AC timing diagram Low-speed external clock source AC timing diagram. Typical application with an 8 MHz crystal. Typical application with a 32.768 kHz crystal. VIL/VIH for all I/Os except BOOT0. Recommended NRST pin protection Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms.	131 132 132 148 149 150 151 162 175 176
Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34.	SMPS efficiency versus load current in Run, Sleep, and Stop modes with SVOS3 mode, $T_J = 130$ °C SMPS efficiency versus load current in stop SVOV4, SVOS5, $T_J = 30$ °C SMPS efficiency versus load current in stop SVOV4, SVOS5, $T_J = 130$ °C High-speed external clock source AC timing diagram Low-speed external clock source AC timing diagram Typical application with an 8 MHz crystal Typical application with a 32.768 kHz crystal VIL/VIH for all I/Os except BOOT0 Recommended NRST pin protection Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms	131 132 132 132 148 149 149 150 151 162 175 176 178
Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35.	SMPS efficiency versus load current in Run, Sleep, and Stop modes with SVOS3 mode, $T_J = 130$ °C SMPS efficiency versus load current in stop SVOV4, SVOS5, $T_J = 30$ °C SMPS efficiency versus load current in stop SVOV4, SVOS5, $T_J = 130$ °C High-speed external clock source AC timing diagram Low-speed external clock source AC timing diagram Typical application with an 8 MHz crystal Typical application with a 32.768 kHz crystal VIL/VIH for all I/Os except BOOT0 Recommended NRST pin protection Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms Asynchronous mon-multiplexed SRAM/PSRAM/NOR write waveforms	131 132 132 132 148 149 149 150 151 162 175 176 178 179
Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 31. Figure 33. Figure 34. Figure 35. Figure 36.	SMPS efficiency versus load current in Run, Sleep, and Stop modes with SVOS3 mode, $T_J = 130$ °C. SMPS efficiency versus load current in stop SVOV4, SVOS5, $T_J = 30$ °C. SMPS efficiency versus load current in stop SVOV4, SVOS5, $T_J = 130$ °C. High-speed external clock source AC timing diagram Low-speed external clock source AC timing diagram. Typical application with an 8 MHz crystal. Typical application with a 32.768 kHz crystal. VIL/VIH for all I/Os except BOOT0. Recommended NRST pin protection Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms Asynchronous multiplexed PSRAM/NOR read waveforms. Asynchronous multiplexed PSRAM/NOR write waveforms.	131 132 132 132 148 149 149 150 151 151 175 176 178 179 181
Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 31. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37.	SMPS efficiency versus load current in Run, Sleep, and Stop modes with SVOS3 mode, T _J = 130 °C SMPS efficiency versus load current in stop SVOV4, SVOS5, T _J = 30 °C SMPS efficiency versus load current in stop SVOV4, SVOS5, T _J = 130 °C High-speed external clock source AC timing diagram Low-speed external clock source AC timing diagram Typical application with an 8 MHz crystal Typical application with a 32.768 kHz crystal VIL/VIH for all I/Os except BOOT0 Recommended NRST pin protection Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms Asynchronous mon-multiplexed SRAM/PSRAM/NOR write waveforms Asynchronous multiplexed PSRAM/NOR write waveforms Asynchronous multiplexed PSRAM/NOR write waveforms Synchronous multiplexed NOR/PSRAM read timings	131 132 132 132 148 149 149 150 151 151 175 176 178 179 181 183
Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 31. Figure 32. Figure 33. Figure 35. Figure 36. Figure 37. Figure 38.	SMPS efficiency versus load current in Run, Sleep, and Stop modes with SVOS3 mode, T _J = 130 °C SMPS efficiency versus load current in stop SVOV4, SVOS5, T _J = 30 °C SMPS efficiency versus load current in stop SVOV4, SVOS5, T _J = 130 °C High-speed external clock source AC timing diagram Low-speed external clock source AC timing diagram. Typical application with an 8 MHz crystal. Typical application with a 32.768 kHz crystal. VIL/VIH for all I/Os except BOOT0 Recommended NRST pin protection Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms Asynchronous multiplexed PSRAM/NOR write waveforms. Asynchronous multiplexed PSRAM/NOR write waveforms Synchronous multiplexed PSRAM read timings Synchronous multiplexed PSRAM write timings.	131 132 132 148 149 150 151 151 175 176 178 179 181 183 185
Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39.	SMPS efficiency versus load current in Run, Sleep, and Stop modes with SVOS3 mode, T _J = 130 °C. SMPS efficiency versus load current in stop SVOV4, SVOS5, T _J = 30 °C. SMPS efficiency versus load current in stop SVOV4, SVOS5, T _J = 130 °C. High-speed external clock source AC timing diagram Low-speed external clock source AC timing diagram. Typical application with an 8 MHz crystal. Typical application with a 32.768 kHz crystal. VIL/VIH for all I/Os except BOOT0 Recommended NRST pin protection Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms Asynchronous multiplexed PSRAM/NOR write waveforms. Asynchronous multiplexed PSRAM/NOR write waveforms Synchronous multiplexed PSRAM read timings Synchronous non-multiplexed PSRAM write timings. Synchronous non-multiplexed PSRAM read timings.	131 132 132 148 149 150 151 151 162 175 176 178 179 181 183 185 187
Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40.	SMPS efficiency versus load current in Run, Sleep, and Stop modes with SVOS3 mode, T _J = 130 °C SMPS efficiency versus load current in stop SVOV4, SVOS5, T _J = 30 °C. SMPS efficiency versus load current in stop SVOV4, SVOS5, T _J = 130 °C. High-speed external clock source AC timing diagram Low-speed external clock source AC timing diagram. Typical application with an 8 MHz crystal. Typical application with a 32.768 kHz crystal. VIL/VIH for all I/Os except BOOT0 Recommended NRST pin protection Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms Asynchronous multiplexed PSRAM/NOR write waveforms Synchronous multiplexed PSRAM read timings Synchronous non-multiplexed PSRAM write timings. Synchronous non-multiplexed PSRAM write timings. Synchronous non-multiplexed PSRAM write timings.	131 132 132 148 149 150 151 151 162 175 176 178 178 181 183 185 187 188
Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 30. Figure 31. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41.	SMPS efficiency versus load current in Run, Sleep, and Stop modes with SVOS3 mode, T _J = 130 °C SMPS efficiency versus load current in stop SVOV4, SVOS5, T _J = 30 °C SMPS efficiency versus load current in stop SVOV4, SVOS5, T _J = 130 °C High-speed external clock source AC timing diagram Low-speed external clock source AC timing diagram. Typical application with an 8 MHz crystal. Typical application with a 32.768 kHz crystal. VIL/VIH for all I/Os except BOOT0 Recommended NRST pin protection Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms. Asynchronous multiplexed PSRAM/NOR write waveforms Synchronous multiplexed PSRAM/NOR write waveforms Synchronous multiplexed PSRAM read timings Synchronous non-multiplexed PSRAM write timings. Synchronous non-multiplexed PSRAM write timings. Synchronous non-multiplexed PSRAM write timings. Synchronous non-multiplexed PSRAM write timings. Synchronous non-multiplexed PSRAM read timings. Synchronous non-multiplexed PSRAM write timings.	131 132 132 132 132 148 149 149 150 151 151 162 175 176 176 178 179 181 185 185 188 189
Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42.	SMPS efficiency versus load current in Run, Sleep, and Stop modes with SVOS3 mode, T _J = 130 °C SMPS efficiency versus load current in stop SVOV4, SVOS5, T _J = 30 °C SMPS efficiency versus load current in stop SVOV4, SVOS5, T _J = 130 °C High-speed external clock source AC timing diagram Low-speed external clock source AC timing diagram. Typical application with an 8 MHz crystal. Typical application with a 32.768 kHz crystal. VIL/VIH for all I/Os except BOOT0 Recommended NRST pin protection Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms Asynchronous multiplexed PSRAM/NOR read waveforms Synchronous multiplexed PSRAM/NOR write waveforms Synchronous multiplexed PSRAM read timings Synchronous non-multiplexed PSRAM read timings Synchronous non-multiplexed PSRAM read timings NAND controller waveforms for read access NAND controller waveforms for write access	131 132 132 132 148 149 149 150 151 151 162 175 176 176 178 179 181 183 185 187 189 190
Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 43.	SMPS efficiency versus load current in Run, Sleep, and Stop modes with SVOS3 mode, T _J = 130 °C SMPS efficiency versus load current in stop SVOV4, SVOS5, T _J = 30 °C. SMPS efficiency versus load current in stop SVOV4, SVOS5, T _J = 130 °C. High-speed external clock source AC timing diagram Low-speed external clock source AC timing diagram. Typical application with an 8 MHz crystal. Typical application with a 32.768 kHz crystal. VIL/VIH for all I/Os except BOOT0 Recommended NRST pin protection Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms Asynchronous multiplexed PSRAM/NOR write waveforms Synchronous multiplexed PSRAM/NOR write waveforms Synchronous multiplexed PSRAM read timings Synchronous non-multiplexed PSRAM read timings Synchronous non-multiplexed PSRAM write timings. NAND controller waveforms for read access NAND controller waveforms for common memory read access	131 132 132 132 148 149 150 151 151 162 175 176 178 178 183 183 185 187 188 189 190 190
Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44.	SMPS efficiency versus load current in Run, Sleep, and Stop modes with SVOS3 mode, $T_J = 130$ °C . SMPS efficiency versus load current in stop SVOV4, SVOS5, $T_J = 30$ °C SMPS efficiency versus load current in stop SVOV4, SVOS5, $T_J = 130$ °C High-speed external clock source AC timing diagram . Low-speed external clock source AC timing diagram . Typical application with an 8 MHz crystal . Typical application with a 32.768 kHz crystal . VIL/VIH for all I/Os except BOOT0 . Recommended NRST pin protection . Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . Asynchronous multiplexed PSRAM/NOR read waveforms . Asynchronous multiplexed PSRAM/NOR write waveforms . Synchronous multiplexed PSRAM write timings . Synchronous non-multiplexed PSRAM write timings . NAND controller waveforms for read access . NAND controller waveforms for common memory read access . NAND controller waveforms for common memory write access . NAND controller waveforms for common memory write access .	131 132 132 132 148 149 150 151 151 162 175 176 178 178 181 183 185 187 188 189 190 191
Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 43. Figure 44. Figure 45.	SMPS efficiency versus load current in Run, Sleep, and Stop modes with SVOS3 mode, $T_J = 130$ °C . SMPS efficiency versus load current in stop SVOV4, SVOS5, $T_J = 30$ °C. SMPS efficiency versus load current in stop SVOV4, SVOS5, $T_J = 130$ °C . High-speed external clock source AC timing diagram . Low-speed external clock source AC timing diagram . Typical application with an 8 MHz crystal . Typical application with a 32.768 kHz crystal . VIL/VIH for all I/Os except BOOT0 . Recommended NRST pin protection . Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . Asynchronous mon-multiplexed PSRAM/NOR write waveforms . Synchronous multiplexed PSRAM/NOR write waveforms . Synchronous multiplexed PSRAM/NOR write timings . Synchronous multiplexed PSRAM read timings . Synchronous non-multiplexed PSRAM write timings . NAND controller waveforms for read access . NAND controller waveforms for common memory read access . NAND controller waveforms for common memory write access . SDRAM read access waveforms (CL = 1) .	131 132 132 148 149 150 151 151 162 175 176 178 178 183 183 185 187 188 189 190 191 192

Figure 47.	OCTOSPI SDR read/write timing diagram	. 195
Figure 48.	OCTOSPI timing diagram - DTR mode.	. 198
Figure 49.	OCTOSPI HyperBus clock	. 198
Figure 50.	OCTOSPI HyperBus read.	. 198
Figure 51.	OCTOSPI HyperBus write	. 199
Figure 52.	DCMI timing diagrams	. 200
Figure 53.	PSSI transmit timing diagram	. 202
Figure 54.	PSSI receive timing diagram	. 202
Figure 55.	ADC conversion timing diagram	. 207
Figure 56.	ADC accuracy characteristics	. 208
Figure 57.	Typical connection diagram when using the ADC with FT/TT pins	
	featuring analog switch function	. 208
Figure 58.	Power supply and reference decoupling (V _{REF+} not connected to V _{DDA})	. 209
Figure 59.	Power supply and reference decoupling (V _{REF+} connected to V _{DDA})	. 210
Figure 60.	12-bit buffered/non-buffered DAC	. 214
Figure 61.	USART timing diagram in Master mode	. 221
Figure 62.	USART timing diagram in Slave mode	. 221
Figure 63.	SPI timing diagram - Master mode	. 224
Figure 64.	SPI timing diagram - Slave mode and CPHA = 0	. 224
Figure 65.	SPI timing diagram - Slave mode and CPHA = 1	. 225
Figure 66.	I ² S slave timing diagram (Philips protocol) ⁽¹⁾	. 226
Figure 67.	I ² S master timing diagram (Philips protocol) ⁽¹⁾	. 227
Figure 68.	USB timings - definition of data signal rise and fall time	. 228
Figure 69.	SAI master timing waveforms	. 230
Figure 70.	SAI slave timing waveforms	. 231
Figure 71.	SDIO high-speed/eMMC timing	. 233
Figure 72.	SD default speed timings	. 233
Figure 73.	DDR mode timings	. 233
Figure 74.	Ethernet RMII timing diagram	235
Figure 75.	Ethernet MII timing diagram	236
Figure 76	Ethernet SMI timing diagram	236
Figure 77	.ITAG timing diagram	237
Figure 78	SWD timing diagram	238
Figure 79	I OEP64 - Outline ⁽¹⁵⁾	240
Figure 80	I OEP64 - Footprint example	242
Figure 81	VEOEPN68 - Outline	243
Figure 82	VFOFPN68 - Footprint example	240
Figure 83	WI CSP80 - Outline	245
Figure 84	WI CSP80 - Footprint example	240
Figure 85	WI CSP80 marking example (package top view)	247
Figure 86	$I \cap EP100 - Outline^{(15)}$	248
Figure 87		250
Figure 88	$I \cap EP1/4 = Outline^{(15)}$	251
Figure 80	$I \cap EP144 = Continue + a a a a a a a a a a a a a a a a a a $	254
Figure 00.		255
Figure 90.		. 255
Figure 02	$I \cap EP176 - Outline(15)$. 201 259
Figure 03	I OEP176 - Footprint example	261
Figure 04	Let 170-10000000000000000000000000000000000	201
Figure 05	$HERG(176+25) = Outline \dots \dots$. 202 วฅว
i iyure 90.		. 203

1 Introduction

This document provides the ordering information and mechanical device characteristics of the STM32H562xx and STM32H563xx microcontrollers.

For information on the device errata with respect to the datasheet and reference manual, refer to the STM32H562xx and STM32H563xx errata sheet.

For information on the Arm^{®(a)} Cortex[®]-M33 core, refer to the Cortex[®]-M33 Technical Reference Manual, available from the www.arm.com website.

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

2 Description

The STM32H562xx and STM32H563xx devices are high-performance microcontrollers of the STM32H5 series, based on the high-performance Arm[®] Cortex[®]-M33 32-bit RISC core. They operate at a frequency of up to 250 MHz.

The Cortex[®]-M33 core features a single-precision floating-point unit (FPU), which supports all the Arm[®] single-precision data-processing instructions and all the data types. This core implements a full set of DSP (digital signal processing) instructions and a memory protection unit (MPU) that enhances the application security.

The devices embed high-speed memories (up to 2 Mbytes of dual bank flash memory and 640 Kbytes of SRAM), a flexible external memory controller (FMC) for devices with packages of 100 pins and more, one OCTOSPI memory interface (at least one Quad-SPI available on all packages), and an extensive range of enhanced I/Os and peripherals connected to three APB buses, three AHB buses, and a 32-bit multi-AHB bus matrix.

The devices offer security foundation compliant with the trusted-based security architecture (TBSA) requirements from Arm[®]. They embed the features to implement a secure firmware update. Besides these capabilities, the devices incorporate a secure firmware installation that allows the customer to secure the provisioning of the code during its production. A flexible life cycle is managed thanks to multiple levels of protection and secure debug authentication. Firmware hardware isolation is supported thanks to securable peripherals, memories, and I/Os, and to privilege configuration of peripherals and memories.

The devices feature several protection mechanisms for embedded flash memory and SRAM: readout protection, write protection, secure, and hide protection areas.

Dedicated peripherals reinforce security: an HASH hardware accelerator, and a true random number generator.

The devices offer active tamper detection and protection against transient and environmental perturbation attacks, thanks to several internal monitoring, generating secret data erase in case of attack. This helps to fit the PCI requirements for point of sales applications.

The devices offer two fast 12-bit ADCs, two DAC channels, an internal voltage reference buffer, a low-power RTC, two 32-bit general-purpose timers, two 16-bit PWM timers dedicated to motor control, eight 16-bit general-purpose timers, two 16-bit basic timers, and six 16-bit low-power timers.

The devices also feature standard and advanced communication interfaces, namely: four I²Cs, one I3C, six SPIs, three I2Ss, six USARTs, six UARTs and one low-power UART, two SAIs, one digital camera interface (DCMI), up to two SDMMCs, up to two FDCANs, one USB full-speed, one USB Type-C[®]/USB power delivery controller, an Ethernet interface (available only on STM32H563xx).

The devices operate in the -40 to +85 °C (+130 °C junction) and -40 to +125 °C (+130 °C junction) temperature ranges, with a 1.71 to 3.6 V power supply.

A comprehensive set of power-saving modes allow the design of low-power applications.

Independent power supplies are supported: an analog independent supply input for ADC, DACs, a 3.3 V dedicated supply input for USB, and a dedicated supply input for some GPIOs and SDMMC. A VBAT input is available to connect a backup battery, to preserve the RTC functionality, and to backup 32 32-bit registers and a 4-Kbyte SRAM.

The devices offer eight packages, from 64 to 176 pins.

All packages are available with LDO or SMPS supply options for the V_{CORE} (except for LQFP64 and VFQFPN68 packages, not available in SMPS, and WLCSP80, not available in LDO).

Peript	STM32H563RI/G	STM32H563RI/G STM32H562RI/G STM32H563MI STM32H563VI/G STM32H563VI/G STM32H562ZI/G STM32H563ZI/G STM32H563AI/G STM32H563AI/G STM32H563AI/G STM32H563AI/G						STM32H562II/G				
Flash n	nemory					Up to 2	2 Mbyte	es				
SRAM	System				640 (2	56 + 64	4 + 320) Kbyte	es			
	Backup					4 K	bytes					
Flexible memory controller for external memories (FMC)		Ν	No Yes ⁽¹⁾ Yes Yes									
OCTO	OSPI	1										
	Advanced control			2 (16 bits)								
	General purpose	2 (32 bits) and 8 (16 bits)										
	Basic	2 (16 bits)										
Timers	Low power					6 (1	6 bits)					
	SysTick timer	2										
	Watchdog timers (independent, window)		2									

Table 2. STM32H56xxx features and peripheral counts

Peripherals		STM32H563RI/G	STM32H562RI/G	STM32H563MI	STM32H563VI/G	STM32H562VI/G	STM32H563ZI/G	STM32H562ZI/G	STM32H563AI/G	STM32H562AI/G	STM32H563II/G	STM32H562II/G	
	SPI / 12S	4/3 5/3 6/3											
	I2C						4						
	I3C					1	(3)						
	USART		5			6							
	UART		5 6										
	LPUART		1										
	SAI						2						
Communication	FDCAN	2	1	2		1	2	1	2	1	2	1	
interfaces	USB					١	⁄es						
	UCPD				-	Yes							
	SDMMC	1			2	1	2	1	2	1	2	1	
	Digital camera interface (DCMI)/PSSI ⁽⁴⁾	Yes											
	Ethernet (legacy/SMPS)	Yes/ No	No	No/Yes	Yes/ No	No	Yes/ No	No	Yes/ Yes	No	Yes/ Yes	No	
	HDMI-CEC	Yes											
CORDIC co	-processor	Yes											
Filter mathematical accelerator (FMAC)		Yes											
Real time c	lock (RTC)	Yes											
Tamper pins (I	egacy/SMPS)	5/1	١A	NA/5	A/5 8/8								
Active tampers (legacy/SMPS) ⁽⁵⁾		4/NA NA/4 7/7											
True random number generator		Yes											
HASH (SHA-512)		Yes											
PKA (ECDSA signature verification)		Yes											
GPIOs (legacy/SMPS)		53 ⁽⁶⁾	/NA	NA/57	80 /78	80 /NA	112 /110	112 /NA	136 /134	136 /eNA	140 ⁽⁷⁾ /139	140 (7)	
Wake-up pins (legacy/SMPS)		6/N	A ⁽⁸⁾	NA/6	7/7	7 /NA	7/7	7 /NA	8/8	8 /NA	8/8	8 /NA	
Number of I/Os down to 1.08 V (legacy/SMPS)		0/N	١A	NA/0	0/0	0 /NA	10 /10	10 /NA	10/7	10 /NA	10/7	10 /NA	

 Table 2. STM32H56xxx features and peripheral counts (continued)

Peripherals		STM32H563RI/G	STM32H562RI/G	STM32H563MI	STM32H563VI/G	STM32H562VI/G	STM32H563ZI/G	STM32H562ZI/G	STM32H563AI/G	STM32H562AI/G	STM32H563II/G	STM32H562II/G
	12-bit ADC						2					
ADC	Number of channels (legacy/SMPS)	16/	NA	NA / 16	16 /14	16 /NA	20 /18	20 /NA	20 /20	20/ NA	20 /20	20/ NA
12-bit DAC controller		1										
DAC	Number of 12-bit D to A converters	2										
Internal voltage reference buffer		No Yes										
Maximum CPU frequency		250 MHz										
Operating voltage		1.71 to 3.6 V										
Operating temperature Junction		-40 to 85 or 105 °C / -40 to 125 °C										
		Voltage range VOS0 (up to 250 MHz): -40 to 105 °C Voltage range VOS1 (up to 200 MHz): -40 to 130 °C										
Package		LQFP64 VFQFPN68 WLCSP80 LQFP100 LQFP144 UFBGA169 UFBGA17						P176 A176				

Table 2. STM32H56xxx features and peripheral counts (continued)

1. 8-bit to interface LCD controller.

2. For the LQFP100 package, only FMC Bank1 is available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 chip select.

3. Shares the I/Os with I2C4.

4. DCMI and PSSI cannot be used at the same time, as they share the same circuitry.

5. Active tampers in output sharing mode (one output shared by all inputs).

- 6. 49 for LQFP64.
- 7. 136 for LQFP176.
- 8. 5 for VFQFPN68.

Figure 1. STM32H562xx and STM32H563xx block diagram

DS14258 Rev 5

3 Functional overview

3.1 Arm Cortex-M33 core with TrustZone and FPU

The Cortex-M33 with TrustZone and FPU is a highly energy-efficient processor designed for microcontrollers and deeply embedded applications, especially those requiring efficient security. This processor delivers a high computational performance with low-power consumption and an advanced response to interrupts. It features:

- Arm TrustZone technology, using the Armv8-M main extension supporting secure and nonsecure states
- Memory protection units (MPUs), supporting up to 16 regions for secure and nonsecure applications
- Configurable secure attribute unit (SAU) supporting up to eight memory regions as secure or nonsecure
- Floating-point arithmetic functionality with support for single precision arithmetic

The processor supports a set of DSP instructions that allows an efficient signal processing and a complex algorithm execution.

The Cortex-M33 processor supports the following bus interfaces:

System AHB bus:

The system AHB (S-AHB) bus interface is used for any instruction fetch and data access to the memory-mapped SRAM, peripheral, external RAM and external device, or Vendor_SYS regions of the Armv8-M memory map.

Code AHB bus:

The code AHB (C-AHB) bus interface is used for any instruction fetch and data access to the code region of the Armv8-M memory map.

Figure 1 shows the general block diagram of the STM32H562xx and STM32H563xx devices.

3.2 ART Accelerator (ICACHE and DCACHE)

3.2.1 Instruction cache (ICACHE)

The instruction cache (ICACHE) is introduced on C-AHB code bus of Cortex-M33 processor to improve performance when fetching instruction (or data) from both internal and external memories.

ICACHE offers the following features:

- Multi-bus interface:
 - slave port receiving the memory requests from the Cortex-M33 C-AHB code execution port
 - master1 port performing refill requests to internal memories (flash memory and SRAMs)
 - master2 port performing refill requests to external memories (external flash memory and RAMs through Octo-SPI and FMC interfaces)
 - a second slave port dedicated to ICACHE registers access

- Close to 0 wait-states instructions/data access performance:
 - 0 wait-states on cache hit
 - hit-under-miss capability, allowing to serve new processor requests while a line refill (due to a previous cache miss) is still ongoing
 - critical-word-first refill policy, minimizing processor stalls on cache miss
 - hit ratio improved by two-way set-associative architecture and pLRU-t replacement policy (pseudo-least-recently-used, based on binary tree), algorithm with best complexity/performance balance
 - dual master ports allowing to decouple internal and external memory traffic, respectively, on fast and slow buses, minimizing impact on interrupt latency
 - optimal cache line refill thanks to AHB burst transactions (of the cache line size)
 - performance monitoring by means of a hit counter and a miss counter
- Extension of cacheable region beyond the code memory space, by means of address remapping logic that allows four cacheable external regions to be defined
- Power consumption reduced intrinsically (more accesses to cache memory rather than to bigger main memories); even improved by configuring ICACHE as direct mapped (rather than the default two-way set-associative mode)
- TrustZone security support
- Maintenance operation for software management of cache coherency
- Error management: detection of unexpected cacheable write access, with optional interrupt raising

3.2.2 Data cache (DCACHE)

The data cache (DCACHE) is introduced on S-AHB system bus of Cortex-M33 processor to improve the performance of data traffic to/from external memories.

DCACHE offers the following features:

- Multi-bus interface:
 - slave port receiving the memory requests from the Cortex-M33 S-AHB system port
 - master port performing refill requests to external memories (external flash memory and RAMs through Octo-SPI and FMC interfaces)
 - a second slave port dedicated to DCACHE registers access
- Close to zero wait-states external data access performance:
 - zero wait-states on cache hit
 - hit-under-miss capability, allowing to serve new processor requests to cached data, while a line refill (due to a previous cache miss) is still ongoing
 - critical-word-first refill policy for read transactions, minimizing processor stalls on cache miss
 - hit ratio improved by two-way set-associative architecture and pLRU-t replacement policy (pseudo-least-recently-used, based on binary tree), algorithm with best complexity/performance balance
 - optimal cache line refill thanks to AHB burst transactions (of the cache line size)
 - performance monitoring by means of two hit counters (for read and write) and two miss counters (for read and write)

- Supported cache accesses:
 - supports both write-back and write-through policies (selectable with AHB bufferable attribute)
 - read and write-back always allocated
 - write-through always non-allocated (write-around)
 - supports byte, half-word and word writes
- TrustZone security support
- Maintenance operations for software management of cache coherency:
 - full cache invalidation (non interruptible)
 - address range clean and/or invalidate operations (background task, interruptible)
- Error management: detection of error for master port request initiated by DCACHE (line eviction or clean operation), with optional interrupt raising

3.3 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to the memory and to prevent one task to accidentally corrupt the memory or the resources used by other active tasks. This memory area is organized into up to 20 protected areas (12 secure and 8 nonsecure). The MPU regions and registers are banked across secure and nonsecure states.

The MPU is especially helpful for applications where critical or certified code must be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system).

If a program accesses a memory location prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area settings based on the process to be executed.

3.4 Embedded flash memory

The devices feature up to 2 Mbytes of embedded flash memory for storing programs and data. The flash memory supports a high-cycle data area of up to 100 K cycles.

The flash memory interface features dual-bank operating modes, and read-while-write (RWW). This allows a read operation to be performed on one bank while an erase or program operation is performed on the other bank. Each bank contains 128 8-Kbyte pages.

The flash memory embeds a 2-Kbyte OTP (one-time programmable) for user data, and up to 96 Kbytes supporting high cycling capability (100 K cycles), to use for data (EEPROM emulation).

Option bytes are available to set the flash memory protection mechanisms:

- Different product states for protecting memory content from debug access
- Write protection (WRP) to protect areas against erasing and programming. Two areas per bank can be selected with 8-Kbyte granularity.
- Sector group write-protection (WRPSG), protecting up to 32 groups of four sectors (32 Kbytes) per bank
- Two secure-only areas (one per user flash memory bank). When enabled, this area is accessible only if the device operates in Secure-access mode
- One HDP area per bank providing temporal isolation for startup code

The whole non-volatile memory embeds the error correction code (ECC) feature supporting:

- Single-error detection and correction
- Double-error detection
- ECC fail address report

3.4.1 FLASH security and protections

Sensitive information is stored in the flash memory and it is important to protect the memory against unwanted operations such as reading confidential areas, illegal programming of immutable sectors, or malicious flash memory erasing.

For that purpose the following protection mechanisms are implemented:

- TrustZone backed watermark and block security protection
- Temporal isolation protection (HDP)
- Configuration protection
- User flash memory write protection
- Device non-volatile security life cycle and application boot state management
- OTP locking

Refer to the product reference manual for a detailed description of the security mechanisms.

3.4.2 FLASH privilege protection

Each flash memory sector can be programmed on the fly as privileged or unprivileged.

3.5 Embedded SRAMs

Four SRAMs are embedded in the STM32H562xx and STM32H563xx devices, each with specific features. SRAM1, SRAM2, and SRAM3 are the main SRAMs.

These SRAMs are made of several blocks that can be powered down in Stop mode to reduce consumption:

- SRAM1: 256 Kbytes
- SRAM2: 64 Kbytes with ECC
- SRAM3: 320 Kbytes with optional ECC (when enabled, 64 bytes are reserved for it)
- BKPSRAM (backup SRAM): 4 Kbytes with optional ECC, can be retained in all lowpower modes and when V_{DD} is off in VBAT mode

Note: The ECC is supported by SRAM2, SRAM3, and BKPSRAM when enabled with the SRAM2_ECC, SRAM3_ECC, and BKPRAM_ECC user option bits.

3.5.1 SRAMs TrustZone security

When the TrustZone security is enabled, all SRAMs are secure after reset. The SRAM1, SRAM2, SRAM3, can be programmed as secure or nonsecure by blocks, using the MPCBB (block-based memory protection controller).

The granularity of SRAM secure block based is a page of 512 bytes. Backup SRAM regions can be programmed as secure or nonsecure with watermark, using the TZSC (TrustZone security controller) in the GTZC (global TrustZone controller).

3.5.2 SRAMs privilege protection

The SRAM1, SRAM2, SRAM3, can be programmed as privileged or non-privileged by blocks, using the MPCBB. The granularity of SRAM privilege block based is a page of 512 bytes. Backup SRAM regions can be programmed as privileged or non-privileged with watermark, using the TZSC (TrustZone security controller) in the GTZC (global TrustZone controller).

3.6 Security overview

The STM32H562xx and STM32H563xx security enables the possibility to reopen the debug mode even if the product is in secure state.

The reopening of the debug mode is controlled with a debug authentication procedure which permits the authentication of the host.

Sensible assets (such as keys or secret codes) must be protected when opening the debug mode. The protection is made via code protection and hardware keys storage solutions where all *root of trust* can be protected thanks to hardware mechanisms.

In cases where sensitive information cannot be protected, a partial or a full regression can be launched to start a debug. Regressions are enabled by a debug authentication method.

Developers can introduce their own root of trust solution (OEM-iROT), including their installation in a non-trusted environment, thanks to a secure firmware install (SFI) solution.

The boot stages are isolated via a hardware mechanism called HDPL (temporal isolation level). The HDPL guarantees isolation of the different boot stages: ST assets, iROT (immutable root of trust), uROT (updatable root of trust), secure operating system and nonsecure applications.

The devices embed a hardware key storage solution with a dedicated flash memory area per boot stages with access-control based on HDPL, which can be secure or nonsecure.

STM32H562xx and STM32H563xx are powered by an Arm Cortex-M33 core, associated with all the TrustZone isolation infrastructure. This design permits to benefit from a run time isolation to run secure applications.

3.7 Boot modes

At startup, a BOOT0 pin and NSBOOTADD[31:8]/SECBOOTADD[31:8] option bytes are used to select the boot memory address that includes:

- Boot from any address in user flash memory
- Boot from system memory
 - Bootloader
 - ST immutable root of trust (ST-iROT)
 - Root security service (RSS)
 - Debug authentication library (RSS-DA)

Embedded bootloader

The embedded bootloader is located in the system memory, programmed by ST during production. It is used to reprogram the flash memory by using USART, I2C, I3C, SPI, FDCAN, or USB_FS in device mode through the DFU (device firmware upgrade).

Refer to AN2606 "STM32 microcontroller system memory boot mode".

Embedded root security services (RSS)

The embedded RSS are located in the secure information block, programmed by ST during production.

Refer to AN4992 "Overview secure firmware install (SFI)".

Embedded immutable root of trust (ST-iROT)

The embedded ST-iROT in the system memory, programmed by ST during production. STiROT is the immutable root of trust managing the secure boot and secure install of the first updatable level to execute in a boot sequence.

Embedded debug authentication (ST-DA)

The embedded ST-DA in the system memory is programmed by ST during production. ST-DA is the library that manages the debug authentication protocol, making it possible to securely reopen the debug or to launch regressions on secured products in the field.

3.7.1 STM32H562/H563xx boot modes

Table 3 and *Table 4*, respectively, provide the detail of the boot mode when TrustZone is disabled (TZEN = 0xC3) and enabled (TZEN = 0xB4).

Table 3. STM32H562/H563 boot mode when TrustZone is disabled (TZEN = 0xC3)
--

PRODUCT_STATE	BOOT0 pin	Boot address option byte selection	Boot area	ST programmed default value	
Open	0	NSBOOTADD[31:8]	Boot address defined by user option byte NSBOOTADD[31:8]	Flash: 0x0800 0000	
-	1	NA	Bootloader	Bootloader	
Provisioning x		NA	RSS	RSS	

PRODUCT_STATE	BOOT0 pin	Boot address option byte selection	Boot area	ST programmed default value	
Provisioned, Closed, Locked	x	NSBOOTADD[31:8]	Boot address defined by user option byte NSBOOTADD[31:8]	Flash: 0x0800 0000	

Table 3. STM32H562/H563 boot mode when TrustZone is disabled (TZEN = 0xC3) (continued)

Table 4. STM32H562/H563 boot mode when TrustZone is enabled (TZEN = 0xB4)

PRODUCT_STATE	BOOT0 pin	Boot address option- byte selection	Boot area	ST programmed default value	
Open	0	SECBOOTADD[31:8]	Boot address defined by user option byte SECBOOTADD[31:8]	Flash: 0x0C00 0000	
-	1	NA	Bootloader	Bootloader	
Provisioning	х	NA	RSS	RSS	
Provisioned, TZ_Closed, Closed, Locked	х	SECBOOTADD[31:8]	Boot address defined by user option byte SECBOOTADD[31:8]	Flash: 0x0C00 0000	

When TrustZone is enabled the boot space must be in secure area. SECBOOTADD0[24:0] option bytes are used to select the boot secure memory address. A unique boot entry option can be selected by setting the SECBOOT_LOCK option bit.

3.8 Global TrustZone controller (GTZC)

GTZC is used to configure TrustZone and privileged attributes within the full system.

The GTZC includes three different sub-blocks:

• TZSC: TrustZone security controller

This sub-block defines the secure/privilege state of slave/master peripherals. It also controls the nonsecure area size for the watermark memory peripheral controller (MPCWM). The TZSC block informs some peripherals (such as RCC or GPIOs) about the secure status of each securable peripheral, by sharing with RCC and I/O logic.

- TZIC: TrustZone illegal access controller
 This sub-block gathers all security illegal access events in the system and generates a secure interrupt towards NVIC.
- MPCBB: MPCBB: block-based memory protection controller

This sub-block controls secure states of all memory blocks (512-byte pages) of the associated SRAM. This peripheral aims at configuring the internal RAM in a TrustZone system product having segmented SRAM with programmable-security and privileged attributes.

The GTZC main features are:

- Three independent 32-bit AHB interfaces for TZSC, TZIC and MPCBB
- MPCBB and TZIC accessible only with secure transactions
 - Enable illegal access events that may trigger a secure interrupt
- Secure and nonsecure access supported for privileged/non-privileged part of TZSC
- Set of registers to define product security settings:
 - Secure/privilege regions for external memories
 - Secure/privilege access mode for securable peripherals
 - Secure/privilege access mode for securable legacy masters

3.9 TrustZone security architecture

The security architecture is based on Arm TrustZone with the Armv8-M main extension.

The TrustZone security is activated by the TZEN option bit in the FLASH_OPTR register.

When the TrustZone is enabled, the SAU (security attribution unit) and IDAU (implementation defined attribution unit) define the access permissions based on secure and nonsecure state.

- SAU: up to eight SAU configurable regions are available for security attribution.
- IDAU: It provides a first memory partition as nonsecure or nonsecure callable attributes. It is then combined with the results from the SAU security attribution and the higher security state is selected.

Based on IDAU security attribution, the flash memory, system SRAMs and peripherals memory space is aliased twice for secure and nonsecure states. However, the external memories space is not aliased.

3.9.1 TrustZone peripheral classification

When the TrustZone security is active, a peripheral can be either securable or TrustZoneaware type as follows:

- securable: peripheral protected by an AHB/APB firewall gate controlled from TZSC to define security properties
- TrustZone-aware: peripheral connected directly to AHB or APB bus and implementing a specific TrustZone behavior such as a subset of registers being secure

3.9.2 Default TrustZone security state

The default system security state is detailed below:

- CPU:
 - Cortex-M33 is in secure state after reset. The boot address must be in secure address.
- Memory map:
 - SAU is fully secure after reset. Consequently, all memory map is fully secure. Up to eight SAU configurable regions are available for security attribution.
- Flash memory:
 - Flash memory security area is defined by watermark user options.

- Flash memory block based area is nonsecure after reset.
- SRAMs:
 - All SRAMs are secure after reset. MPCBB (memory protection block based controller) is secure.
- External memories:
 - FMC, OCTOSPI banks are secure after reset. MPCWMx (memory protection watermark based controller) is secure.
- Peripherals
 - Securable peripherals are nonsecure after reset.
 - TrustZone-aware peripherals are nonsecure after reset. Their secure configuration registers are secure.
- All GPIOs are secure after reset.
- Interrupts:
 - NVIC: All interrupts are secure after reset. NVIC is banked for secure and nonsecure state.
- TZIC: All illegal access interrupts are disabled after reset.

3.10 **Power supply management**

The power controller (PWR) main features are:

- Power supplies and supply domains
- Core domain (V_{CORE})
 - V_{DD} domain
 - Backup domain (V_{BAT})
 - Analog domain (V_{DDA})
 - SMPS power stage (V_{DDSMPS}, available only on SMPS packages)
 - V_{DDIO2} domain
 - V_{DDUSB} for USB transceiver
- System supply voltage regulation
 - SMPS step down converter
 - Voltage regulator (LDO)
- Power supply supervision
 - POR/PDR monitor
 - BOR monitor
 - PVD monitor
- Power management
 - Operating modes
 - Voltage scaling control
 - Low-power modes
- VBAT battery charging
- TrustZone security and privileged protection

3.10.1 Power supply schemes

The devices require a 1.71 to 3.6 V V_{DD} operating voltage supply. Several independent supplies can be provided for specific peripherals:

• V_{DD} = 1.71 V to 3.6 V

 V_{DD} is the external power supply for the I/Os, the internal regulator and the system analog such as reset, power management and internal clocks. It is provided externally through the VDD pins.

• V_{DDA} = 1.62 V (ADCs), 1.8 V (DACs), or 2.1 V (VREFBUF) to 3.6 V

 V_{DDA} is the external analog power supply for ADCs, DACs and voltage reference buffer. This voltage level is independent from V_{DD} , and must preferably be connected to V_{DD} when these peripherals are not used.

• V_{DDSMPS} = 1.71 V to 3.6 V

V_{DDSMPS} is the external power supply for the SMPS step down converter. It is provided externally through VDDSMPS supply pin and must be connected to the same supply than VDD.

- V_{LXSMPS} is the switched SMPS step down converter output. The SMPS power supply pins are available only on packages with SMPS step down converter option.
- V_{DDUSB} = 3.0 V to 3.6 V

 V_{DDUSB} is the external independent power supply for USB transceivers. It is independent from V_{DD} , and must preferably be connected to VDD when the USB is not used.

• V_{DDIO2} = 1.08 V to 3.6 V

 V_{DDIO2} is the external power supply for 10 I/Os (PD6, PD7, PG9:14, PB8, PB9). This voltage level is independent from V_{DD} , voltage and must preferably be connected to VDD when those pins are not used.

• V_{BAT} = 1.2 V to 3.6 V

 V_{BAT} is the power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

VREF-, VREF+

 $V_{\text{REF+}}$ is the input reference voltage for ADCs and DACs. It is also the output of the internal voltage reference buffer when enabled.

V_{REF+} can be grounded when ADC and DAC are not active.

VREF- and VREF+ pins are not available on all packages. When not available, they are bonded to VSSA and VDDA, respectively.

When the VREF+ is double-bonded with VDDA in a package, the internal voltage reference buffer is not available and must be kept disabled.

 V_{REF-} must always be equal to V_{SSA} .

Depending upon the package, the devices embed an LDO and/or an SMPS regulator, to provide the V_{CORE} supply for digital peripherals, SRAM1, SRAM2, SRAM3, and embedded flash memory. The SMPS generates this voltage on VCAP (two pins), with a total external capacitor of 10 μ F (typical). The SMPS requires an external coil. The LDO generates this voltage on VCAP pin connected to an external capacitor of 2x 2.2 μ F (typical).

Both regulators can provide four different voltages (voltage scaling), and can operate in Stop modes.

Figure 2. STM32H562xx and STM32H563xx power supply overview (with SMPS)

Figure 3. STM32H562xx and STM32H563xx power supply overview (with LDO)

During power-up and power-down phases, the following power sequence requirements must be respected:

- When V_{DD} is below 1 V, other power supplies (V_{DDA} , V_{DDIO2} , V_{DDUSB}) must remain below V_{DD} + 300 mV.
- When V_{DD} is above 1 V, all power supplies are independent.
- During the power-down phase, V_{DD} can temporarily become lower than other supplies only if the energy provided to the MCU remains below 1 mJ. This allows external decoupling capacitors to be discharged with different time constants during the powerdown transient phase.

Figure 4. Power-up/down sequence

1. V_{DDX} refers to any power supply among V_{DDA} , V_{DDUSB} , and V_{DDIO2} .

3.10.2 Power supply supervisor

The devices have an integrated ultra-low-power brownout reset (BOR) active in all modes; The BOR ensures proper operation of the devices after power on and during power down. The devices remain in reset mode when the monitored supply voltage V_{DD} is below a specified threshold, without the need for an external reset circuit.

The lowest BOR level is 1.71 V at power on, and other higher thresholds can be selected through option bytes. The devices feature an embedded programmable voltage detector (PVD) that monitors the V_{DD} power supply and compares it to the V_{PVD} threshold.

An interrupt can be generated when V_{DD} drops below the V_{PVD} threshold and/or when V_{DD} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

In addition, the devices embed a peripheral voltage monitor that compares the independent supply voltages V_{DDA} , V_{DDUSB} and V_{DDIO2} to ensure that the peripheral is in its functional supply range.

The devices support dynamic voltage scaling to optimize power consumption in Run mode. The voltage from the main regulator that supplies the logic (V_{CORE}) can be adjusted according to the system maximum operating frequency.

The main regulator operates in the following ranges:

- VOS0 (V_{CORF} = 1.35 V) with CPU and peripherals running at up to 250 MHz
- VOS1 (V_{CORE} = 1.2 V) with CPU and peripherals running at up to 200 MHz
- VOS2 (V_{CORE} = 1.1 V) with CPU and peripherals running at up to 150 MHz
- VOS3 (V_{CORE} = 1.0 V) with CPU and peripherals running at up to 100 MHz

Low-power modes

By default, the microcontroller is in Run mode after a system or a power reset. It is up to the user to select one of the low-power modes described below:

• Sleep mode

Only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

• Stop mode

This mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the V_{CORE} domain are stopped, the PLL, the CSI, the HSI, the HSI48, and the HSE crystal oscillators are disabled. The LSE or LSI is still running.

The RTC can remain active (Stop mode with RTC, Stop mode without RTC).

The system clock when exiting from Stop mode can be either HSI up to 64 MHz, or CSI (4 MHz), depending on software configuration.

• Standby mode

This mode is used to achieve the lowest power consumption with BOR. The PLL, the HSI, the CSI, the HSI48, and the HSE crystal oscillators are also switched off.

The RTC can remain active (Standby mode with RTC, Standby mode without RTC). The BOR always remains active.

The I/Os state during Standby mode can be retained.

After entering Standby mode, SRAMs and register contents are lost, except for registers and backup SRAM in the Backup domain and Standby circuitry.

The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a WKUP pin event (configurable rising or falling edge), an RTC event (alarm, periodic wake-up, timestamp), or a tamper detection occurs. The tamper detection can be due to external pins or to an internal failure detection.

The system clock after wake-up is HSI at 32 MHz.

3.10.3 Reset mode

To improve the consumption under reset, the I/Os state under and after reset is "analog state" (the I/O Schmitt trigger is disabled).

3.10.4 VBAT operation

The VBAT pin allows the device VBAT domain to be powered from an external battery or by an external super-capacitor.

The VBAT pin supplies the RTC with LSE, anti-tamper detection (TAMP), backup registers, and 4-Kbyte backup SRAM. Eight anti-tamper detection pins are available in VBAT mode.

The VBAT operation is automatically activated when V_{DD} is not present. An internal VBAT battery charging circuit is embedded and can be activated when V_{DD} is present.

Note: When the microcontroller is supplied from V_{BAT} , neither external interrupts nor RTC alarm/events exit the microcontroller from the VBAT operation.

3.10.5 **PWR TrustZone security**

When the TrustZone security is activated by the TZEN option bit, the PWR is switched in TrustZone security mode.

The PWR TrustZone security secures the following configuration:

- Low-power mode
- Wake-up (WKUP) pins
- Voltage detection and monitoring
- VBAT mode

Some of the PWR configuration bits security are defined by the security of other peripherals:

- The voltage scaling (VOS) configuration is secure when the system clock selection is secure in RCC.
- The I/O pull-up/pull-down in Standby mode configuration is secure when the corresponding GPIO is secure.
- The backup domain write protection is secure when the RTC is secure.

3.11 Peripheral interconnect matrix

Several peripherals have direct connections between them, for autonomous communication, and to support the saving of CPU resources (thus power supply consumption). In addition, these hardware connections allow fast and predictable latency.

Depending on the peripherals, these interconnections can operate in Run and Sleep modes.

3.12 Reset and clock controller (RCC)

The clock controller distributes the clocks coming from the different oscillators to the core and to the peripherals. It also manages the clock gating for low-power modes and ensures the clock robustness. It features:

- Clock prescaler: to get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler.
- **Clock security system:** clock sources can be changed safely on the fly in Run mode through a configuration register.
- **Clock management:** to reduce the power consumption, the clock controller can stop the clock to the core, individual peripherals, or memory.
- System clock source: four different clock sources can be used to drive the master clock SYSCLK:
 - 4 to 50 MHz high-speed external crystal or ceramic resonator (HSE), can supply a PLL. The HSE can also be configured in bypass mode for an external clock.
 - 64 MHz high-speed internal RC oscillator (HSI), trimmable by software, can supply a PLL.
 - 4 MHz low-power internal oscillator (CSI), trimmable by software, can supply a PLL.
 - System PLL, which can be fed by HSE, HSI, or CSI, with a maximum frequency at 250 MHz.

- **RC48 with clock recovery system (HSI48):** internal 48 MHz clock source (HSI48), can be used to drive the USB.
- **UCPD kernel clock**, derived from HSI clock. The HSI RC oscillator must be enabled prior to the UCPD kernel clock use.
- **Auxiliary clock source:** two ultra-low power clock sources that can be used to drive the real-time clock:
 - 32.768 kHz low-speed external crystal (LSE), supporting four drive capability modes. The LSE can also be configured in bypass mode for an external clock.
 - 32 kHz low-speed internal RC (LSI), also used to drive the independent watchdog.
- **Peripheral clock sources:** several peripherals have their own independent clock, whatever the system clock. Three PLLs, each having three independent outputs allowing the highest flexibility, can generate independent clocks for the ADC, USB, SDMMC, RNG, FDCAN1, OCTOSPI, and the two SAIs.
- **Startup clock:** after reset, the microcontroller restarts by default with an internal 32 MHz clock (HSI/2). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
- Clock security system (CSS): this feature can be enabled by software. If a HSE clock failure occurs, the master clock automatically switches to HSI and a software interrupt is generated if enabled. LSE failure can also be detected and generates an interrupt.
- Clock-out capability:
 - MCO (microcontroller clock output): outputs one of the internal clocks for external use by the application.
 - LSCO (low-speed clock output): outputs LSI or LSE in all low-power modes (except VBAT mode).

Several prescalers allow AHB and APB frequencies configuration. The maximum frequency of the AHB and the APB clock domains is 250 MHz.

3.12.1 RCC TrustZone security

When the TrustZone security is activated by the TZEN option bit, the RCC is switched in TrustZone security mode.

The RCC TrustZone security secures some RCC system configuration and peripheral configuration clock from being read or modified by nonsecure accesses: when a peripheral is secure, the related peripheral clock, reset, clock source selection and clock enable during low-power modes control bits are secure.

A peripheral is in secure state:

- when its corresponding SEC security bit is set in the TZSC (TrustZone security controller), for securable peripherals.
- when a security feature of this peripheral is enabled through its dedicated bits, for TrustZone-aware peripherals.

3.13 Clock recovery system (CRS)

The devices embed a special block that allows automatic trimming of the internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device operational range. The trimming is based on the external synchronization signal, derived from USB SOF signalization, from LSE oscillator, from an external signal on CRS_SYNC pin, or generated

by user software. For faster lock-in during startup, automatic and manual trimming actions can be combined.

3.14 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions.

After reset, all GPIOs are in analog mode to reduce power consumption.

If needed, the I/Os alternate function configuration can be locked following a specific sequence, to avoid spurious writing to the I/Os registers.

Ten I/Os (PD6, PD7, PG9:14, PB8, PB9) can be independently supplied by a dedicated $V_{\mbox{DDIO}}$ supply.

3.14.1 GPIOs TrustZone security

Each I/O pin of GPIO port can be individually configured as secure. When the selected I/O pin is configured as secure, its corresponding configuration bits for alternate function, mode selection, I/O data are secure against a nonsecure access. The associated registers bit access is restricted to a secure software only. After reset, all GPIO ports are secure.

3.15 Multi-AHB bus matrix

A 32-bit multi-AHB bus matrix interconnects all the masters (CPU, GPDMA1, GPDMA2, SDMMC1, SDMMC2, Ethernet) and the slaves (flash memory, FMC, OCTOSPI, SRAMs, AHB and APB) peripherals. It ensures seamless and efficient operation, even when several high-speed peripherals work simultaneously.

3.16 General purpose direct memory access controller (GPDMA)

The GPDMA controller is a bus master and system peripheral. It used to perform programmable data transfers between memory-mapped peripherals and/or memories via linked-lists, upon the control of an off-loaded CPU. The GPDMA main features are:

- Dual bidirectional AHB master
 - Memory-mapped data transfers from a source to a destination:
 - Peripheral-to-memory
 - Memory-to-peripheral
 - Memory-to-memory
 - Peripheral-to-peripheral
- Autonomous data transfers during Sleep mode
- Transfers arbitration based on a four-grade programmed priority at a channel level:
 - One high-priority traffic class, for time-sensitive channels (queue 3)
 - Three low-priority traffic classes, with a weighted round-robin allocation for non time-sensitive channels (queues 0, 1, 2)

- Per channel event generation, on any of the following events: transfer complete or half transfer complete or data transfer error or user setting error, and/or update linked-list item error or completed suspension
- Per channel interrupt generation, with separately programmed interrupt enable per event
- Eight concurrent DMA channels:
 - Per channel FIFO for queuing source and destination transfers
 - Intra-channel DMA transfers chaining via programmable linked-list into memory, supporting two execution modes: run-to-completion and link step mode
 - Intra-channel and inter-channel DMA transfers chaining via programmable DMA input triggers connection to DMA task completion events
- Per linked-list item within a channel:
 - Separately programmed source and destination transfers
 - Programmable data handling between source and destination: byte-based reordering, packing or unpacking, padding or truncation, sign extension and left/right realignment
 - Programmable number of data bytes to be transferred from the source, defining the block level
 - 12 channels with linear source and destination addressing: either fixed or contiguously incremented addressing, programmed at a block level, between successive single transfers
 - Four channels with 2D source and destination addressing: programmable signed address offsets between successive burst transfers (non-contiguous addressing within a block, combined with programmable signed address offsets between successive blocks, at a second 2D/repeated block level)
 - Support for scatter-gather (multi-buffer transfers), data interleaving and de-interleaving via 2D addressing
 - Programmable DMA request and trigger selection
 - Programmable DMA half-transfer and transfer complete events generation
 - Pointer to the next linked-list item and its data structure in memory, with automatic update of the DMA linked-list control registers
- Debug:
 - Channel suspend and resume support
 - Channel status reporting including FIFO level and event flags
- TrustZone support:
 - Support for secure and nonsecure DMA transfers, independently at a first channel level, and independently at a source/destination and link sub-levels
 - Secure and nonsecure interrupts reporting, resulting from any of the respectively secure and nonsecure channels
 - TrustZone-aware AHB slave port, protecting any DMA secure resource (register, register field) from a nonsecure access
- Privileged/unprivileged support:
 - Support for privileged and unprivileged DMA transfers, independently at a channel level
 - Privileged-aware AHB slave port

3.17 Interrupts and events

3.17.1 Nested vectored interrupt controller (NVIC)

The devices embed a nested vectored interrupt controller able to manage 16 priority levels and to handle up to 125 maskable interrupt channels plus the 16 interrupt lines of the Cortex-M33.

The NVIC benefits are the following:

- closely coupled NVIC giving low-latency interrupt processing
- interrupt entry vector table address passed directly to the core
- early processing of interrupts
- processing of late arriving higher priority interrupts
- support for tail chaining
- processor state automatically saved
- interrupt entry restored on interrupt exit with no instruction overhead
- TrustZone support: NVIC registers banked across secure and nonsecure states

The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency.

3.17.2 Extended interrupt/event controller (EXTI)

The extended interrupts and event controller (EXTI) manages the individual CPU and system wake-up through configurable event inputs. It provides wake-up requests to the power control, and generates an interrupt request to the CPU NVIC and events to the CPU event input. For the CPU an additional event generation block (EVG) is needed to generate the CPU event signal.

The EXTI wake-up requests allow the system to be woken up from Stop modes.

The interrupt request and event request generation can also be used in Run modes. The EXTI also includes the EXTI multiplexer IO port selection.

The EXTI main features are the following:

- All event inputs allowed to wake up the system
- Configurable events (signals from I/Os or peripherals able to generate a pulse)
 - Selectable active trigger edge
 - Interrupt pending status register bit independent for the rising and falling edge
 - Individual interrupt and event generation mask, used for conditioning the CPU wake-up, interrupt and event generation
 - Software trigger possibility
- TrustZone secure events
 - The access to control and configuration bits of secure input events can be made secure
- EXTI IO port selection

3.18 Cyclic redundancy check calculation unit (CRC)

The CRC is used to get a CRC code using a configurable generator with polynomial value and size.

Among other applications, the CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a mean to verify the flash memory integrity.

The CRC calculation unit helps to compute a signature of the software during runtime, which can be ulteriorly compared with a reference signature generated at link-time and that can be stored at a given memory location.

3.19 CORDIC coprocessor (CORDIC)

The CORDIC coprocessor provides hardware acceleration of certain mathematical functions, notably trigonometric, commonly used in motor control, metering, signal processing and many other applications. It speeds up the calculation of these functions compared to a software implementation, allowing a lower operating frequency, or freeing up processor cycles in order to perform other tasks.

The CORDIC main features are:

- 24-bit CORDIC rotation engine
- Circular and hyperbolic modes
- Rotation and vectoring modes
- Functions: sine, cosine, sinh, cosh, atan, atan2, atanh, modulus, square root, natural logarithm
- Programmable precision
- Low-latency AHB slave interface
- Results can be read as soon as ready without polling or interrupt
- DMA read and write channels
- Multiple register read/write by DMA

3.20 Filter math accelerator (FMAC)

The FMAC performs arithmetic operations on vectors. It comprises a multiplier/accumulator (MAC) unit, together with address generation logic that allows it to index vector elements held in local memory.

The unit includes support for circular buffers on input and output, which allows digital filters to be implemented. Both finite and infinite impulse response filters can be done.

The unit allows frequent or lengthy filtering operations to be offloaded from the CPU, freeing up the processor for other tasks. In many cases it can accelerate such calculations compared to a software implementation, resulting in a speed-up of time critical tasks.

The FMAC main features are:

- 16 x 16-bit multiplier
- 24 + 2-bit accumulator with addition and subtraction
- 16-bit input and output data

- 256 x 16-bit local memory
- Up to three areas can be defined in memory for data buffers (two input, one output), defined by programmable base address pointers and associated size registers
- Input and output buffers can be circular
- Filter functions: FIR, IIR (direct form 1)
- Vector functions: dot product, convolution, correlation
- AHB slave interface
- DMA read and write data channels

3.21 Flexible memory controller (FMC)

The FMC includes three memory controllers:

- NOR/PSRAM memory controller
- NAND memory controller
- SDRAM memory controller

The main features of the FMC controller are the following:

- Interface with static-memory mapped devices including:
 - Static random access memory (SRAM)
 - NOR flash memory/OneNAND flash memory
 - PSRAM (four memory banks)
 - NAND flash memory with ECC hardware to check up to 8 Kbytes of data
 - Ferroelectric RAM (FRAM, FeRAM)
- Interface with synchronous DRAM (SDRAM/Mobile LPSDR SDRAM)
- 8-,16- bit data bus width
- Independent chip select control for each memory bank
- Independent configuration for each memory bank
- Write FIFO

3.21.1 LCD parallel interface

The FMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the $Intel^{\textcircled{R}}$ 8080 and Motorola^R 6800 modes, and is flexible enough to adapt to specific LCD interfaces.

This LCD parallel interface capability makes it easy to build cost effective graphic applications using LCD modules with embedded controllers or high-performance solutions using external controllers with dedicated acceleration.

3.21.2 FMC TrustZone security

When the TrustZone security is enabled, the whole FMC banks are secure after reset. Nonsecure area can be configured using the TZSC MPCWMx controller.

- The FMC NOR/PSRAM bank:
 - Up to two nonsecure area can be configured thought the TZSC MPCWM2 controller with a 64-Kbyte granularity
- The FMC NAND bank:

 Can be either configured as fully secure or fully nonsecure using the TZSC MPCWM3 controller

The FMC registers can be configured as secure through the TZSC controller.

3.22 Octo-SPI interface (OCTOSPI)

The OCTOSPI supports most external serial memories such as serial PSRAMs, serial NAND and serial NOR flash memories, HyperRAMs[™] and HyperFlash[™] memories, with the following functional modes:

- Indirect mode: all the operations are performed using the OCTOSPI registers.
- Status-polling mode: the external memory status register is periodically read and an interrupt can be generated in case of flag setting.
- Memory-mapped mode: the external memory is memory mapped and is seen by the system as if it were an internal memory supporting read and write operation.

The OCTOSPI supports the following protocols with associated frame formats:

- the standard frame format with the command, address, alternate byte, dummy cycles and data phase
- the HyperBus[™] frame format

The OCTOSPI offers the following features:

- Three functional modes: Indirect, Status-polling, and Memory-mapped
- Read and write support in Memory-mapped mode
- Supports for single, dual, quad and octal communication
- Dual-quad mode, where eight bits can be sent/received simultaneously by accessing two quad memories in parallel.
- SDR (single-data rate) and DTR (double-transfer rate) support
- Data strobe support
- Fully programmable opcode
- Fully programmable frame format
- HyperBus support
- Integrated FIFO for reception and transmission
- 8-, 16-, and 32-bit data accesses allowed
- DMA channel for Indirect mode operations
- Interrupt generation on FIFO threshold, timeout, operation complete, and access error

3.22.1 OCTOSPI TrustZone security

When the TrustZone security is enabled, the whole OCTOSPI bank is secure after reset.

Up to two nonsecure area can be configured thought the TZSC MPCWM1 controller with a granularity of 64 Kbytes.

The OCTOSPI registers can be configured as secure through the TZSC controller.

3.23 Delay block (DLYB)

The delay block (DLYB) is used to generate an output clock dephased from the input clock. The phase of the output clock must be programmed by the user application. The output clock is then used to clock the data received by another peripheral such as an SDMMC or Octo-SPI interface. The delay is voltage and temperature dependent, that may require the application to re-configure and recenter the output clock phase with the received data.

The delay block main features are:

- Input clock frequency ranging from 25 to 250 MHz
- Up to 12 oversampling phases

3.24 Analog-to-digital converters (ADC1 and ADC2)

The devices embed two successive approximation analog-to-digital converters.

Mode/feature	ADC1	ADC2			
Resolution	12	bit			
Maximum sampling speed	5 Msps (12-b	bit resolution)			
Dual mode operation	>	<			
Hardware offset calibration	Х				
Hardware linearity calibration	-				
Single-end input	>	<			
Differential input	>	<			
Injected channel conversion	Х				
Oversampling	Up to	x256			
Data register	16	bits			
Data register FIFO depth	3 sta	ages			
DMA support	>	<			
Parallel data output to ADF	-	-			
Offset compensation	>	<			
Gain compensation	-	-			
Number of analog watchdogs	3	3			
Option register	-	Х			

Table 5. ADC features

3.24.1 Analog temperature sensor

This sensor generates a voltage (V_{SENSE}) that varies linearly with temperature. It is internally connected to an ADC input channel used to convert the output voltage into a digital value.

The sensor provides good linearity but it must be calibrated to obtain a good accuracy of the temperature measurement. As the offset depends upon process variation, the uncalibrated internal temperature sensor is suitable for applications that detect only temperature changes.

To improve the measurement accuracy, each device is individually factory-calibrated by ST. The calibration data are stored in the system memory area, accessible in read-only mode.

3.24.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (V_{REFINT}) provides a stable (bandgap) voltage output for the ADC. The V_{REFINT} is internally connected to ADC input channel.

The precise voltage of V_{REFINT} is individually measured for each part during manufacturing, and stored in the system memory area. It is accessible in read-only mode.

3.24.3 V_{BAT} battery voltage monitoring

This embedded hardware enables the application to measure the V_{BAT} battery voltage using ADC or input channel. As the V_{BAT} voltage may be higher than the V_{DDA}, and thus outside the ADC input range, the VBAT pin is internally connected to a bridge divider by four. As a consequence, the converted digital value is a quarter of the V_{BAT} voltage.

3.25 Digital temperature sensor (DTS)

The devices embeds a sensor that converts the temperature into a square wave, whose frequency is proportional to the temperature. The PCLK or the LSE clock can be used as reference clock for the measurements. Use the formula given in the product reference manual to calculate the temperature according to the measured frequency stored in the DTS_DR register.

3.26 Digital to analog converter (DAC)

The DAC module is a 12-bit voltage output digital-to-analog converter. The DAC can be configured in 8- or 12-bit mode, and can be used in conjunction with the DMA controller. In 12-bit mode, the data can be left- or right-aligned.

The DAC features two output channels, each with its own converter. In dual DAC channel mode, conversions can be done independently or simultaneously when both channels are grouped together for synchronous update operations. An input reference pin, VREF+ (shared with others analog peripherals), is available for better resolution. An internal reference can also be set on the same input.

The DAC_OUTx pin can be used as general purpose input/output (GPIO) when the DAC output is disconnected from output pad and connected to on chip peripheral. The DAC output buffer can be optionally enabled to allow a high drive output current. An individual

calibration can be applied on each DAC output channel. The DAC output channels support a low power mode, the Sample and hold mode.

The digital interface supports the following features:

- One DAC interface, maximum two output channels
- Left or right data alignment in 12-bit mode
- Synchronized update capability
- Noise-wave and triangular-wave generation
- Sawtooth wave generation
- Dual DAC channel for independent or simultaneous conversions
- DMA capability for each channel including DMA underrun error detection
- Double data DMA capability to reduce the bus activity
- External triggers for conversion
- DAC output channel buffered/unbuffered modes
- Buffer offset calibration
- Each DAC output can be disconnected from the DAC_OUTx output pin
- DAC output connection to on chip peripherals
- Sample and Hold mode for low-power operation in Stop mode. The DAC voltage can be changed autonomously with the DMA while the device is in Stop mode.
- Voltage reference input

3.27 Voltage reference buffer (VREFBUF)

The devices embed a voltage reference buffer that can be used as reference for ADCs and DACs, and also as reference for external components through the VREF+ pin.

The internal voltage reference buffer supports three voltages: 1.8, 2.048, and 2.5 V.

An external voltage reference can be provided through the VREF+ pin when the internal voltage reference buffer is off.

The VREF+ pin is double-bonded with VDDA on some packages. In these packages the internal voltage reference buffer is not available.

3.28 Digital camera interface (DCMI)

The digital camera is a synchronous parallel interface able to receive a high-speed data flow from an external 8-, 10-, 12- or 14-bit CMOS camera module. It supports different data formats: YCbCr4:2:2/RGB565 progressive video and compressed data (JPEG). It can be used with black and white cameras, X24 and X5 cameras (it is assumed that all preprocessing such as resizing is performed in the camera module).

Main features:

- 8-, 10-, 12-, or 14-bit parallel interface
- Embedded/external line and frame synchronization
- Continuous or snapshot mode
- Crop feature
- Support of the following data formats:

- 8/10/12/14-bit progressive video: monochrome or raw Bayer
- YCbCr 4:2:2 progressive video
- RGB 565 progressive video
- Compressed data: JPEG

3.29 Parallel synchronous slave interface (PSSI)

The PSSI peripheral and the DCMI (digital camera interface) use the same circuitry. As a result, these two peripherals cannot be used at the same time: when using the PSSI, the DCMI registers cannot be accessed, and vice versa. In addition, the PSSI and the DCMI share the same alternate functions and the same interrupt vector.

The PSSI is a generic synchronous 8-/16-bit parallel data input/output slave interface. It enables the transmitter to send a data valid signal that indicates when the data is valid, and the receiver to output a flow control signal that indicates when it is ready to sample the data.

The PSSI peripheral main features are the following:

- Slave mode operation
- 8-bit or 16-bit parallel data input or output
- 4-word (16-byte) FIFO
- Data enable (PSSI_DE) alternate function input and ready (PSSI_RDY) alternate function output

When selected, these inputs can either enable the transmitter to indicate when the data is valid, or allow the receiver to indicate when it is ready to sample the data, or both.

3.30 True random number generator (RNG)

The RNG is a true random number generator that provides full entropy outputs to the application as 32-bit samples. It is composed of a live entropy source (analog) and an internal conditioning component.

The RNG is a NIST SP 800-90B compliant entropy source that can be used to construct a non-deterministic random bit generator (NDRBG).

The true random generator:

- delivers 32-bit true random numbers, produced by an analog entropy source conditioned by a NIST SP800-90B approved conditioning stage
- can be used as entropy source to construct a non-deterministic random bit generator (NDRBG)
- produces four 32-bit random samples every 412 AHB clock cycles if f_{AHB} < 77 MHz (256 RNG clock cycles otherwise)
- embeds start-up and NIST SP800-90B approved continuous health tests (repetition count and adaptive proportion tests), associated with specific error management
- can be disabled to reduce power consumption, or enabled with an automatic low-power mode (default configuration)
- has an AMBA AHB slave peripheral, accessible through 32-bit word single accesses only (else an AHB bus error is generated, and the write accesses are ignored)

3.31 HASH hardware accelerator (HASH)

The HASH is a fully compliant implementation of the secure hash (SHA-1, SHA-224, SHA-256, SHA-512) and the HMAC (keyed-hash message authentication code) algorithms. HMAC is suitable for applications requiring message authentication.

The HASH computes FIPS (Federal information processing standards) approved digests of length of 160, 224, 256, 512 bits, for messages of up to $(2^{64} - 1)$.

The HASH main features are:

- Suitable for data authentication applications, compliant with:
 - FIPS PUB 180-4, Secure Hash Standard (SHA-1 and SHA-2 family)
 - FIPS PUB 186-4, *Digital* Signature Standard (DSS)
 - Internet Engineering Task Force (IETF) Request For Comments RFC 2104, HMAC: Keyed-Hashing for Message Authentication and Federal Information Processing Standards Publication FIPS PUB 198-1, The Keyed-Hash Message Authentication Code (HMAC)
- Fast computation of SHA-1, SHA-224, SHA-256, SHA-512
 - 82 (respectively 66) clock cycles for processing one 512-bit block of data using SHA-1 (respectively SHA-256) algorithm
- Corresponding 32-bit words of the digest from consecutive message blocks are added to each other to form the digest of the whole message
 - Automatic 32-bit words swapping to comply with the internal little-endian representation of the input bit string
 - Word swapping supported: bits, bytes, half-words and 32-bit words
- Automatic padding to complete the input bit string to fit digest minimum block size of 512 bits (16 × 32 bits)
- Single 32-bit input register associated to an internal input FIFO of sixteen 32-bit words, corresponding to one block size
- AHB slave peripheral, accessible through 32-bit word accesses only (else an AHB error is generated)
- 8 × 32-bit words (H0 to H7) for output message digest
- Automatic data flow control with support of direct memory access (DMA) using one channel. Single or fixed burst of 4 supported.
- Interruptible message digest computation, on a per-32-bit word basis
 - Re-loadable digest registers
 - Hashing computation suspend/resume mechanism, including using DMA

3.32 Public key accelerator (PKA)

The PKA can verify ECDSA signatures, with all needed computation performed within the accelerator. The application CPU is needed only to manage the inputs and the outputs of the operation.

The PKA main features are:

- ECDSA signature verification
- Capability to handle operands up to 640 bits
- AMBA AHB slave peripheral, accessible through 32-bit word single accesses only (otherwise an AHB bus error is generated, and write accesses are ignored)

3.33 Timers and watchdogs

The devices include two advanced control timers, up to seven general-purpose timers, two basic timers, six low-power timers, two watchdog timers and two SysTick timers.

Table 6 compares the features of the advanced control, general-purpose and basic timers.

Туре	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complementary outputs
Advanced control	TIM1, TIM8	16 bits	Up. down.	Any integer between 1 and 65536		4	3
General	TIM2, TIM5	32 bits	up/down		Yes	4	No
purpose	TIM3, TIM4	16 bits				4	No
Conoral	TIM12, TIM15		Up			2	1
purpose	TIM13, TIM14, TIM16, TIM17	16 bits			1	1	
Basic	TIM6, TIM7	16 bits	Up			0	No

Table 6. Timer features

3.33.1 Advanced-control timers (TIM1, TIM8)

These timers can be seen as a three-phase PWM multiplexed on six channels. They have complementary PWM outputs with programmable inserted dead-times. They can also be seen as complete general-purpose timers.

The four independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge or center-aligned modes) with full modulation capability (0 - 100 %)
- One-pulse mode output

In Debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switches driven by these outputs.

Many features are shared with the general-purpose TIMx timers (described in the next section) using the same architecture, so the advanced-control timers can work together with the TIMx timers via the *Timer Link* feature for synchronization or event chaining.

3.33.2 General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM15, TIM16, TIM17)

The devices embed up to seven synchronizable general-purpose timers (see *Table 6*), each of them can be used to generate PWM outputs, or act as a simple time base.

TIM2 and TIM5

Full-featured general-purpose timers with 32-bit auto-reload up/down counter and 32-bit prescaler.

These timers feature four independent channels for input capture/output compare, PWM or one-pulse mode output. They can work together, or with the other generalpurpose timers via the Timer Link feature for synchronization or event chaining.

The counters can be frozen in Debug mode. All have independent DMA request generation and support quadrature encoders.

TIM3 and TIM4

Full-featured general-purpose timers, with 16-bit auto-reload up/down counter and 16-bit prescaler.

These timers feature four independent channels for input capture/output compare, PWM or one-pulse mode output.

They can work together, or with the other general-purpose timers via the *Timer Link* feature for synchronization or event chaining.

The counters can be frozen in Debug mode. All have independent DMA request generation and support quadrature encoders.

• TIM12, TIM13, TIM14, TIM15, TIM16, and TIM17

General-purpose timers with mid-range features, with 16-bit auto-reload up counter and 16-bit prescaler.

- TIM12 and TIM15 have two channels and one complementary channel
- TIM13, TIM14, TIM16, and TIM17 have one channel and one complementary channel

All channels can be used for input capture/output compare, PWM or one-pulse mode output.

The timers can work together via the Timer Link feature for synchronization or event chaining. The timers have independent DMA request generation.

The counters can be frozen in Debug mode.

3.33.3 Basic timers (TIM6, TIM7)

These timers are mainly used for DAC trigger generation. They can also be used as generic 16-bit timebase.

3.33.4 Low-power timers (LPTIM1, LPTIM2, LPTIM3, LPTIM4, LPTIM5, LPTIM6)

The devices embed six low-power timers. These timers have an independent clock and are running in Stop mode if they are clocked by LSE, LSI or an external clock. They are able to wake up the system from Stop mode.

The low-power timers support the following features:

16-bit up counter with 16-bit autoreload register

- 3-bit prescaler with eight possible dividing factors (1, 2, 4, 8, 16, 32, 64, 128)
- Selectable clock
 - Internal clock sources: LSE, LSI, HSI or APB clock
 - External clock source over LPTIM input (working with no LP oscillator running, used by *Pulse Counter* application)
- 16-bit ARR autoreload register
- 16-bit capture/compare register
- Continuous/One-shot mode
- Selectable software/hardware input trigger
- Programmable digital glitch filter
- Configurable output: pulse, PWM
- Configurable I/O polarity
- Encoder mode (except for LPTIM4)
- Repetition counter
- Up to two independent channels (except for LPTIM4) for:
 - Input capture
 - PWM generation (edge-aligned mode)
 - One-pulse mode output
- Interrupt generation on ten events
- DMA request generation on the following events:
 - Update event
 - Input capture

3.33.5 Independent watchdog (IWDG)

The independent watchdog is based on a 12-bit downcounter and an 8-bit prescaler. It is clocked from an independent 32 kHz internal RC (LSI) and, as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in Debug mode.

3.33.6 Window watchdog (WWDG)

The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in Debug mode.

3.33.7 SysTick timer

The Cortex-M33 with TrustZone embeds two SysTick timers.

When TrustZone is activated, two SysTick timer are available:

- SysTick, secure instance
- SysTick, nonsecure instance

When TrustZone is disabled, only one SysTick timer is available. This timer (secure or nonsecure) is dedicated to real-time operating systems, but can also be used as a standard down counter. It features:

- A 24-bit down counter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source.

3.34 Real-time clock (RTC), tamper and backup registers

3.34.1 Real-time clock (RTC)

The RTC supports the following features:

- Calendar with subsecond, seconds, minutes, hours (12 or 24 format), weekday, date, month, year, in BCD (binary-coded decimal) format
- Binary mode with 32-bit free-running counter
- Automatic correction for 28, 29 (leap year), 30, and 31 days of the month
- Two programmable alarms
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision
- Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal inaccuracy
- Timestamp feature that can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to VBAT mode
- 17-bit auto-reload wake-up timer (WUT) for periodic events with programmable resolution and period
- TrustZone support:
 - RTC fully securable
 - Alarm A, alarm B, wake-up timer and timestamp individual secure or nonsecure configuration
 - Alarm A, alarm B, wake-up timer and timestamp individual privileged protection

The RTC is supplied through a switch that takes power either from the V_{DD} supply when present or from the VBAT pin.

The RTC clock sources can be one of the following:

- 32.768 kHz external crystal (LSE)
- external resonator or oscillator (LSE)
- internal low-power RC oscillator (LSI, with typical frequency of 32 kHz)
- high-speed external clock (HSE), divided by a prescaler in the RCC.

The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the LSE. When clocked by the LSI, the RTC is not functional in VBAT mode, but is functional in all low-power modes.

All RTC events (alarm, wake-up timer, timestamp) can generate an interrupt and wake up the device from the low-power modes.

3.34.2 Tamper and backup registers (TAMP)

The anti-tamper detection circuit is used to protect sensitive data from external attacks. 32 32-bit backup registers are retained in all low-power modes and in VBAT mode. The backup registers, as well as other secrets in the device, are protected by this anti-tamper detection circuit with eight tamper pins and nine internal tampers. The external tamper pins can be configured for edge detection, or level detection with or without filtering, or active tamper that increases the security level by auto checking that the tamper pins are not externally opened or shorted.

TAMP main features:

- A tamper detection can erase the backup registers, backup SRAM, SRAM2, caches and cryptographic peripherals.
- 32 32-bit backup registers:
 - The backup registers (TAMP_BKPxR) are implemented in the Backup domain that remains powered-on by V_{BAT} when the V_{DD} power is switched off.
- Up to 8 tamper pins for 8 external tamper detection events:
 - Active tamper mode: continuous comparison between tamper output and input to protect from physical open-short attacks
 - Flexible active tamper I/O management: from 4 meshes (each input associated to its own exclusive output) to 7 meshes (single output shared for up to 7 tamper inputs)
 - Passive tampers: ultra-low power edge or level detection with internal pull-up hardware management
 - Configurable digital filter
- Note: As input, only PC13, PI8, PA0, PA1, and PA2 are functional in Standby and VBAT modes. As output, only PC13 and PA1, and PI8 are functional in Standby and VBAT modes.
 - Internal tamper events to protect against transient or environmental perturbation attacks
 - Each tamper can be configured in two modes:
 - Hardware mode: immediate erase of secrets on tamper detection, including backup registers erase
 - Software mode: erase of secrets following a tamper detection launched by software
 - Any tamper detection can generate an RTC time stamp event.
 - TrustZone support:
 - Tamper secure or nonsecure configuration.
 - Backup registers configuration in three configurable-size areas:
 - 1 read/write secure area
 - 1 write secure/read nonsecure area
 - 1 read/write nonsecure area
 - Secret key, stored in backup registers, protected against read and write access
 - Tamper configuration and backup registers privilege protection
 - Monotonic counter

DS14258 Rev 5

3.35 Inter-integrated circuit interface (I2C)

The devices embed four I2Cs. Refer to *Table 7* for the implemented features.

The I^2C bus interface handles communications between the microcontroller and the serial I^2C bus. It controls all I^2C bus-specific sequencing, protocol, arbitration and timing.

The I2C peripheral supports:

- I²C-bus specification and user manual rev. 5 compatibility:
 - Target and controller modes, multicontroller capability
 - Standard-mode (Sm), with a bit rate up to 100 Kbit/s
 - Fast-mode (Fm), with a bit rate up to 400 Kbit/s
 - Fast-mode Plus (Fm+), with a bit rate up to 1 Mbit/s and 20 mA output drive I/Os
 - 7- and 10-bit addressing modes, multiple 7-bit target addresses
 - Programmable setup and hold times
 - Optional clock stretching
- System management bus (SMBus) specification rev 3.0 compatibility:
 - Hardware PEC (packet error checking) generation and verification with ACK control
 - Address resolution protocol (ARP) support
 - SMBus alert
- Power system management protocol (PMBus) specification rev 1.3 compatibility
- Independent clock: a choice of independent clock sources allowing the I2C commun.ication speed to be independent from the PCLK reprogramming
- Wake-up from Stop capability
- Programmable analog and digital noise filters
- 1-byte buffer with DMA capability

Table 7. I2C implementation

Feature ⁽¹⁾	I2C1	I2C2	I2C3	I2C4
Standard-mode (up to 100 Kbit/s)	Х	Х	Х	Х
Fast-mode (up to 400 Kbit/s)	Х	Х	Х	Х
Fast-mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s)	Х	Х	Х	Х
Programmable analog and digital noise filters	Х	Х	Х	Х
SMBus/PMBus hardware support	Х	Х	Х	Х
Independent clock	Х	Х	Х	Х
Wake-up capability	Х	Х	Х	Х

1. X: supported

3.36 Improved inter-integrated circuit (I3C)

The I3C interface handles communication between the MCU and others, like sensors and host processor(s), all connected on an I3C bus.

The peripheral implements the required features of the MIPI I3C specification v1.1. It can control I3C bus-specific sequencing, protocol, arbitration and timing, and can act as controller (formerly known as master) or as target (formerly known as slave). When acting as controller the peripheral improves the features of the I2C interface, preserving some backward compatibility: it allows an I2C target to operate on an I3C bus in legacy I2C fast-mode (Fm) or legacy I2C fast-mode plus (Fm+), provided that the latter does not perform clock stretching.

The I3C peripheral can be used with DMA to off-load the CPU.

Feature	MIPI v1.1	When controller	When target	Comments
I3C SDR message	Х	Х	Х	-
Legacy I ² C message (Fm/Fm+)	Х	х	-	Mandatory when controller, and the I3C bus is mixed with (external) legacy I ² C target(s). Optional in MIPI v1.1 when target.
HDR DDR message	Х	-	-	Optional in MIRLy1 1
HDR-TSL/TSP, HDR-BT	Х	-	-	
Dynamic address assignment	Х	Х	Х	-
Static address	х	х	-	No (intended) support of I3C peripheral as a target on an I ² C bus.
Grouped addressing	Х	Х	-	Optional in MIPI v1.1
CCCs	Х	Х	Х	Mandatory and some optional CCCs supported.
Error detection and recovery	Х	Х	Х	-
In-band interrupt (with MDB)	Х	Х	Х	-
Secondary controller	Х	Х	Х	-
Hot-join mechanism	Х	Х	Х	-
Target reset	Х	Х	Х	-
Synchronous timing control	Х	Х	-	
Asynchronous timing control 0	Х	Х	-	
Asynchronous timing control 1, 2, 3	Х	-	-	Optional in MIRL v1.1
Device to device tunneling	Х	Х	-	
Multi-lane data transfer	Х	Х	-	
Monitoring device early termination	Х	-	-	

Table 8. I3C peripheral controller/target features versus MIPI v1.1

3.37 Universal synchronous/asynchronous receiver transmitter (USART/UART) and low-power universal asynchronous receiver transmitter (LPUART)

The devices have six embedded universal synchronous receiver transmitters (USART1/USART2/USART3/USART6/USART10/USART11), six universal asynchronous receiver transmitters (UART4/UART5/UART7/UART8/UART9/UART12), and one low-power universal asynchronous receiver transmitter (LPUART1).

Mode/feature ⁽¹⁾	USART 1/2/3/6/10/11	UART 4/5/7/8/9/12	LPUART 1
Hardware flow control for modem	Х	Х	Х
Continuous communication using DMA	Х	Х	Х
Multiprocessor communication	Х	Х	Х
Synchronous mode (master/slave)	Х	-	-
Smartcard mode	Х	-	-
Single-wire half-duplex communication	Х	х	Х
IrDA SIR ENDEC block	Х	х	-
LIN mode	Х	х	-
Dual-clock domain and wake-up from Stop mode	X ⁽²⁾	X ⁽²⁾	X ⁽²⁾
Receiver timeout interrupt	Х	х	-
Modbus communication	Х	х	-
Auto-baud rate detection	Х	Х	-
Driver enable	Х	х	Х
USART data length		7, 8, and 9 bits	
Tx/Rx FIFO	Х	Х	Х
Tx/Rx FIFO size		8 bytes	

1. X = supported.

2. Wake-up supported from Stop mode.

3.37.1 Universal synchronous/asynchronous receiver transmitter (USART/UART)

The USART offers a flexible means to perform full-duplex data exchange with external equipments requiring an industry standard NRZ asynchronous serial data format. A very wide range of baud rates can be achieved through a fractional baud rate generator.

The USART supports both synchronous one-way and half-duplex single-wire communications, as well as LIN (local interconnection network), Smartcard protocol, IrDA (infrared data association) SIR ENDEC specifications, and modem operations (CTS/RTS). Multiprocessor communications are also supported.

High-speed data communication (up to 20 Mbauds) is possible by using the DMA (direct memory access) for multibuffer configuration.

The USART main features are:

- Full-duplex asynchronous communication
- NRZ standard format (mark/space)
- Configurable oversampling method by 16 or by 8, to achieve the best compromise between speed and clock tolerance
- Baud rate generator systems
- Two internal FIFOs for transmit and receive data Each FIFO can be enabled/disabled by software and come with a status flag.
- A common programmable transmit and receive baud rate
- Dual-clock domain with dedicated kernel clock for peripherals independent from PCLK
- Auto baud rate detection
- Programmable data word length (7, 8 or 9 bits)
- Programmable data order with MSB-first or LSB-first shifting
- Configurable stop bits (1 or 2 stop bits)
- Synchronous Master/Slave mode and clock output/input for synchronous communications
- SPI slave transmission underrun error flag
- Single-wire half-duplex communications
- Continuous communications using DMA
- Received/transmitted bytes are buffered in reserved SRAM using centralized DMA
- Separate enable bits for transmitter and receiver
- Separate signal polarity control for transmission and reception
- Swappable Tx/Rx pin configuration
- Hardware flow control for modem and RS-485 transceiver
- Communication control/error detection flags
- Parity control:
 - _ Transmits parity bit
 - Checks parity of received data byte
- Interrupt sources with flags
- Multiprocessor communications: wake-up from Mute mode by idle line detection or address mark detection
- Autonomous functionality in Stop mode with wake-up from stop capability
- LIN master synchronous break send capability and LIN slave break detection capability
 - 13-bit break generation and 10/11-bit break detection when USART is hardware _ configured for LIN
- IrDA SIR encoder decoder supporting 3/16 bit duration for Normal mode
- Smartcard mode
 - Supports the T = 0 and T = 1 asynchronous protocols for smartcards as defined in _ the ISO/IEC 7816-3 standard
 - 0.5 and 1.5 stop bits for Smartcard operation
- Support for Modbus communication
 - _ **Timeout feature**
 - CR/LF character recognition

3.37.2 Low-power universal asynchronous receiver transmitter (LPUART)

The LPUART supports bidirectional asynchronous serial communication with minimum power consumption. It also supports half-duplex single-wire communication and modem operations (CTS/RTS). It allows multiprocessor communication.

Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher-speed clock can be used to reach higher baud-rates.

The LPUART interface can be served by the DMA controller.

The LPUART main features are:

- Full-duplex asynchronous communications
- NRZ standard format (mark/space)
- Programmable baud rate
- From 300 to 9600 bauds using a 32.768 kHz clock source
- Higher baud rates can be achieved by using a higher frequency clock source
- Two internal FIFOs to transmit and receive data Each FIFO can be enabled/disabled by software and come with status flags for FIFOs states.
- Dual-clock domain with dedicated kernel clock for peripherals independent from PCLK
- Programmable data word length (7 or 8 or 9 bits)
- Programmable data order with MSB-first or LSB-first shifting
- Configurable stop bits (1 or 2 stop bits)
- Single-wire half-duplex communications
- Continuous communications using DMA
- Received/transmitted bytes are buffered in reserved SRAM using centralized DMA
- Separate enable bits for transmitter and receiver
- Separate signal polarity control for transmission and reception
- Swappable Tx/Rx pin configuration
- Hardware flow control for modem and RS-485 transceiver
 - Transfer detection flags:
 - Receive buffer full
 - Transmit buffer empty
 - Busy and end of transmission flags
- Parity control:
 - Transmits parity bit
 - Checks parity of received data byte
 - Four error detection flags:
 - Overrun error
 - Noise detection
 - Frame error
 - Parity error
- Interrupt sources with flags

- Multiprocessor communications: wake-up from Mute mode by idle line detection or address mark detection
- Wake-up from Stop capability

3.38 Serial peripheral interface (SPI) / inter-integrated sound interfaces (I2S)

The devices embed six serial peripheral interfaces (SPI) that can be used to communicate with external devices while using the specific synchronous protocol. The SPI protocol supports half-duplex, full-duplex and simplex synchronous, serial communication with external devices.

The interface can be configured as master or slave, and can operate in multi-slave or multimaster configurations. The device configured as master provides communication clock (SCK) to the slave device. The slave select (SS) and ready (RDY) signals can be applied optionally just to set up communication with concrete slave and to assure it handles the data flow properly. The Motorola data format is used by default, but some other specific modes are supported as well.

The SPI main features are:

- Full-duplex synchronous transfers on three lines
- Half-duplex synchronous transfer on two lines (with bidirectional data line)
- Simplex synchronous transfers on two lines (with unidirectional data line)
- 4-bit to 32-bit data size selection or fixed to 8-bit and 16-bit only
- Multi master or multi slave mode capability
- Dual-clock domain, separated clock for the peripheral kernel that can be independent of PCLK
- Baud rate prescaler up to kernel frequency divided by 2 or bypass from RCC in Master mode
- Protection of configuration and setting
- Hardware or software management of SS for both master and slave
- Adjustable minimum delays between data and between SS and data flow
- Configurable SS signal polarity and timing, MISO x MOSI swap capability
- Programmable clock polarity and phase
- Programmable data order with MSB-first or LSB-first shifting
- Programmable number of data within a transaction to control SS and CRC
- Dedicated transmission and reception flags with interrupt capability
- SPI Motorola and TI formats support
- Hardware CRC feature can secure communication at the end of transaction by:
 - Adding CRC value in Tx mode
 - Automatic CRC error checking for Rx mode
- Error detection with interrupt capability in case of data overrun, CRC error, data underrun at slave, mode fault at master
- Two 16x or 8x 8-bit embedded Rx and TxFIFOs with DMA capability
- Programmable number of data in transaction
- Configurable FIFO thresholds (data packing)

- Configurable behavior at slave underrun condition (support of cascaded circular buffers)
- Wake-up from Stop capability
- Optional status pin RDY signalizing the slave device ready to handle the data flow.

Three standard I2S interfaces (multiplexed with SPI1, SPI2 and SPI3) are available. They can be operated in Master or Slave mode, in full-duplex communication modes, and can be configured to operate with configurable resolution as input or output channel.

I2S main features:

- Full duplex communication
- Simplex communication (only transmitter or receiver)
- Master or slave operations
- 8-bit programmable linear prescaler
- Data length may be 16, 24 or 32 bits
- Channel length can be 16 or 32 in master, any value in slave
- Programmable clock polarity
- Error flags signaling for improved reliability: Underrun, Overrun, and Frame Error
- Embedded Rx and TxFIFOs
- Supported I2S protocols:
 - I2S Philips standard
 - MSB-Justified standard (left-justified)
 - LSB-Justified standard (right-justified)
 - PCM standard (with short and long frame synchronization)
- Data ordering programmable (LSb or MSb first)
- DMA capability for transmission and reception
- Master clock can be output to drive an external audio component. The ratio is fixed at 256 x FWS (where FWS is the audio sampling frequency)

Feature	SPI1, SPI2, SPI3 (full feature set instances)	SPI4, SPI5, SPI6 (full feature set instances)		
Data size	Configurable from 4- to 32-bit	Configurable from 4- to 16-bit		
CRC computation	CRC polynomial length configurable from 5- to 33-bit	CRC polynomial length configurable from 5- to 17-bit		
Size of FIFOs	16x 8-bit	8x 8-bit		
Number of transfered data	Up to	65535		
I2S feature	Yes	No		

Table 10. SPI features

3.39 Serial audio interface (SAI)

The devices embed two SAIs. Refer to *Table 11* for the features implementation. The SAI bus interface handles communications between the MCU and the serial audio protocol.

The SAI peripheral supports:

- Two independent audio sub-blocks that can be transmitters or receivers with their respective FIFO
- 8-word integrated FIFOs for each audio sub-block
- Synchronous or Asynchronous mode between the audio sub-blocks
- Master or slave configuration independent for both audio sub-blocks
- Clock generator for each audio block to target independent audio frequency sampling when both audio sub-blocks are configured in master mode
- Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit
- Peripheral with large configurability and flexibility, allowing to target the following audio protocols: I2S, LSB or MSB-justified, PCM/DSP, TDM, AC'97 and SPDIF out
- Up to 16 slots available with configurable size and with the possibility to select which ones are active in the audio frame
- Number of bits by frame may be configurable
- Frame synchronization active level configurable (offset, bit length, level)
- First active bit position in the slot is configurable
- LSB first or MSB first for data transfer
- Mute mode
- Stereo/mono audio frame capability
- Communication clock strobing edge configurable (SCK)
- Error flags with associated interrupts if enabled respectively
 - Overrun and underrun detection
 - Anticipated frame synchronization signal detection in Slave mode
 - Late frame synchronization signal detection in Slave mode
 - Codec not ready for the AC'97 mode in reception
- Interruption sources when enabled:
 - Errors
 - FIFO requests
- DMA interface with two dedicated channels to handle access to the dedicated integrated FIFO of each SAI audio sub-block.

Feature ⁽¹⁾	SAI1	SAI2
I2S, LSB or MSB-justified, PCM/DSP, TDM, AC'97	Х	Х
Mute mode	Х	Х
Stereo/mono audio frame capability.	Х	Х
16 slots	Х	X
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit	Х	Х
FIFO size	X (8 words)	X (8 words)
SPDIF	Х	Х
PDM	Х	-

Table 11. SAI implementation

1. X: supported

3.40 Secure digital input/output and MultiMediaCards interface (SDMMC)

The SD/SDIO, embedded MultiMediaCard (eMMC[™]) host interface (SDMMC) provides an interface between the AHB bus and SD memory cards, SDIO cards, and eMMC devices.

The MultiMediaCard system specifications are available through the MultiMediaCard association website at www.mmca.org, published by the MMCA technical committee.

SD memory card and SD I/O card system specifications are available through the SD card association website at www.sdcard.org.

The SDMMC features include the following:

- Compliance with Embedded MultiMediaCard System Specification Version 5.1
 Card support for three different databus modes: 1-bit (default), 4-bit and 8-bit (HS200 SDMMC_CK speed limited to maximum allowed I/O speed, HS400 is not supported).
- Full compatibility with previous versions of MultiMediaCards (backward compatibility).
- Full compliance with SD memory card specifications version 6.0 (SDR104 SDMMC_CK speed limited to maximum allowed I/O speed, SPI mode and UHS-II mode not supported).
- Full compliance with SDIO card specification version 4.0 Card support for two different databus modes: 1-bit (default) and 4-bit (SDR104 SDMMC_CK speed limited to maximum allowed I/O speed, SPI mode and UHS-II mode not supported).
- Data transfer up to 208 Mbyte/s for the 8-bit mode, depending maximum allowed I/O speed.
- Data and command output enable signals to control external bidirectional drivers
- IDMA linked list support

The MultiMediaCard/SD bus connects cards to the host.

The current version of the SDMMC supports only one SD/SDIO/eMMC card at any one time and a stack of eMMC.

Mode/feature ⁽¹⁾	SDMMC1	SDMMC2
Variable delay (SDR104, HS200)	Х	Х
SDMMC_CKIN	Х	Х
SDMMC_CDIR, SDMMC_D0DIR	Х	-
SDMMC_D123DIR	Х	-

Table 12. SDMMC features

1. X = supported.

When SDMMC peripherals are used simultaneously:

- Only one can be used in *e*MMC with 8-bit bus width.
- Usage of SDMMC1 SDIO voltage switch use is mutually exclusive with SDMMC2 eMMC with 8-bit bus width.
- If SDMMC1 must support SDIO UHS-I modes (SDR12, SDR25, SDR50, SDR104, or DDR50), SDMMC2 cannot support eMMC with 8-bit bus width.
- If SDMMC2 must support eMMC with 8-bit bus width, SDMMC1 can only support SDIO Default mode and High-speed mode.

3.41 Controller area network (FDCAN)

The controller area network (CAN) subsystem consists of one CAN module, a shared message RAM memory and a configuration block.

The modules (FDCAN) are compliant with ISO 11898-1: 2015 (CAN protocol specification version 2.0 part A, B) and CAN FD protocol specification version 1.0.

A 0.8-Kbyte message RAM implements filters, receives FIFOs, transmits event FIFOs and transmits FIFOs.

The FDCAN main features are:

- Conform with CAN protocol version 2.0 part A, B and ISO 11898-1: 2015, -4
- CAN FD with maximum 64 data bytes supported
- CAN error logging
- AUTOSAR and J1939 support
- Improved acceptance filtering
- Two receive FIFOs of three payloads each (up to 64 bytes per payload)
- Separate signaling on reception of high priority messages
- Configurable transmit FIFO / queue of three payload (up to 64 bytes per payload)
- Configurable transmit Event FIFO
- Programmable loop-back test mode
- Maskable module interrupts
- Two clock domains: APB bus interface and CAN core kernel clock
- Power-down support

3.42 USB full speed (USB)

USB main features:

- USB specification version 2.0 full-speed compliant
- Host and device functions
- 2048 bytes of dedicated SRAM data buffer memory with 32-bit access
- USB clock recovery
- Configurable number of endpoints from 1 to 8
- Cyclic redundancy check (CRC) generation/checking, non-return-to-zero inverted (NRZI) encoding/decoding and bit-stuffing
- Isochronous transfers support

- Double-buffered bulk/isochronous endpoint support
- USB suspend/resume operations
- Frame-locked clock pulse generation
- USB 2.0 Link power management support
- Battery charging specification revision 1.2 support in device

3.43 USB Type-C/USB Power Delivery controller (UCPD)

The devices embed one controller (UCPD) compliant with USB Type-C Cable and Connector Specification release 2.0 and USB Power Delivery Rev. 3.0 specifications.

The controller uses specific I/Os supporting the USB Type-C and USB power delivery requirements, featuring:

- USB Type-C pull-up (Rp, all values) and pull-down (Rd) resistors
- "Dead battery" support
- USB power delivery message transmission and reception
- FRS (fast role swap) support

The digital controller handles:

- USB Type-C level detection with debounce, generating interrupts
- FRS detection, generating an interrupt
- Byte-level interface for USB power delivery payload, generating interrupts (DMA compatible)
- USB power delivery timing dividers (including a clock pre-scaler)
- CRC generation/checking
- 4b5b encode/decode
- Ordered sets (with a programmable ordered set mask at receive)
- Frequency recovery in receiver during preamble

The interface offers low-power operation compatible with Stop mode, maintaining the capacity to detect incoming USB power delivery messages and FRS signaling.

3.44 Ethernet MAC interface with dedicated DMA controller (ETH)

The devices provide an IEEE-802.3-2002-compliant media access controller (MAC) for Ethernet LAN communications through an industry-standard medium-independent interface (MII) or a reduced medium-independent interface (RMII). The microcontroller requires an external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair, fiber, etc.). The PHY is connected to the device MII port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz (MII) from the microcontroller.

The devices include the following features:

- Support of 10 and 100 Mbit/s rates
- Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM and the descriptors
- Tagged MAC frame support (VLAN support)
- Half-duplex (CSMA/CD) and full-duplex operation

- MAC control sublayer (control frames) support
- 32-bit CRC generation and removal
- Several address filtering modes for physical and multicast address (multicast and group addresses)
- 32-bit status code for each transmitted or received frame
- Internal 2-Kbyte FIFOs to buffer transmit and receive frames
- Support of hardware PTP (precision time protocol) in accordance with IEEE 1588 2008 (PTP V2) with the time stamp comparator connected to the TIM2 input
- Trigger of interrupt when system time becomes greater than target time

3.45 High-definition multimedia interface (HDMI) - consumer electronics control (CEC)

The devices embed an HDMI-CEC controller that provides hardware support for the Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard).

This protocol provides high-level control functions between all audiovisual products in an environment. It is specified to operate at low speeds with minimum processing and memory overhead. It has a clock domain independent from the CPU clock, allowing the HDMI-CEC controller to wake up the MCU from Stop mode on data reception.

3.46 Development support

3.46.1 Serial-wire/JTAG debug port (SWJ-DP)

The Arm SWJ-DP interface is embedded and is a combined JTAG and serial-wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

Debug is performed using two pins only instead of five required by the JTAG (JTAG pins can be re-used as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

3.46.2 Embedded Trace Macrocell

The Arm Embedded Trace Macrocell (ETM) provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the devices through a small number of ETM pins to an external hardware trace port analyzer (TPA) device.

Real-time instruction and data flow activity be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors.

The ETM operates with third party debugger software tools.

4 Pinout, pin description, and alternate functions

4.1 Pinout/ballout schematics

Figure 6. VFQFPN68 pinout

- 1. The above figure shows the package top view.
- 2. VSS pads are connected to the exposed pad.

Figure 7. WLCSP80 SMPS ballout

Figure 8. LQFP100 pinout

Figure 9. LQFP100 SMPS pinout

Figure 10. LQFP144 pinout

Figure 11. LQFP144 SMPS pinout

STM32H562xx and STM32H563xx

	1	2	3	4	5	6	7	8	9	10	11	12	13
A	PE2	P17	VDD	РВ9	РВ6	РВ4	VDDIO2	PG10	PD3	VDD	PC11	PA14	PI2
В	PC14- OSC32 _IN	PE3	vss	VCAP	воото	PG15	vss	PD7	PC12	vss	PA15	PI1	PIO
С	PC15- OSC32 OUT	PE5	PI6	PI4	PEO	РВ5	PG14	PG12	PD2	PC10	PI3	vss	VDD
D	VDD	vss	PE6	PE4	PE1	РВ7	PG13	PD5	PD0	PH14	PH15	(PH13)	VDDUS B
Е	PF1	VBAT	PI8	PC13	РВ8	РВЗ	PG11	PD6	PD1	PA10	PA9	PA13	PA12
F	PF4	PF2	PF0	PI11	PF3	PF5	PG9	PD4	PC6	PC7	PG8	PA8	PA11
G	VDD	vss	PF7	PF6	PF8	PF10	PE8	PG7	PG3	PG5	PG6	PC8	PC9
н	PH0- OSC_IN	(PH1- OSC_O UT	PF9	NRST	PC3	PC5	PF13	PE10	PD15	PD11	PD14	vss	VDD
J	PC0	PC1	PC2	PA0	PA1	PF11	PF15	PE14	PD9	PB15	PD10	PG2	PG4
К	VREF-	VSSA	PH2	PA5	PA7	РВ1	PG1	PE12	РВ10	РН6	PB12	PD12	PD13
L	VDDA	(VREF+)	PA2	PA4	РВО	РВ2	PG0	PE9	PE13	РН7	РВ13	PD8	VDD
М	VDD	vss	PH5	vss	PA6	PF14	vss	PE11	РВ11	РН8	PH10	vss	PB14
Ν	РН4	РНЗ	PA3	VDD	PC4	PF12	VDD	PE7	PE15	VCAP	VDD	PH11	PH12
	L												MSv68827V2

Figure 12. UFBGA169 ballout

	1	2	3	4	5	6	7	8	9	10	11	12	13
А	PI7	PI6	VDD		РВ4		PD5	VDD	PC11	PC10	VDD	РІЗ	PH15
В	VDD	vss	P15	vss	воото	PG15	PD7	vss	PD1	PA15	vss	PIO	PA12
с	VBAT	PE5	PE2	PI4	PE1	РВ6	PG10	PD3	PD0	PA14	PI1	PH13	PA11
D	PC14- OSC32 IN	PE6	PE4	PE3	PE0	РВ7	PG12	PD4	PC12	PI2	PH14	PA13	VDD
Е	PC15- OSC32 OUT	PF0	PC13) (PI8	РВ9	РВ5	PG9	PD2	PC8	PA8	PA10	vss	VDDUS B
F	PF7	vss	PF1	PF2	РВ8	РВЗ	PD6	PG5	PG7	PC6	PC7	PC9	PA9
G	VDD	PF9	PF5	PF8	PF4	PF3	PF6	PD13	PG3	PD15	PG4	PG6	PG8
н	PH0- OSC_IN	vss	NRST	PF10	PA1) (РВ1)	PF13	PD11	PD9	PB15	PD12	PD14	PG2
J	PH1- OSC_O UT	PC0	PC1	PH2	PA5	PF11	PF15	PE8	PE14	PB14	PD8	vss	VDD
к	PC2	PC3	PA0) (PA3)	PA7	PF12	(PG1)	PE13	РВ10	PH10	PB12	PB13	PD10
L	VSSA	VREF-	PA2) (PH5)	PC4) (PF14)	PE7	PE10	PE15	PB11	РН7	PH12	PH11
М	VDDA	VREF+	vss	PA4	PC5	PG0	vss	(PE11	PE12	VSSSM PS	vss	PH8	РН9
N	PH4	РНЗ	VDD	PA6	РВО	РВ2	VDD	PE9	VLXSM PS	VDDSM PS	VCAP	VDD	РН6
	L												 MSv6401

Figure 13. UFBGA169 SMPS ballout

Figure 14. LQFP176 pinout

1. The above figure shows the package top view.

Figure 15. LQFP176 SMPS pinout

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
А	PE3	PE2	PE1	PE0	РВ8	РВ5	PG14	PG13	РВ4	РВЗ	PD7	PC12	PA15	PA14	PA13
в	PE4	PE5	PE6	РВ9	РВ7	РВ6	PG15	PG12	PG11	PG10	PD6	PD0	PC11	PC10	PA12
с	VBAT	PI7	PI6	P15	VDD	VCAP	VDD		VDD	PG9	PD5	PD1	PI3	Pl2	PA11
D	PC13	PI8	PI9	PI4	vss	воото	vss	vss	vss	PD4	PD3	PD2	РН15	PI1	PA10
E	PC14- OSC32_ IN	PF0	PI10	PI11								Рн13	PH14	PIO	PA9
F	PC15- OSC32_ OUT_	vss	VDD	PH2		vss	vss	vss	vss	vss		vss	VDD	PC9	PA8
G	PH0- OSC_IN	vss	VDD	РНЗ		vss	vss	vss	vss	vss		vss	VDD	PC8	PC7
н	PH1- OSC_O UT	PF2	PF1	РН4		vss	vss	vss	vss	vss		vss		PG8	PC6
J	NRST	PF3	PF4	РН5		vss	vss	vss	vss	vss		VDD	VDD	PG7	PG6
к	PF7	PF6	PF5	VDD		vss	vss	vss	vss	vss		PH12	PG5	PG4	PG3
L	PF10	PF9	PF8	vss								PH11	PH10	PD15	PG2
М	VSSA	PC0	PC1	PC2	PC3	РВ2	PG1	vss	vss	VCAP	РН6	РН8	РН9	PD14	PD13
N		PA1	PA0	PA4	PC4	(PF13)	PG0		VDD	VDD	(PE13)	РН7	PD12	(PD11	PD10
Ρ	VREF+	PA2	PA6	PA5	PC5	PF12	PF15		PE9	PE11	PE14	РВ12	PB13	PD9	PD8
R	VDDA	PA3	PA7	РВ1	РВО	(PF11)	PF14	PE7	PE10	PE12	PE15	РВ10	(PB11)	PB14	PB15
	L														MSv67306V3

Figure 16. UFBGA176+25 ballout

1. The above figure shows the package top view.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
A	РІ7	P15	VCAP	РВ9	воото	РВ5	PG15	PG14	PG10	PD7	PD5	PD3	PD1	P13	PI1
в	VBAT	PE3	PI4	(PE1)	РВ8	РВ6	РВЗ	PG12	PG9	PD6	PD4	PD0	PA14	PI2	PH13
с	vss	PE6	(PE4)	PI6	PEO	РВ7	(РВ4)	(PG13)	(PG11)	PD2	PC12		PA15	(PH15)	PA12
D	PC15- OSC32_ OUT	PC14- OSC32_ IN	PE5	PE2	VDD	vss	VDDIO2	VDD	vss	VDD	vss	PC10	PH14	vss	PA11
E	PI9	PI8	PC13	VDD								VDD	PA13	PA10	PA9
F	PF1	PF0	(PI11)	PI10		vss	vss	vss	vss	vss		VDD33U SB	PC9	PC8	PA8
G	PF4	PF3	PF2	vss		vss	vss	vss	vss	vss		vss	PC7	PC6	PG8
н	PF6	PF8	PF5	VDD		vss	vss	vss	vss	vss		vss	PG7	PG3	PG5
J	PH0- OSC_IN	PH1- OSC_O UT	PF9	PF10		vss	vss	vss	vss	vss		VDD	PD15	PG6	PG4
к	vss	(PF7)		PC2		vss	vss	vss	vss	vss		PD10	PD14	PD12	PG2
L	PC0	PC1	(PA1)	VDD								РВ12	PD9	(PD11	PD13
м	VDDA	VSSA	PA2	vss	PA4		vss		vss	РВ10	VDD	РН9	РН12	(PB15)	PD8
N	VREF+	VREF-	PC3	PC4	PA3	РВ1	PF12	(PF15)	PE9	PE14	PE15	РВ11	РН8	PH10	PB14
Р	РН5	PA0	РНЗ	PC5	PA6	РВ2	(PF13)	(PG1)	PE8	(PE11)	PE13	VSSSM PS	РН6	РН7	PH11
R	РН4	РН2	PA5	PA7	РВО	(PF11	PF14	PG0	PE7	PE10	PE12	VLXSM PS	VDDSM PS	VCAP	РВ13
			-					-						-	MSv67300V3

Figure 17. UFBGA176+25 SMPS ballout

1. The above figure shows the package top view.

4.2 Pin description

Na	me	Abbreviation	Definition							
Pin r	name	Unless otherwise specified in reset is the same as the actu	brackets below the pin name, the pin function during and after al pin name							
		S	Supply pin							
Pin	type	I	Input only pin							
		I/O	Input/output pin							
		FT	5 V-tolerant I/O							
		TT	3.6 V-tolerant I/O							
		RST	Bidirectional reset pin with embedded weak pull-up resistor							
			Option for TT or FT I/Os ⁽¹⁾							
		a	I/O, with analog switch function supplied by V{DDA}							
I/O atr	ucturo	_c	I/O with USB Type-C power delivery function							
1/0 50	uciuie	_d	I/O with USB Type-C power delivery dead battery function							
		_f	I/O, Fm+ capable							
		_h	I/O with high-speed low-voltage mode							
		\$	I/O supplied only by V{DDIO2}							
		_t	I/O with tamper function functional in VBAT mode							
		_u	I/O, with USB function supplied by V _{DDUSB}							
No	tes	Unless otherwise specified by	by a note, all I/Os are set as analog inputs during and after rese							
Pin	Alternate functions	Functions selected through C	SPIOx_AFR registers							
functions	Additional functions	al s Functions directly selected/enabled through peripheral registers								

Table 13. Legend/abbreviations used in the pinout table

1. The related I/O structures in the following table are a concatenation of various options. Examples: FT_hat, FT_fs, FT_u, TT_a.

1	
	~
	0
	\sim
	\sim
	Ö
	\mathbf{U}

DS1	
4258	
Rev	
ы	

|--|

Table 14. STM32H562xx and STM32H563xx pin/ball definition Pin number ⁽¹⁾⁽²⁾ I I																		
					Pin n	umbe	er ⁽¹⁾⁽²)										
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	1	1	C3	1	D4	-	1	1	A1	1	A2	-	PE2	I/O	FT_h	-	TRACECLK, LPTIM1_IN2, SAI1_CK1, SPI4_SCK, SAI1_MCLK_A, USART10_RX, UART8_TX, OCTOSPI1_IO2, ETH_MII_TXD3, FMC_A23, DCMI_D3/PSSI_D3, EVENTOUT	-
-	2	2	D4	2	B2	-	2	2	B2	2	A1	-	PE3	I/O	FT_h	-	TRACED0, TIM15_BKIN, SAI1_SD_B, USART10_TX, FMC_A19, EVENTOUT	TAMP_IN6/TAMP_OUT3
-	3	3	D3	3	СЗ	-	3	3	D4	3	B1	-	PE4	I/O	FT_h	-	TRACED1, SAI1_D2, TIM15_CH1N, SPI4_NSS, SAI1_FS_A, FMC_A20, DCMI_D4/PSSI_D4, EVENTOUT	TAMP_IN7/TAMP_OUT8
-	4	4	C2	4	D3	-	4	4	C2	4	B2	-	PE5	I/O	FT_h	-	TRACED2, SAI1_CK2, TIM15_CH1, SPI4_MISO, SAI1_SCK_A, FMC_A21, DCMI_D6/PSSI_D6, EVENTOUT	TAMP_IN8/TAMP_OUT7
-	5	5	D2	5	C2	-	5	5	D3	5	В3	-	PE6	I/O	FT_h	-	TRACED3, TIM1_BKIN2, SAI1_D1, TIM15_CH2, SPI4_MOSI, SAI1_SD_A, SAI2_MCLK_B, FMC_A22, DCMI_D7/PSSI_D7, EVENTOUT	TAMP_IN3/TAMP_OUT6
A1	-	-	-	-	-	-	-	-	-	-	-	-	VDD	S	-	-	-	-
B8	-	-	-	-	-	-	-	-	-	-	-	-	VSS	S	-	-	-	-
B10	6	6	C1	6	B1	1	6	6	E2	6	C1	1	VBAT	S	-	-	-	-
D2	-	-	-	-	-	-	-	-	-	-	-	-	VSS	S	-	-	-	-

5

Pin number ⁽¹⁾⁽²⁾																			
	WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
	-	-	-	E4	7	E2	-	-	-	E3	7	D2	-	P18	I/O	FT_t	(5)	EVENTOUT	TAMP_IN2/TAMP_OUT3, RTC_OUT2, WKUP3
	C9	7	7	E3	8	E3	2	7	7	E4	8	D1	2	PC13	I/O	FT_t	(5)	EVENTOUT	TAMP_IN1/TAMP_OUT2/ TAMP_OUT3, RTC_OUT1, RTC_TS, WKUP4
Î	G9	-	-	-	-	-	-	-	-	-	-	-	-	VSS	S	-	-	-	-
	D10	8	8	D1	9	D2	3	8	8	B1	9	E1	3	PC14- OSC32_IN (OSC32_IN)	I/O	FT	-	EVENTOUT	OSC32_IN
	F10	9	9	E1	10	D1	4	9	9	C1	10	F1	4	PC15- OSC32_OUT (OSC32_OUT)	I/O	FT	-	EVENTOUT	OSC32_OUT
Î	-	-	-	-	11	E1	-	-	-	-	11	D3	-	P19	I/O	FT_h	-	UART4_RX, FDCAN1_RX, EVENTOUT	-
Î	-	-	-	-	12	F4	-	-	-	-	12	E3	-	PI10	I/O	FT_h	-	FDCAN1_RX, ETH_MII_RX_ER, PSSI_D14, EVENTOUT	-
Ī	-	-	-	-	13	F3	-	-	-	F4	13	E4	-	PI11	I/O	FT	-	PSSI_D15, EVENTOUT	TAMP_IN4/TAMP_OUT5
	-	-	-	B2	14	C1	-	-	-	D2	14	D5	-	VSS	S	-	-	-	-
	-	-	-	B1	15	D5	-	-	-	D1	15	C5	-	VDD	S	-	-	-	-
	-	-	10	E2	16	F2	-	-	10	F3	16	E2	-	PF0	I/O	FT_f	-	I2C2_SDA, FMC_A0, LPTIM5_CH1, EVENTOUT	-
	-	-	11	F3	17	F1	-	-	11	E1	17	НЗ	-	PF1	I/O	FT_f	-	I2C2_SCL, FMC_A1, LPTIM5_CH2, EVENTOUT	-

 Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)

STM32H562xx and STM32H563xx

DS14258 Rev 5

Table 14. STM32H562xx and STM32H563xx Pin number ⁽¹⁾⁽²⁾														xx pi	in/ball o	defin	ition (continued)		
						Pin n	umbe	er ⁽¹⁾⁽²)										
	WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
	-	-	12	F4	18	G3	-	-	12	F2	18	H2	-	PF2	I/O	FT_h	-	LPTIM3_CH2, LPTIM3_IN2, I2C2_SMBA, UART12_TX, USART11_CK, FMC_A2, LPTIM5_IN1, EVENTOUT	-
	-	-	13	G6	19	G2	-	-	13	F5	19	J2	-	PF3	I/O	FT_h	-	LPTIM3_IN1, USART11_TX, FMC_A3, LPTIM5_IN2, EVENTOUT	-
	-	-	14	G5	20	G1	-	-	14	F1	20	J3	-	PF4	I/O	FT_h	-	LPTIM3_ETR, USART11_RX, FMC_A4, EVENTOUT	-
	-	-	15	G3	21	H3	-	-	15	F6	21	K3	-	PF5	I/O	FT_fh	-	LPTIM3_CH1, I2C4_SCL, I3C1_SCL, UART12_RX, USART11_CTS/USART11_NSS, FMC_A5, LPTIM3_IN1, EVENTOUT	-
	H2	10	16	F2	22	G4	-	10	16	G2	22	F2	-	VSS	S	-	-	-	-
	A7	11	17	G1	23	E4	-	11	17	G1	23	F3	-	VDD	S	-	-	-	-
	-	-	18	G7	24	H1	-	-	18	G4	24	К2	-	PF6	I/O	FT_h	-	TIM16_CH1, SPI5_NSS, SAI1_SD_B, UART7_RX, OCTOSPI1_IO3, LPTIM5_CH1, EVENTOUT	-
	-	-	19	F1	25	К2	-	-	19	G3	25	K1	-	PF7	I/O	FT_h	-	TIM17_CH1, SPI5_SCK, SAI1_MCLK_B, UART7_TX, OCTOSPI1_IO2, LPTIM5_CH2, EVENTOUT	-
1	-	-	20	G4	26	H2	-	-	20	G5	26	L3	-	PF8	I/O	FT_h	-	TIM16_CH1N, SPI5_MISO, SAI1_SCK_B, UART7_RTS/UART7_DE, TIM13_CH1, OCTOSPI1_IO0, LPTIM5_IN1, EVENTOUT	-

	Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued) Pin number ⁽¹⁾⁽²⁾																	
					Pin n	umbe	ər ⁽¹⁾⁽²)										
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	21	G2	27	J3	-	-	21	H3	27	L2	-	PF9	I/O	FT_h	-	TIM17_CH1N, SPI5_MOSI, SAI1_FS_B, UART7_CTS, TIM14_CH1, OCTOSPI1_IO1, LPTIM5_IN2, EVENTOUT	-
-	-	22	H4	-	J4	-	-	22	G6	28	L1	-	PF10	I/O	FT_h	-	TIM16_BKIN, SAI1_D3, PSSI_D15, OCTOSPI1_CLK, DCMI_D11/PSSI_D11, EVENTOUT	-
K10	12	23	H1	28	J1	5	12	23	H1	29	G1	5	PH0- OSC_IN(PH0)	I/O	FT	-	EVENTOUT	OSC_IN
J9	13	24	J1	29	J2	6	13	24	H2	30	H1	6	PH1- OSC_OUT(PH1)	I/O	FT	-	EVENTOUT	OSC_OUT
F8	14	25	H3	30	K3	7	14	25	H4	31	J1	7	NRST	I/O	RST	-	-	-
H8	15	26	J2	31	L1	8	15	26	J1	32	M2	8	PC0	I/O	FT_a	-	TIM16_BKIN, SAI1_MCLK_A, SPI2_RDY, SAI2_FS_B, FMC_A25, OCTOSPI1_IO7, FMC_SDNWE, EVENTOUT	ADC12_INP10
G7	16	27	J3	32	L2	9	16	27	J2	33	М3	9	PC1	I/O	FT_ah	-	TRACED0, SAI1_D1, SPI2_MOSI/I2S2_SDO, SAI1_SD_A, USART11_RTS/USART11_DE, SAI2_SD_A, SDMMC2_CK, OCTOSPI1_IO4, ETH_MDC, EVENTOUT	ADC12_INP11, ADC12_INN10, TAMP_IN3/TAMP_OUT5, WKUP6
M10	17	28	К1	33	K4	10	17	28	J3	34	M4	10	PC2	I/O	FT_a	-	PWR_CSLEEP, TIM17_CH1, TIM4_CH4, SPI2_MISO/I2S2_SDI, OCTOSPI1_IO5, OCTOSPI1_IO2, ETH_MII_TXD2, FMC_SDNE0, EVENTOUT	ADC12_INP12, ADC12_INN11

80/;	1							Fable	14.	STM	32H5	62xx	c and	STM32H563	xx pi	in/ball o	defir	nition (continued)	Γ
270			-			Pin n	umbe	ər ⁽¹⁾⁽²)										
	WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
	L9	18	29	К2	34	N3	11	18	29	H5	35	M5	11	PC3	I/O	FT_a	-	PWR_CSTOP, SAI1_D3, LPTIM3_CH1, SPI2_MOSI/I2S2_SDO, OCTOSPI1_IO6, OCTOSPI1_IO0, ETH_MII_TX_CLK, FMC_SDCKE0, EVENTOUT	ADC12_INP13, ADC12_INN12
D	G1	-	-	-	35	H4	-	-	30	M1	36	G3	-	VDD	S	-	-	-	-
6142	P2	-	-	H2	-	K1	-	-	-	M2	-	G2	-	VSS	S	-	-	-	-
258	N9	19	30	L1	36	M2	12	19	31	K2	37	M1	12	VSSA	S	-	-	-	-
Rev	-	-	-	L2	-	N2	-	20	-	K1	-	N1	-	VREF-	S	-	-	-	-
വ	-	20	31	M2	37	N1	-	21	32	L2	38	P1	-	VREF+	S	-	-	-	-
	P10	21	32	M1	38	M1	13	22	33	L1	39	R1	13	VDDA	S	-	-	-	-
	K8	22	33	КЗ	39	P2	14	23	34	J4	40	N3	14	PAO	I/O	FT_at	(5)	TIM2_CH1, TIM5_CH1, TIM8_ETR, TIM15_BKIN, SPI6_NSS, SPI3_RDY, USART2_CTS/USART2_NSS, UART4_TX, SDMMC2_CMD, SAI2_SD_B, ETH_MII_CRS, TIM2_ETR, EVENTOUT	ADC12_INP0, ADC12_INN1, TAMP_IN2/TAMP_OUT1, WKUP1
	J7	23	34	H5	40	L3	15	24	35	J5	41	N2	15	PA1	I/O	FT_aht	(5)	TIM2_CH2, TIM5_CH2, TIM15_CH1N, LPTIM1_IN1, OCTOSPI1_DQS, USART2_RTS/USART2_DE, UART4_RX, OCTOSPI1_IO3, SAI2_MCLK_B, ETH_MII_RX_CLK/ETH_RMII_RE F_CLK, EVENTOUT	ADC12_INP1, TAMP_IN5/TAMP_OUT4

1

Pin number ⁽¹⁾⁽²⁾																		
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
M8	24	35	L3	41	М3	16	25	36	L3	42	P2	16	PA2	I/O	FT_hat	(5)	TIM2_CH3, TIM5_CH3, TIM15_CH1, LPTIM1_IN2, USART2_TX, SAI2_SCK_B, ETH_MDIO, EVENTOUT	ADC12_INP14, TAMP_IN4/TAMP_OUT3, WKUP2
-	-	-	J4	42	R2	-	-	-	К3	43	F4	-	PH2	I/O	FT_h	-	LPTIM1_IN2, OCTOSPI1_IO4, SAI2_SCK_B, ETH_MII_CRS, FMC_SDCKE0, EVENTOUT	-
H10	-	-	-	-	L4	-	-	-	-	-	K4	-	VDD	S	-	-	-	-
P8	-	-	-	-	M4	-	-	-	-	-	L4	-	VSS	S	-	-	-	-
-	-	-	N2	43	P3	-	-	-	N2	44	G4	-	PH3	I/O	FT_ah	-	OCTOSPI1_IO5, SAI2_MCLK_B, ETH_MII_COL, FMC_SDNE0, EVENTOUT	-
-	-	-	N1	-	R1	-	-	-	N1	45	H4	-	PH4	I/O	FT_fa	-	I2C2_SCL, SPI5_RDY, SPI6_RDY, PSSI_D14, EVENTOUT	-
-	-	-	L4	-	P1	-	-	-	М3	46	J4	-	PH5	I/O	FT_fa	-	I2C2_SDA, SPI5_NSS, SPI6_RDY, FMC_SDNWE, EVENTOUT	-
T10	25	36	K4	44	N5	17	26	37	N3	47	R2	17	PA3	I/O	FT_ah	-	TIM2_CH4, TIM5_CH4, OCTOSPI1_CLK, TIM15_CH2, SPI2_NSS/I2S2_WS, SAI1_SD_B, USART2_RX, ETH_MII_COL, EVENTOUT	ADC12_INP15
-	26	37	M3	45	M7	18	27	38	M4	48	M8	18	VSS	S	-	-	-	-
R1	27	38	N3	46	M6	19	28	39	N4	49	N8	19	VDD	S	-	-	-	-

 Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)

STM32H562xx and STM32H563xx

82/								Table	914.	STM	32H5	62xx	c and	STM32H563	xx pi	in/ball o	defir	nition (continued)	
270						Pin n	umbe	er ⁽¹⁾⁽²)										
	WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
	R9	28	39	M4	47	M5	20	29	40	L4	50	N4	20	PA4	I/O	TT_a	-	TIM5_ETR, LPTIM2_CH1, SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, USART2_CK, SPI6_NSS, DCMI_HSYNC/PSSI_DE, EVENTOUT	ADC12_INP18, DAC1_OUT1
DS14258 R	L7	29	40	J5	48	R3	21	30	41	K4	51	P4	21	PA5	I/O	TT_ah	-	TIM2_CH1, TIM8_CH1N, SPI1_SCK/I2S1_CK, SPI6_SCK, ETH_MII_TX_EN/ETH_RMII_TX_ EN, PSSI_D14, TIM2_ETR, EVENTOUT	ADC12_INP19, ADC12_INN18, DAC1_OUT2
ev 5	H6	30	41	N4	49	P5	22	31	42	M5	52	P3	22	PA6	I/O	FT_ah	-	TIM1_BKIN, TIM3_CH1, TIM8_BKIN, SPI1_MISO/I2S1_SDI, OCTOSPI1_IO3, USART11_TX, SPI6_MISO, TIM13_CH1, DCMI_PIXCLK/PSSI_PDCK, EVENTOUT	ADC12_INP3
	K6	31	42	К5	50	R4	23	32	43	K5	53	R3	23	PA7	I/O	FT_ah	-	TIM1_CH1N, TIM3_CH2, TIM8_CH1N, SPI1_MOSI/I2S1_SDO, USART11_RX, SPI6_MOSI, TIM14_CH1, OCTOSPI1_IO2, ETH_MII_RX_DV/ETH_RMII_CRS _DV, FMC_SDNWE, FMC_NWE, EVENTOUT	ADC12_INP7, ADC12_INN3
শি	M6	-	-	L5	51	N4	24	33	44	N5	54	N5	24	PC4	I/O	FT_a	-	TIM2_CH4, SAI1_CK1, LPTIM2_ETR, I2S1_MCK, USART3_RX, ETH_MII_RXD0/ETH_RMII_RXD0 , FMC_SDNE0, EVENTOUT	ADC12_INP4

Pin number⁽¹⁾⁽²⁾

UFBGA176+25 SMPS SMPS //O structure WLCSP80 SMPS SMPS LQFP176 SMPS LQFP100 SMPS UFBGA176+25 Pin type Notes **VFQFPN68** UFBGA169 LQFP176 LQFP100 LQFP144 (function LQFP64 Alternate functions Additional functions UFBGA169 after LQFP144 reset)⁽³⁾⁽⁴⁾ TIM1 CH4N, SAI1 D3, PSSI_D15, SAI1_FS_A, UART12 RTS/UART12 DE, N7 M5 52 P4 25 34 45 H6 55 P5 25 PC5 I/O FT ah ADC12 INP8, ADC12 INN4 -_ -OCTOSPI1 DQS. ETH MII RXD1/ETH RMII RXD1 , FMC SDCKE0, EVENTOUT Т8 M8 s --VDD ------_ --_ --DS14258 Rev 5 TIM1 CH2N, TIM3 CH3, TIM8 CH2N, OCTOSPI1 IO1, R7 N5 35 I/O FT ah USART11 CK, UART4 CTS, 32 43 53 R5 26 46 L5 56 R5 26 PB0 ADC12 INP9, ADC12 INN5 ETH MII RXD2, LPTIM3 CH1, EVENTOUT TIM1 CH3N. TIM3 CH4. TIM8 CH3N, OCTOSPI1 IO0, H6 P6 33 44 54 N6 27 36 47 K6 57 R4 27 PB1 I/O FT ah ADC12 INP5 ETH MII RXD3, LPTIM3 CH2, EVENTOUT RTC OUT2, SAI1 D1, TIM8 CH4N, SPI1 RDY, LPTIM1 CH1. SAI1 SD A. SPI3_MOSI/I2S3_SDO, LSCO L5 34 45 N6 55 P6 28 37 48 L6 58 M6 28 PB2 I/O FT ah -OCTOSPI1 CLK, OCTOSPI1 DQS, SDMMC1 CMD, LPTIM5 ETR, EVENTOUT SPI5 MOSI, OCTOSPI1 NCLK, SAI2 SD B, FMC NRAS, 46 J6 56 R6 49 J6 59 R6 **PF11** I/O FT ah ADC1 INP2 --_ -DCMI D12/PSSI D12, LPTIM6 CH1, EVENTOUT FMC_A6, LPTIM6_CH2, 47 K6 N7 I/O 57 50 N6 60 P6 PF12 FT ah ADC1 INP6, ADC1 INN2 _ -EVENTOUT

Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)

Pin name

STM32H562xx and STM32H563xx

DS14258 Rev 5

	Table 14. STM32H562xx and STM3 Pin number ⁽¹⁾⁽²⁾														in/ball o	defin	ition (continued)	
					Pin n	umbe	er ⁽¹⁾⁽²)										
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	48	M7	58	-	-	-	51	M7	61	-	-	VSS	S	-	-	-	-
-	-	49	N7	59	-	-	-	52	N7	62	N9	-	VDD	S	-	-	-	-
-	-	50	H7	60	P7	-	-	53	H7	63	N6	-	PF13	I/O	FT_ah	-	I2C4_SMBA, FMC_A7, LPTIM6_IN1, EVENTOUT	ADC2_INP2
-	-	51	L6	61	R7	-	-	54	M6	64	R7	-	PF14	I/O	FT_fah	-	FMC_A8, LPTIM6_IN2, EVENTOUT	ADC2_INP6, ADC2_INN2
-	-	52	J7	62	N8	-	-	55	J7	65	P7	-	PF15	I/O	FT_fh	-	I2C4_SDA, I3C1_SDA, FMC_A9, EVENTOUT	-
-	-	53	M6	63	R8	-	-	56	L7	66	N7	-	PG0	I/O	FT_h	-	UART9_RX, FMC_A10, LPTIM4_IN1, EVENTOUT	-
-	-	54	K7	64	P8	-	-	57	K7	67	M7	-	PG1	I/O	FT_h	-	SPI2_MOSI/I2S2_SDO, UART9_TX, FMC_A11, EVENTOUT	-
Т6	35	55	L7	65	R9	-	38	58	N8	68	R8	-	PE7	I/O	FT_ah	-	TIM1_ETR, UART12_RTS/UART12_DE, UART7_RX, OCTOSPI1_IO4, FMC_D4/FMC_AD4, EVENTOUT	-
N5	36	56	J8	66	P9	-	39	59	G7	69	P8	-	PE8	I/O	FT_ah	-	TIM1_CH1N, UART12_CTS/UART12_NSS, UART7_TX, OCTOSPI1_IO5, FMC_D5/FMC_AD5, EVENTOUT	-
R5	37	57	N8	67	N9	-	40	60	L8	70	P9	-	PE9	I/O	FT_ah	-	TIM1_CH1, UART12_RX, UART7_RTS/UART7_DE, OCTOSPI1_IO6, FMC_D6/FMC_AD6, EVENTOUT	-
-	-	58	-	68	-	-	-	61	-	71	-	-	VSS	S	-	-	-	-
-	-	59	-	69	-	-	-	62	-	72	-	-	VDD	S	-	-	-	-

							Table	14.	STM	32H5	62xx	and	STM32H563	cx pi	n/ball o	defin	ition (continued)	
					Pin n	umbe	er ⁽¹⁾⁽²⁾)										
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
M4	38	60	L8	70	R10	-	41	63	H8	73	R9	-	PE10	I/O	FT_ah	-	TIM1_CH2N, UART12_TX, UART7_CTS, OCTOSPI1_IO7, FMC_D7/FMC_AD7, EVENTOUT	-
-	39	61	M8	71	P10	-	42	64	M8	74	P10	-	PE11	I/O	FT_ah	-	TIM1_CH2, SPI1_RDY, SPI4_NSS, OCTOSPI1_NCS, SAI2_SD_B, FMC_D8/FMC_AD8, EVENTOUT	-
-	40	62	M9	72	R11	-	43	65	К8	75	R10	-	PE12	I/O	FT_h	-	TIM1_CH3N, SPI4_SCK, SAI2_SCK_B, FMC_D9/FMC_AD9, EVENTOUT	-
-	41	63	K8	73	P11	-	44	66	L9	76	N11	-	PE13	I/O	FT_h	-	TIM1_CH3, SPI4_MISO, SAI2_FS_B, FMC_D10/FMC_AD10, EVENTOUT	-
-	42	64	1 8	74	N10	-	45	67	J8	77	P11	-	PE14	I/O	FT_h	-	TIM1_CH4, SPI4_MOSI, SAI2_MCLK_B, FMC_D11/FMC_AD11, EVENTOUT	-
-	43	65	L9	75	N11	-	46	68	N9	78	R11	-	PE15	I/O	FT_h	-	TIM1_BKIN, TIM1_CH4N, USART10_CK, FMC_D12/FMC_AD12, EVENTOUT	-
P4	44	66	К9	76	M10	29	47	69	К9	79	R12	29	PB10	I/O	FT_f	-	TIM2_CH3, LPTIM3_CH1, LPTIM2_IN1, I2C2_SCL, SPI2_SCK/I2S2_CK, USART3_TX, OCTOSPI1_NCS, ETH_MII_RX_ER, EVENTOUT	-

DS14258 Rev 5

7

Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued) Pin number ⁽¹⁾⁽²⁾ Image: Colspan="2">Image: Colspan="2" Pin number ⁽¹⁾⁽²⁾ Image: Colspan="2">Image: Colspan="2"																		
					Pin n	umbe	ər ⁽¹⁾⁽²)										
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	45	67	L10	77	N12	-	-	-	M9	80	R13	30	PB11	I/O	FT_f	-	TIM2_CH4, LPTIM2_ETR, I2C2_SDA, SPI2_RDY, SPI4_RDY, USART3_RX, ETH_MII_TX_EN/ETH_RMII_TX_ EN, FMC_NBL1, EVENTOUT	-
T4	46	68	N9	78	R12	-	-	-	-	-	-	-	VLXSMPS	S	-	-	-	-
R3	47	69	N10	79	R13	-	-	-	-	-	-	-	VDDSMPS	S	-	-	-	-
N3	48	70	M10	80	P12	-	-	-	-	-	-	-	VSSSMPS	S	-	-	-	-
T2	49	71	N11	81	R14	30	48	70	N10	81	M10	31	VCAP	S	-	-	-	-
-	50	72	M11	82	M9	31	49	71	M12	82	M9	32	VSS	S	-	-	-	-
-	51	73	N12	83	M11	32	50	72	N11	83	N10	33	VDD	S	-	-	-	-
-	-	-	N13	84	P13	-	-	-	K10	84	M11	-	PH6	I/O	FT	-	TIM1_CH3N, TIM12_CH1, TIM8_CH1, I2C2_SMBA, SPI5_SCK, ETH_MII_RXD2, FMC_SDNE1, DCMI_D8/PSSI_D8, EVENTOUT	-
-	-	-	L11	85	P14	-	-	-	L10	85	N12	-	PH7	I/O	FT_f	-	TIM1_CH3, TIM8_CH1N, I2C3_SCL, SPI5_MISO, ETH_MII_RXD3, FMC_SDCKE1, DCMI_D9/PSSI_D9, EVENTOUT	-
-	-	-	M12	-	N13	-	-	-	M10	86	M12	-	PH8	I/O	FT_fh	-	TIM1_CH2N, TIM5_ETR, TIM8_CH2, I2C3_SDA, SPI5_MOSI, DCMI_HSYNC/PSSI_DE, EVENTOUT	-

87/270

_	Table 14. STM32H562xx and STM32H5 Pin number ⁽¹⁾⁽²⁾														n/ball o	defir	ition (continued)	
					Pin n	umbe	er ⁽¹⁾⁽²)										
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	M13	86	M12	-	-	-	-	87	M13	-	PH9	I/O	FT_h	-	TIM1_CH2, TIM12_CH2, TIM8_CH2N, I2C3_SMBA, SPI5_NSS, DCMI_D0/PSSI_D0, EVENTOUT	-
-	-	-	K10	87	N14	-	-	-	M11	88	L13	-	PH10	I/O	FT_h	-	TIM1_CH1N, TIM5_CH1, TIM8_CH3, I2C4_SMBA, SPI5_RDY, DCMI_D1/PSSI_D1, EVENTOUT	-
-	-	-	L13	88	P15	-	-	-	N12	89	L12	-	PH11	I/O	FT_fh	-	TIM1_CH1, TIM5_CH2, TIM8_CH3N, I2C4_SCL, I3C1_SCL, DCMI_D2/PSSI_D2, EVENTOUT	-
-	-	-	L12	89	M13	-	-	-	N13	90	K12	-	PH12	I/O	FT_fh	-	TIM1_BKIN, TIM5_CH3, TIM8_BKIN, I2C4_SDA, I3C1_SDA, TIM8_CH4N, DCMI_D3/PSSI_D3, EVENTOUT	-
-	-	-	-	90	H12	-	-	-	-	-	-	-	VSS	S	-	-	-	-
-	-	-	-	91	J12	-	-	-	L13	91	J12	-	VDD	S	-	-	-	-
L3	-	-	K11	92	L12	33	51	73	K11	92	P12	34	PB12	I/O	FT_fh	-	TIM1_BKIN, OCTOSPI1_NCLK, I2C2_SDA, SPI2_NSS/I2S2_WS, UCPD1_FRSTX, USART3_CK, FDCAN2_RX, ETH_MII_TXD0/ETH_RMII_TXD0, UART5_RX, EVENTOUT	-

Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)

/270						Pin n	umbe	er ⁽¹⁾⁽²⁾											
	WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
	M2	52	74	K12	93	R15	34	52	74	L11	93	P13	35	PB13	I/O	FT_c	(6)	TIM1_CH1N, LPTIM3_IN1, LPTIM2_CH1, I2C2_SMBA, SPI2_SCK/I2S2_CK, USART3_CTS/USART3_NSS, FDCAN2_TX, SDMMC1_D0, UART5_TX, EVENTOUT	UCPD1_CC1
DS14258 Rev 5	N1	53	75	J10	94	N15	35	53	75	M13	94	R14	36	PB14	I/O	FT_c	(6)	TIM1_CH2N, TIM12_CH1, TIM8_CH2N, USART1_TX, SPI2_MISO/I2S2_SDI, USART3_RTS/USART3_DE, UART4_RTS/UART4_DE, SDMMC2_D0, LPTIM3_ETR, EVENTOUT	UCPD1_CC2
	L1	54	76	H10	95	M14	36	54	76	J10	95	R15	37	PB15	I/O	FT_h	-	RTC_REFIN, TIM1_CH3N, TIM12_CH2, TIM8_CH3N, USART1_RX, SPI2_MOSI/I2S2_SDO, USART11_CTS/USART11_NSS, UART4_CTS, SDMMC2_D1, OCTOSPI1_CLK, ETH_MII_TXD1/ETH_RMII_TXD1, DCMI_D2/PSSI_D2, UART5_RX, EVENTOUT	PVD_IN
	-	55	77	J11	96	M15	-	55	77	L12	96	P15	-	PD8	I/O	FT_h	-	USART3_TX, FMC_D13/FMC_AD13, EVENTOUT	-
	-	-	-	-	-	G12	-	-	-	-	-	-	-	VSS	S	-	-	-	-
S	-	56	78	H9	97	L13	-	56	78	J9	97	P14	-	PD9	I/O	FT_h	-	USART3_RX, FDCAN2_RX, FMC_D14/FMC_AD14, EVENTOUT	-

STM32H562xx and STM32H563xx

DS14258 Rev 5

						Pin n	umbe	ər ⁽¹⁾⁽²)										
	WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
Ī	-	57	79	K13	98	K12	-	57	79	J11	98	N15	-	PD10	I/O	FT_h	-	LPTIM2_CH2, USART3_CK, FMC_D15/FMC_AD15, EVENTOUT	-
	-	58	80	H8	99	L14	-	58	80	H10	99	N14	38	PD11	I/O	FT_h	-	SAI1_CK1, LPTIM2_IN2, I2C4_SMBA, USART3_CTS/USART3_NSS, UART4_RX, OCTOSPI1_IO0, SAI2_SD_A, FMC_A16/FMC_CLE, EVENTOUT	-
	-	59	81	H11	100	K14	-	59	81	K12	100	N13	39	PD12	I/O	FT_fh	-	LPTIM1_IN1, TIM4_CH1, LPTIM2_IN1, I2C4_SCL, I3C1_SCL, SAI1_D1, USART3_RTS/USART3_DE, UART4_TX, OCTOSPI1_IO1, SAI2_FS_A, FMC_A17/FMC_ALE, DCMI_D12/PSSI_D12, EVENTOUT	-
	-	60	82	G8	101	L15	-	60	82	K13	101	M15	-	PD13	I/O	FT_fh	-	LPTIM1_CH1, TIM4_CH2, LPTIM2_CH1, I2C4_SDA, I3C1_SDA, OCTOSPI1_IO3, SAI2_SCK_A, UART9_RTS/UART9_DE, FMC_A18, DCMI_D13/PSSI_D13, LPTIM4_IN1, EVENTOUT	-
	-	-	83	J12	102	-	-	-	83	H12	102	H12	-	VSS	S	-	-	-	-
Ļ	-	-	84	J13	103	-	-	-	84	H13	103	J13	-	VDD	S	-	-	-	-
	K2	61	85	H12	104	K13	-	61	85	H11	104	M14	-	PD14	I/O	FT_h	-	TIM4_CH3, UART8_CTS, UART9_RX, FMC_D0/FMC_AD0, EVENTOUT	-

 Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)

DS14258 Rev 5

| | | |

 |

 | | | Fable | 14. | STM

 | 32H5 | 62x>
 | and | STM32H563 | xx pi | n/ball o | defir | nition (continued)
 | |
|--------------|--------------|--
--
--

--
--
---|---|---|--|---
--
--|---
--
---|---|--|--|---|--|---|---|
| | | |

 |

 | Pin n | umbe | ər ⁽¹⁾⁽² |) |

 | - |
 | | | | | |
 | |
| WLCSP80 SMPS | LQFP100 SMPS | LQFP144 SMPS | UFBGA169 SMPS

 | LQFP176 SMPS

 | UFBGA176+25 SMPS | LQFP64 | LQFP100 | LQFP144 | UFBGA169

 | LQFP176 | UFBGA176+25
 | VFQFPN68 | Pin name
(function
after
reset) ⁽³⁾⁽⁴⁾ | Pin type | I/O structure | Notes | Alternate functions
 | Additional functions |
| J1 | 62 | 86 | G10

 | 105

 | J13 | - | 62 | 86 | H9

 | 105 | L14
 | - | PD15 | I/O | FT_h | - | TIM4_CH4,
UART8_RTS/UART8_DE,
UART9_TX, FMC_D1/FMC_AD1,
EVENTOUT
 | - |
| - | - | - | -

 | -

 | - | - | - | - | -

 | - | -
 | - | VDD | S | - | - | -
 | - |
| - | - | - | -

 | -

 | - | - | - | - | -

 | - | -
 | - | VSS | S | - | - | -
 | - |
| - | - | 87 | H13

 | 106

 | K15 | - | - | 87 | J12

 | 106 | L15
 | - | PG2 | I/O | FT_h | - | TIM8_BKIN, UART12_RX,
FMC_A12, LPTIM6_ETR,
EVENTOUT
 | - |
| - | - | 88 | G9

 | 107

 | H14 | - | - | 88 | G9

 | 107 | K15
 | - | PG3 | I/O | FT_h | - | TIM8_BKIN2, UART12_TX,
FMC_A13, LPTIM5_ETR,
EVENTOUT
 | - |
| - | - | 89 | G11

 | 108

 | J15 | - | - | 89 | J13

 | 108 | K14
 | - | PG4 | I/O | FT_h | - | TIM1_BKIN2,
FMC_A14/FMC_BA0,
LPTIM4_ETR, EVENTOUT
 | - |
| - | - | 90 | F8

 | 109

 | H15 | - | - | 90 | G10

 | 109 | K13
 | - | PG5 | I/O | FT_h | - | TIM1_ETR, FMC_A15/FMC_BA1,
EVENTOUT
 | - |
| - | - | 91 | G12

 | 110

 | J14 | - | - | 91 | G11

 | 110 | J15
 | - | PG6 | I/O | FT_fh | - | TIM17_BKIN, I3C1_SDA,
I2C4_SDA, SPI1_RDY,
OCTOSPI1_NCS,
UCPD1_FRSTX, FMC_NE3,
DCMI_D12/PSSI_D12,
EVENTOUT
 | - |
| - | - | 92 | F9

 | 111

 | H13 | - | - | 92 | G8

 | 111 | J14
 | - | PG7 | I/O | FT_fh | - | SAI1_CK2, I3C1_SCL, I2C4_SCL,
SAI1_MCLK_A, USART6_CK,
UCPD1_FRSTX, FMC_INT,
DCMI_D13/PSSI_D13,
EVENTOUT
 | - |
| | J1 | SdWS 08US3 J1 62 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | Sdws Sdws <th< td=""><td>Sdws Sdws <th< td=""><td>Sdws object Sdws object</td><td>Image: Normal Series of Series of Series S</td><td>Pin number Saws Saws</td><td>Table Pin number⁽¹⁾⁽²⁾ Sdw 08ds 01/41 Sdw set 15 Sdw se</td><td>Table 14. Pin number⁽¹⁾⁽²⁾ Saws Saws<!--</td--><td>Table 14. STM Pin number⁽¹⁾⁽²⁾ Saws Sa</td><td>Table 14. STM32H5 Pin number⁽¹⁾⁽²⁾ Saws <t< td=""><td>Table 14. STM32H562xx Pin number⁽¹⁾⁽²⁾ Saws 08d S37 Saws 08d S4 Saws 08d S4</td><td>Table 14. STM32H562xx and Pin number⁽¹⁾⁽²⁾ Same Same</td><td>Table 14. STM32H562xx and STM32H562 Fin number⁽¹⁾⁽²⁾ Same Sa</td><td>Table 14. STM32H562xx and STM32H563xx pi Table 14. STM32H562xx and STM32H563xx pi Sam <</td><td>Table 14. STM32H562xx and STM32H563xx pin/ball of Pin number⁽¹⁾⁽²⁾ Sdw Sdw</td><td>Table 14. STM32H562xx and STM32H563xx pin/ball defir Sams of the second se</td><td>Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued) Pin number⁽¹⁾⁽²⁾ Solution Solution</td></t<></td></td></th<></td></th<> | Sdws Sdws <th< td=""><td>Sdws object Sdws object</td><td>Image: Normal Series of Series of Series S</td><td>Pin number Saws Saws</td><td>Table Pin number⁽¹⁾⁽²⁾ Sdw 08ds 01/41 Sdw set 15 Sdw se</td><td>Table 14. Pin number⁽¹⁾⁽²⁾ Saws Saws<!--</td--><td>Table 14. STM Pin number⁽¹⁾⁽²⁾ Saws Sa</td><td>Table 14. STM32H5 Pin number⁽¹⁾⁽²⁾ Saws <t< td=""><td>Table 14. STM32H562xx Pin number⁽¹⁾⁽²⁾ Saws 08d S37 Saws 08d S4 Saws 08d S4</td><td>Table 14. STM32H562xx and Pin number⁽¹⁾⁽²⁾ Same Same</td><td>Table 14. STM32H562xx and STM32H562 Fin number⁽¹⁾⁽²⁾ Same Sa</td><td>Table 14. STM32H562xx and STM32H563xx pi Table 14. STM32H562xx and STM32H563xx pi Sam <</td><td>Table 14. STM32H562xx and STM32H563xx pin/ball of Pin number⁽¹⁾⁽²⁾ Sdw Sdw</td><td>Table 14. STM32H562xx and STM32H563xx pin/ball defir Sams of the second se</td><td>Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued) Pin number⁽¹⁾⁽²⁾ Solution Solution</td></t<></td></td></th<> | Sdws object Sdws object | Image: Normal Series of Series of Series S | Pin number Saws Saws | Table Pin number ⁽¹⁾⁽²⁾ Sdw 08ds 01/41 Sdw set 15 Sdw se | Table 14. Pin number ⁽¹⁾⁽²⁾ Saws Saws </td <td>Table 14. STM Pin number⁽¹⁾⁽²⁾ Saws Sa</td> <td>Table 14. STM32H5 Pin number⁽¹⁾⁽²⁾ Saws <t< td=""><td>Table 14. STM32H562xx Pin number⁽¹⁾⁽²⁾ Saws 08d S37 Saws 08d S4 Saws 08d S4</td><td>Table 14. STM32H562xx and Pin number⁽¹⁾⁽²⁾ Same Same</td><td>Table 14. STM32H562xx and STM32H562 Fin number⁽¹⁾⁽²⁾ Same Sa</td><td>Table 14. STM32H562xx and STM32H563xx pi Table 14. STM32H562xx and STM32H563xx pi Sam <</td><td>Table 14. STM32H562xx and STM32H563xx pin/ball of Pin number⁽¹⁾⁽²⁾ Sdw Sdw</td><td>Table 14. STM32H562xx and STM32H563xx pin/ball defir Sams of the second se</td><td>Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued) Pin number⁽¹⁾⁽²⁾ Solution Solution</td></t<></td> | Table 14. STM Pin number ⁽¹⁾⁽²⁾ Saws Sa | Table 14. STM32H5 Pin number ⁽¹⁾⁽²⁾ Saws Saws <t< td=""><td>Table 14. STM32H562xx Pin number⁽¹⁾⁽²⁾ Saws 08d S37 Saws 08d S4 Saws 08d S4</td><td>Table 14. STM32H562xx and Pin number⁽¹⁾⁽²⁾ Same Same</td><td>Table 14. STM32H562xx and STM32H562 Fin number⁽¹⁾⁽²⁾ Same Sa</td><td>Table 14. STM32H562xx and STM32H563xx pi Table 14. STM32H562xx and STM32H563xx pi Sam <</td><td>Table 14. STM32H562xx and STM32H563xx pin/ball of Pin number⁽¹⁾⁽²⁾ Sdw Sdw</td><td>Table 14. STM32H562xx and STM32H563xx pin/ball defir Sams of the second se</td><td>Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued) Pin number⁽¹⁾⁽²⁾ Solution Solution</td></t<> | Table 14. STM32H562xx Pin number ⁽¹⁾⁽²⁾ Saws 08d S37 Saws 08d S4 Saws 08d S4 | Table 14. STM32H562xx and Pin number ⁽¹⁾⁽²⁾ Same Same | Table 14. STM32H562xx and STM32H562 Fin number ⁽¹⁾⁽²⁾ Same Sa | Table 14. STM32H562xx and STM32H563xx pi Table 14. STM32H562xx and STM32H563xx pi Sam < | Table 14. STM32H562xx and STM32H563xx pin/ball of Pin number ⁽¹⁾⁽²⁾ Sdw Sdw | Table 14. STM32H562xx and STM32H563xx pin/ball defir Sams of the second se | Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued) Pin number ⁽¹⁾⁽²⁾ Solution Solution |

Pin number⁽¹⁾⁽²⁾ UFBGA176+25 SMPS SMPS //O structure SMPS WLCSP80 SMPS LQFP176 SMPS LQFP100 SMPS Pin name UFBGA176+25 Pin type Notes UFBGA169 **VFQFPN68** LQFP100 LQFP176 LQFP144 (function LQFP64 Alternate functions Additional functions UFBGA169 after LQFP144 reset)⁽³⁾⁽⁴⁾ TIM8 ETR, SPI6 NSS, USART6_RTS/USART6_DE, G13 112 G15 F11 112 H14 I/O FT h 93 93 PG8 ----ETH PPS OUT, FMC SDCLK, EVENTOUT 94 113 94 -113 VSS s ---------_ --95 114 95 114 VDD s ---_ ---------TIM3 CH1, TIM8 CH1, 12S2 MCK, SAI1_SCK_A, USART6 TX, SDMMC1 DODIR, F10 115 G14 J3 63 96 63 F9 115 H15 40 I/O FT h 37 96 PC6 FMC NWAIT, SDMMC2 D6, OCTOSPI1 IO5, SDMMC1 D6, DCMI D0/PSSI D0, EVENTOUT TRGIO, TIM3 CH2, TIM8 CH2, 12S3 MCK, USART6 RX, SDMMC1 D123DIR, FMC NE1, FT_h K4 97 F11 116 G13 64 97 F10 116 G15 41 PC7 I/O 64 38 SDMMC2 D7, OCTOSPI1 IO6, SDMMC1 D7, DCMI_D1/PSSI_D1, EVENTOUT TRACED1, TIM3 CH3. TIM8_CH3, USART6_CK, UART5 RTS/UART5 DE, 65 98 E9 117 F14 65 98 G12 117 G14 42 PC8 I/O FT h J5 39 FMC NE2/FMC NCE, FMC INT, FMC ALE, SDMMC1 DO, DCMI D2/PSSI D2, EVENTOUT MCO2, TIM3 CH4, TIM8 CH4, I2C3_SDA, AUDIOCLK, F14 UART5 CTS, OCTOSPI1 IO0, F2 66 99 F12 118 F13 40 66 99 G13 118 43 PC9 I/O FT fh UCPD1 DB2 -FMC CLE, SDMMC1 D1, DCMI D3/PSSI D3, EVENTOUT

Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)

STM32H562xx and STM32H563xx

92/;								Fable	14.	STM	32H5	562x>	k and	I STM32H563	xx pi	in/ball o	defir	nition (continued)	I
270						Pin n	umbe	ər ⁽¹⁾⁽²)										
	SdWS 08dSDTM	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
	-	-	-	-	-	-	-	-	-	-	-	G12	-	VSS	S	-	-	-	-
	-	-	-	-	-	-	-	-	-	-	-	G13	-	VDD	S	-	-	-	-
DS	G3	67	100	E10	119	F15	41	67	100	F12	119	F15	44	PA8	I/O	FT_fh	-	MCO1, TIM1_CH1, TIM8_BKIN2, I2C3_SCL, SPI1_RDY, USART1_CK, USB_SOF, UART7_RX, FMC_NOE, DCMI_D3/PSSI_D3, EVENTOUT	-
14258 Rev 5	H4	68	101	F13	120	E15	42	68	101	E11	120	E15	45	PA9	I/O	FT_d	-	TIM1_CH2, LPUART1_TX, I2C3_SMBA, SPI2_SCK/I2S2_CK, USART1_TX, ETH_MII_TX_ER, FMC_NWE, DCMI_D0/PSSI_D0, EVENTOUT	UCPD1_DB1
	G5	69	102	E11	121	E14	43	69	102	E10	121	D15	46	PA10	I/O	FT_h	-	TIM1_CH3, LPUART1_RX, LPTIM2_IN2, UCPD1_FRSTX, USART1_RX, FDCAN2_TX, SDMMC1_D0, DCMI_D1/PSSI_D1, EVENTOUT	-
	E1	70	103	C13	122	D15	44	70	103	F13	122	C15	47	PA11	I/O	FT_u	-	TIM1_CH4, LPUART1_CTS, SPI2_NSS/I2S2_WS, UART4_RX, USART1_CTS/USART1_NSS, FDCAN1_RX, USB_DM, EVENTOUT	-
	C1	71	104	B13	123	C15	45	71	104	E13	123	B15	48	PA12	I/O	FT_u	-	TIM1_ETR, LPUART1_RTS/LPUART1_DE, SPI2_SCK/I2S2_CK, UART4_TX, USART1_RTS/USART1_DE, SAI2_FS_B, FDCAN1_TX, USB_DP, EVENTOUT	-
٤I																			

							Table	14. :	STM	32H5	62xx	and	STM32H563	xx pi	in/ball o	defir	nition (continued)	
					Pin n	umb	er ⁽¹⁾⁽²)										
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
F4	72	105	D12	124	E13	46	72	105	E12	124	A15	49	PA13 (JTMS/SWDIO)	I/O	FT	(7)	JTMS/SWDIO, EVENTOUT	-
-	74	107	E12	126	D14	47	74	107	C12	126	F12	50	VSS	S	-	-	-	-
-	75	108	D13	127	E12	48	75	108	C13	127	F13	51	VDD	S	-	-	-	-
B2	73	106	E13	125	F12	-	73	106	D13	125	H13	-	VDDUSB	S	-	-	-	-
-	-	-	C12	128	B15	-	-	-	D12	128	E12	-	PH13	I/O	FT_h	-	LPTIM1_IN2, TIM8_CH1N, UART8_TX, UART4_TX, FDCAN1_TX, DCMI_D3/PSSI_D3, EVENTOUT	-
-	-	-	D11	129	D13	-	-	-	D10	129	E13	-	PH14	I/O	FT_h	-	TIM8_CH2N, UART4_RX, FDCAN1_RX, DCMI_D4/PSSI_D4, EVENTOUT	-
-	-	-	A13	130	C14	-	-	-	D11	130	D13	-	PH15	I/O	FT_h	-	TIM8_CH3N, DCMI_D11/PSSI_D11, EVENTOUT	-
-	-	-	B12	131	-	-	-	-	B13	131	E14	-	PI0	I/O	FT_h	I	TIM5_CH4, SPI2_NSS/I2S2_WS, DCMI_D13/PSSI_D13, EVENTOUT	-
-	-	-	C11	132	A15	-	-	-	B12	132	D14	-	PI1	I/O	FT_h	-	TIM8_BKIN2, SPI2_SCK/I2S2_CK, DCMI_D8/PSSI_D8, EVENTOUT	-
-	-	-	D10	133	B14	-	-	-	A13	133	C14	-	PI2	I/O	FT_h	-	TIM8_CH4, SPI2_MISO/I2S2_SDI, DCMI_D9/PSSI_D9, EVENTOUT	-
-	-	-	A12	134	A14	-	-	-	C11	134	C13	-	PI3	I/O	FT_h	-	TIM8_ETR, SPI2_MOSI/I2S2_SDO, DCMI_D10/PSSI_D10, EVENTOUT	-

94/	1							Fable	14. 3	STM	32H5	62xx	and	STM32H563	xx pi	n/ball	defir	nition (continued)	
270						Pin n	umbe	ər ⁽¹⁾⁽²)										
	WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
	-	-	-	B8	135	D9	-	-	-	B10	135	D9	-	VSS	S	-	-	-	-
	-	-	-	A8	136	D8	-	-	-	A10	136	C9	-	VDD	S	-	-	-	-
	E3	76	109	C10	137	B13	49	76	109	A12	137	A14	52	PA14 (JTCK/SWCLK)	I/O	FT	(7)	JTCK/SWCLK, EVENTOUT	-
DS14258 Rev	D4	77	110	B10	138	C13	50	77	110	B11	138	A13	53	PA15(JTDI)	I/O	FT	(7)	JTDI, TIM2_CH1, LPTIM3_IN2, HDMI_CEC, SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, SPI6_NSS, UART4_RTS/UART4_DE, UART7_TX, FMC_NBL1, DCMI_D11/PSSI_D11, TIM2_ETR, EVENTOUT	-
5	C3	78	111	A10	139	D12	51	78	111	C10	139	B14	54	PC10	I/O	FT_h	-	LPTIM3_ETR, SPI3_SCK/I2S3_CK, USART3_TX, UART4_TX, OCTOSPI1_IO1, ETH_MII_TXD0/ETH_RMII_TXD0, SDMMC1_D2, DCMI_D8/PSSI_D8, EVENTOUT	-
	E5	79	112	A9	140	C12	52	79	112	A11	140	B13	55	PC11	I/O	FT_h	-	LPTIM3_IN1, SPI3_MISO/I2S3_SDI, USART3_RX, UART4_RX, OCTOSPI1_NCS, SDMMC1_D3, DCMI_D4/PSSI_D4, EVENTOUT	-
	F6	80	113	D9	141	C11	53	80	113	В9	141	A12	56	PC12	I/O	FT_h	-	TRACED3, TIM15_CH1, SPI6_SCK, SPI3_MOSI/I2S3_SDO, USART3_CK, UART5_TX, SDMMC1_CK, DCMI_D9/PSSI_D9, EVENTOUT	-

5
-

					Pin n	umbe	ər ⁽¹⁾⁽²)										
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	B11	-	D11	-	-	-	-	-	-	-	VSS	S	-	-	-	-
-	-	-	A11	-	D10	-	-	-	-	-	-	-	VDD	S	-	-	-	-
A3	81	114	C9	142	B12	-	81	114	D9	142	B12	-	PD0	I/O	FT_h	-	TIM8_CH4N, UART4_RX, FDCAN1_RX, UART9_CTS, FMC_D2/FMC_AD2, EVENTOUT	-
B4	82	115	B9	143	A13	-	82	115	E9	143	C12	-	PD1	I/O	FT_h	-	UART4_TX, FDCAN1_TX, FMC_D3/FMC_AD3, EVENTOUT	-
A5	83	116	E8	144	C10	54	83	116	C9	144	D12	-	PD2	I/O	FT_h	-	TRACED2, TIM3_ETR, TIM15_BKIN, UART5_RX, SDMMC1_CMD, DCMI_D11/PSSI_D11, LPTIM4_ETR, EVENTOUT	WKUP7
-	84	117	C8	145	A12	-	84	117	A9	145	D11	-	PD3	I/O	FT_h	-	SPI2_SCK/I2S2_CK, USART2_CTS/USART2_NSS, FMC_CLK, DCMI_D5/PSSI_D5, EVENTOUT	WKUP8
-	85	118	D8	146	B11	-	85	118	F8	146	D10	-	PD4	I/O	FT_h	-	USART2_RTS/USART2_DE, OCTOSPI1_IO4, FMC_NOE, EVENTOUT	-
-	86	119	A7	147	A11	-	86	119	D8	147	C11	-	PD5	I/O	FT_h	-	USART2_TX, FDCAN1_TX, USART2_TX, FDCAN1_TX, OCTOSPI1_IO5, FMC_NWE, EVENTOUT	-
-	-	120	-	148	-	-	-	120	B7	148	D8	-	VSS	S	-	-	-	-
-	-	121	A6	149	D7	-	-	121	A7	149	C8	-	VDDIO2	S	-	-	-	-

 Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)

STM32H562xx and STM32H563xx

DS14258 Rev 5

						lable	14. 3	SING	32H5	62XX	and	STM32H563	x pi	n/ball d	defir	lition (continued)	
1	1			Pin n	umbe	ər ⁽¹⁾⁽²⁾)		1								
LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
87	122	F7	150	B10	-	87	122	E8	150	B11	-	PD6	I/O	FT_sh	-	SAI1_D1, SPI3_MOSI/I2S3_SDO, SAI1_SD_A, USART2_RX, OCTOSPI1_IO6, SDMMC2_CK, FMC_NWAIT, DCMI_D10/PSSI_D10, EVENTOUT	-
88	123	Β7	151	A10	-	88	123	B8	151	A11	-	PD7	I/O	FT_sh	-	SPI1_MOSI/I2S1_SDO, USART2_CK, OCTOSPI1_I07, SDMMC2_CMD, FMC_NE1/FMC_NCE, LPTIM4_OUT, EVENTOUT	-
-	-	-	-	D6	-	-	-	-	-	-	-	VSS	S	-	-	-	-
-	124	E7	152	В9	-	-	124	F7	152	C10	-	PG9	I/O	FT_sh	-	SPI1_MISO/I2S1_SDI, USART6_RX, OCTOSPI1_IO6, SAI2_FS_B, SDMMC2_D0, FMC_NE2/FMC_NCE, DCMI_VSYNC/PSSI_RDY, EVENTOUT	-
-	125	C7	153	A9	-	-	125	A8	153	B10	-	PG10	I/O	FT_sh	-	SPI1_NSS/I2S1_WS, SAI2_SD_B, SDMMC2_D1, FMC_NE3, DCMI_D2/PSSI_D2, EVENTOUT	-
-	-	-	154	C9	-	-	126	E7	154	В9	-	PG11	I/O	FT_sh	-	LPTIM1_IN2,SPI1_SCK/I2S1_CK, USART10_RX, USART11_RTS/USART11_DE, SDMMC2_D2, ETH_MII_TX_EN/ETH_RMII_TX_ EN, DCMI_D3/PSSI_D3, EVENTOUT	-
	COLUTION SMPS	Sdws Sdws Feature 87 122 88 123 - - - 124 - 125 - -	Sdws Sdws <th< td=""><td>Saws of data Saws of data<</td><td>Pin n SdWS 001dJ07 SdWS 691/93BJ0 SdWS 921/4903 87 122 F7 150 B10 88 123 B7 151 A10 - - - 0 0 - 124 E7 152 B9 - 125 C7 153 A9 - - - 154 C9</td><td>SdWS 0014JOT SdWS SdWS 82, 94, 99, 94, 99, 94, 99, 94, 99, 94, 99, 94, 99, 94, 99, 94, 99, 94, 99, 94, 99, 94, 99, 94, 94</td><td>Fin number (1)(2) SdWS 001dd 07 SdWS 854 848 SdWS 921dd 07 P9d 07 P01d07 87 122 F7 150 B10 - 87 88 123 B7 151 A10 - 88 - - - D6 - - - 124 E7 152 B9 - - - 125 C7 153 A9 - - - - 154 C9 - -</td><td>Fin number (1)(2) SdWS 0014JOT SdWS 85 (SdWS 9214JOT) SdWS 9214JOT P94JOT P41JOT 87 122 F7 150 B10 - 87 122 88 123 B7 151 A10 - 88 123 - - - D6 - - - - 124 E7 152 B9 - - 124 - 124 E7 152 B9 - 125 124 - 125 C7 153 A9 - 125 125</td><td>Pin number (1)(2) Sdw Sdw<</td><td>Image: Finite Finite</td><td>Image: Field of the construction of the con</td><td>Name Note Note Pin subset Sdw Sol Sdw Sol</td><td>Pin number⁽¹⁾⁽²⁾ Same <t< td=""><td>National restrict in the initial restriction and th</td><td>Name Name Name<</td><td>Number (1)(2) Sdw Sdw<td>Pin number(¹)(2) Same <t< td=""></t<></td></td></t<></td></th<>	Saws of data Saws of data<	Pin n SdWS 001dJ07 SdWS 691/93BJ0 SdWS 921/4903 87 122 F7 150 B10 88 123 B7 151 A10 - - - 0 0 - 124 E7 152 B9 - 125 C7 153 A9 - - - 154 C9	SdWS 0014JOT SdWS SdWS 82, 94, 99, 94, 99, 94, 99, 94, 99, 94, 99, 94, 99, 94, 99, 94, 99, 94, 99, 94, 99, 94, 99, 94, 94	Fin number (1)(2) SdWS 001dd 07 SdWS 854 848 SdWS 921dd 07 P9d 07 P01d07 87 122 F7 150 B10 - 87 88 123 B7 151 A10 - 88 - - - D6 - - - 124 E7 152 B9 - - - 125 C7 153 A9 - - - - 154 C9 - -	Fin number (1)(2) SdWS 0014JOT SdWS 85 (SdWS 9214JOT) SdWS 9214JOT P94JOT P41JOT 87 122 F7 150 B10 - 87 122 88 123 B7 151 A10 - 88 123 - - - D6 - - - - 124 E7 152 B9 - - 124 - 124 E7 152 B9 - 125 124 - 125 C7 153 A9 - 125 125	Pin number (1)(2) Sdw Sdw<	Image: Finite	Image: Field of the construction of the con	Name Note Note Pin subset Sdw Sol Sdw Sol	Pin number ⁽¹⁾⁽²⁾ Same Same <t< td=""><td>National restrict in the initial restriction and th</td><td>Name Name Name<</td><td>Number (1)(2) Sdw Sdw<td>Pin number(¹)(2) Same <t< td=""></t<></td></td></t<>	National restrict in the initial restriction and th	Name Name<	Number (1)(2) Sdw Sdw <td>Pin number(¹)(2) Same <t< td=""></t<></td>	Pin number(¹)(2) Same Same <t< td=""></t<>

|--|

DS14258 Rev 5

					Pin n	umbe	∋r ⁽¹⁾⁽²	2)										
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	126	D7	155	B8	-	-	127	C8	155	B8	-	PG12	I/O	FT_sh	-	LPTIM1_IN1, PSSI_D15, SPI6_MISO, USART10_TX, USART6_RTS/USART6_DE, SDMMC2_D3, ETH_MII_TXD1/ETH_RMII_TXD1, FMC_NE4, DCMI_D11/PSSI_D11, LPTIM5_CH1, EVENTOUT	-
-	-	127	-	156	C8	-	-	128	D7	156	A8	-	PG13	I/O	FT_sh	-	TRACED0, LPTIM1_CH1, SPI6_SCK, USART10_CTS/USART10_NSS, USART6_CTS/USART6_NSS, SDMMC2_D6, ETH_MII_TXD0/ETH_RMII_TXD0, FMC_A24, LPTIM5_CH2, EVENTOUT	-
-	-	128	_	157	A8	-	_	129	C7	157	A7	-	PG14	I/O	FT_sh	-	TRACED1, LPTIM1_ETR, LPTIM1_CH2, SPI6_MOSI, USART10_RTS/USART10_DE, USART6_TX, OCTOSPI1_IO7, SDMMC2_D7, ETH_MII_TXD1/ETH_RMII_TXD1, FMC_A25, LPTIM5_IN1, EVENTOUT	-
-	-	129	B4	158	-	-	-	130	-	158	D7	-	VSS	S	-	-	-	-
-	-	130	A3	159	-	-	-	131	-	159	C7	-	VDD	S	-	-	-	-
-	-	131	В6	160	A7	-	-	132	В6	160	В7	-	PG15	I/O	FT_h	-	SPI4_RDY, USART10_CK, USART6_CTS/USART6_NSS, FMC_NCAS, DCMI_D13/PSSI_D13, EVENTOUT	-

 Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)

DS14258 Rev 5

						٦	Table	14. 3	STM	32H5	62xx	and	STM32H563	xx pi	n/ball o	defir	ition (continued)	
					Pin n	umbe	er ⁽¹⁾⁽²)										
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
C5	89	132	F6	161	В7	55	89	133	E6	161	A10	57	PB3(JTDO/TRA CESWO)	I/O	FT_fh	-	JTDO/TRACESWO, TIM2_CH2, I2C2_SDA, SPI1_SCK/I2S1_CK, SPI3_SCK/I2S3_CK, UART12_CTS/UART12_NSS, SPI6_SCK, SDMMC2_D2, CRS_SYNC, UART7_RX, LPTIM6_ETR, EVENTOUT	-
B6	90	133	A5	162	C7	56	90	134	A6	162	A9	58	PB4(NJTRST)	I/O	FT_h	-	NJTRST, TIM16_BKIN, TIM3_CH1, OCTOSPI1_CLK, LPTIM1_CH2, SPI1_MISO/I2S1_SDI, SPI3_MISO/I2S3_SDI, SPI2_NSS/I2S2_WS, SPI6_MISO, SDMMC2_D3, UART7_TX, DCMI_D7/PSSI_D7, EVENTOUT	-
D6	91	134	E6	163	A6	57	91	135	C6	163	A6	59	PB5	I/O	FT_h	_	TIM17_BKIN, TIM3_CH2, OCTOSPI1_NCLK, I2C1_SMBA, SPI1_MOSI/I2S1_SDO, I2C4_SMBA, SPI3_MOSI/I2S3_SDO, SPI6_MOSI, FDCAN2_RX, ETH_PPS_OUT, FMC_SDCKE1, DCMI_D10/PSSI_D10, UART5_RX, EVENTOUT	-
E7	92	135	C6	164	В6	58	92	136	A5	164	В6	60	PB6	I/O	FT_f	-	TIM16_CH1N, TIM4_CH1, I3C1_SCL, I2C1_SCL, HDMI_CEC, I2C4_SCL, USART1_TX, LPUART1_TX, FDCAN2_TX, OCTOSPI1_NCS, FMC_SDNE1, DCMI_D5/PSSI_D5, UART5_TX, EVENTOUT	-

STM32H562xx and STM32H563xx

Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)

						Pin n	umbe	er ⁽¹⁾⁽²⁾	r ⁽¹⁾⁽²⁾										
	MLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
DS	C7	93	136	D6	165	C6	59	93	137	D6	165	В5	61	PB7	I/O	FT_fa	-	TIM17_CH1N, TIM4_CH2, I3C1_SDA, I2C1_SDA, I2C4_SDA, USART1_RX, LPUART1_RX, FDCAN1_TX, SDMMC2_D5, SDMMC2_CKIN, FMC_NL, DCMI_VSYNC/PSSI_RDY, EVENTOUT	WKUP5
S142	D8	94	137	B5	166	A5	60	94	138	B5	166	D6	62	BOOT0	I	В	-	-	-
58 Rev 5	E9	95	138	F5	167	В5	61	95	139	E5	167	A5	63	PB8	I/O	FT_fhs	-	TIM16_CH1, TIM4_CH3, I3C1_SCL, I2C1_SCL, SPI4_RDY, I2C4_SCL, SDMMC1_CKIN, UART4_RX, FDCAN1_RX, SDMMC2_D4, ETH_MII_TXD3, SDMMC1_D4, DCMI_D6/PSSI_D6, EVENTOUT	-
	-	96	139	E5	168	A4	-	96	140	A4	168	В4	64	PB9	I/O	FT_fhs	-	TIM17_CH1, TIM4_CH4, I3C1_SDA, I2C1_SDA, SPI2_NSS/I2S2_WS, I2C4_SDA, SDMMC1_CDIR, UART4_TX, FDCAN1_TX, SDMMC2_D5, SDMMC2_CKIN, SDMMC1_D5, DCMI_D7/PSSI_D7, EVENTOUT	-
	-	97	140	D5	169	C5	-	97	141	C5	169	A4	65	PE0	I/O	FT_h	-	LPTIM1_ETR, TIM4_ETR, LPTIM2_CH2, LPTIM2_ETR, SPI3_RDY, UART8_RX, FDCAN1_RX, SAI2_MCLK_A, FMC_NBL0, DCMI_D2/PSSI_D2, EVENTOUT	-

STM32H562xx and STM32H563xx

DS14258 Rev 5

5

					Pin n	umbe	ər ⁽¹⁾⁽²)										
WLCSP80 SMPS	LQFP100 SMPS	LQFP144 SMPS	UFBGA169 SMPS	LQFP176 SMPS	UFBGA176+25 SMPS	LQFP64	LQFP100	LQFP144	UFBGA169	LQFP176	UFBGA176+25	VFQFPN68	Pin name (function after reset) ⁽³⁾⁽⁴⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	141	C5	170	B4	-	-	-	D5	170	A3	-	PE1	I/O	FT_h	-	LPTIM1_IN2, UART8_TX, FDCAN1_TX, FMC_NBL1, DCMI_D3/PSSI_D3, EVENTOUT	-
A9	98	142	A4	171	A3	62	98	142	B4	171	C6	66	VCAP	S	-	-	-	-
-	99	143	-	-	-	63	99	143	B3	-	-	67	VSS	S	-	-	-	-
-	100	144	-	172	-	64	100	144	A3	172	-	68	VDD	S	-	-	-	-
-	-	-	C4	173	В3	-	-	-	C4	173	D4	-	PI4	I/O	FT_h	-	TIM8_BKIN, SPI2_RDY, SAI2_MCLK_A, DCMI_D5/PSSI_D5, EVENTOUT	-
-	-	-	В3	174	A2	-	-	-	-	174	C4	-	PI5	I/O	FT_h	-	TIM8_CH1, SAI2_SCK_A, DCMI_VSYNC/PSSI_RDY, EVENTOUT	-
-	-	-	A2	175	C4	-	-	-	C3	175	C3	-	PI6	I/O	FT_h	-	TIM8_CH2, SAI2_SD_A, DCMI_D6/PSSI_D6, EVENTOUT	-
-	-	-	A1	176	A1	-	-	-	A2	176	C2	-	PI7	I/O	FT_h	-	TIM8_CH3, SAI2_FS_A, DCMI_D7/PSSI_D7, EVENTOUT	-
-	-	-	-	-	F6	-	-	-	-	-	F6	-	VSS	S	-	-	-	-
-	-	-	-	-	F7	-	-	-	-	-	F7	-	VSS	S	-	-	-	-
-	-	-	-	-	F8	-	-	-	-	-	F8	-	VSS	S	-	-	-	-
-	-	-	-	-	F9	-	-	-	-	-	F9	-	VSS	S	-	-	-	-
-	-	-	-	-	F10	-	-	-	-	-	F10	-	VSS	S	-	-	-	-
-	-	-	-	-	G6	-	-	-	-	-	G6	-	VSS	S	-	-	-	-
-	-	-	-	-	G7	-	-	-	-	-	G7	-	VSS	S	-	-	-	-
-	-	-	-	-	G8	-	-	-	-	-	G8	-	VSS	S	-	-	-	-

 Table 14. STM32H562xx and STM32H563xx pin/ball definition (continued)

101/270

WLCSP80 SMPS WLCSP80 SMPS LQFP100 SMPS LQFP100 SMPS LQFP100 SMPS UFBGA169 SMPS UFBGA169 SMPS UFBGA169 SMPS UFBGA169 SMPS US VF0F176 SMPS US VF0F176 SMPS US VF0F176 SMPS VF0F176 SMPS	unctions
G10 G10 - VSS S	
H6 H6 - VSS S	
H7 H7 - VSS S	
H8 H8 - VSS S	
H9 H9 - VSS S	
H10 H10	
J6 J6 J6 - VSS S	
J7 J7 J7 - VSS S	
J8 J8	
J9 J9 - VSS S	
J10 J10	
K6 K6 - VSS S	
K7 K7 K7 - VSS S	
K8 K8 - VSS S	
K9 K9 K9 - VSS S	
K10 K10 - VSS S	

Table 14, STM32H562xx and STM32H563xx pin/ball definition (continued)

The devices with SMPS correspond to commercial code STM32H563xIxxQ.

2. A non-connected I/O in a given package is configured as an output tied to VSS. When VREF+ pad is not available on a package, the internal voltage reference buffer (VREFBUF) is not available and must be kept disabled.

3. PC13, PC14 and PC15 are supplied through the power switch (by VSW). This switch sinks a limited amount of current, hence the use of PC13 to PC15 GPIOs in output mode is limited: The speed must not exceed 2 MHz with a maximum load of 30 pF. These GPIOs must not be used as current sources (for example to drive a LED).

- 4. After a Backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function depends upon the content of the RTC registers that are not reset by the system reset. For details on how to manage these GPIOs, refer to the backup domain and RTC register descriptions in the product reference manual.
- 5. As a tamper input, only PC13, PI8, PA0, PA1, and PA2 are functional in Standby and VBAT mode. As a tamper output, only PC13, PA1, and PI8 are functional in Standby and VBAT mode.
- 6. For the output timing characteristics refer to Table 67.
- 7. After reset, these pins are configured as JTAG/SW debug alternate functions. The internal pull-up on PA15, PA13, PB4 pins and the internal pull-down on PA14 pin are activated too.

Alternate functions

		A E 0	A E 4	AE2	A E 2	AE4	A E 6	AEG	A E 7
		AFU	AFT	AF2	АГЭ	AF4	АГЭ	AFO	
	Port	SYS	LPTIM1/ TIM1/2/16/17	LPTIM3/ PDM_SAI1/ TIM3/4/5/12/15	I3C1/LPTIM2/3/ LPUART1/ OCTOSPI/TIM1/8	CEC/DCMI/ I2C1/2/3/4/ LPTIM1/2/SPI1/ I2S1/TIM15/ USART1	CEC/I3C1/LPTIM1/ SPI1/I2S1/SPI2/I2S2/ SPI3/I2S3/SPI4/5/6	I2C4/OCTOSPI/ SAI1/SPI3/I2S3/ SPI4/UART4/12/ USART10/ USB_PD	SDMMC1/SPI2/ I2S2/SPI3/I2S3/ SPI6/UART7/8/12 /USART1/2/3/6/ 10/11
	PA0	-	TIM2_CH1	TIM5_CH1	TIM8_ETR	TIM15_BKIN	SPI6_NSS	SPI3_RDY	USART2_CTS/ USART2_NSS
	PA1	-	TIM2_CH2	TIM5_CH2	-	TIM15_CH1N	LPTIM1_IN1	OCTOSPI1_DQS	USART2_RTS/ USART2_DE
	PA2	-	TIM2_CH3	TIM5_CH3	-	TIM15_CH1	LPTIM1_IN2	-	USART2_TX
	PA3	-	TIM2_CH4	TIM5_CH4	OCTOSPI1_CLK	TIM15_CH2	SPI2_NSS/I2S2_WS	SAI1_SD_B	USART2_RX
	PA4	-	-	TIM5_ETR	LPTIM2_CH1	-	SPI1_NSS/I2S1_WS	SPI3_NSS/ I2S3_WS	USART2_CK
	PA5	-	TIM2_CH1	-	TIM8_CH1N	-	SPI1_SCK/I2S1_CK	-	-
	PA6	-	TIM1_BKIN	TIM3_CH1	TIM8_BKIN	-	SPI1_MISO/I2S1_SDI	OCTOSPI1_IO3	USART11_TX
•	PA7	-	TIM1_CH1N	TIM3_CH2	TIM8_CH1N	-	SPI1_MOSI/I2S1_SDO	-	USART11_RX
A	PA8	MCO1	TIM1_CH1	-	TIM8_BKIN2	I2C3_SCL	SPI1_RDY	-	USART1_CK
	PA9	-	TIM1_CH2	-	LPUART1_TX	I2C3_SMBA	SPI2_SCK/I2S2_CK	-	USART1_TX
	PA10	-	TIM1_CH3	-	LPUART1_RX	LPTIM2_IN2	-	UCPD1_FRSTX	USART1_RX
	PA11	-	TIM1_CH4	-	LPUART1_CTS	-	SPI2_NSS/I2S2_WS	UART4_RX	USART1_CTS/ USART1_NSS
	PA12	-	TIM1_ETR	-	LPUART1_RTS/ LPUART1_DE	-	SPI2_SCK/I2S2_CK	UART4_TX	USART1_RTS/ USART1_DE
	PA13	JTMS/SWDIO -		-	-	-	-	-	-
	PA14	JTCK/SWCLK -		-	-	-	-	-	-
	PA15	JTDI	TIM2_CH1	LPTIM3_IN2	-	HDMI_CEC	SPI1_NSS/I2S1_WS	SPI3_NSS/I2S3_ WS	SPI6_NSS

Table 15. Alternate functions AF0 to AF7⁽¹⁾

DS14258 Rev 5

103/270

STM32H562xx and STM32H563xx

4.3

DS14258 Rev 5

2

				Table 15. Al	ternate functions	6 AF0 to AF7 ⁽¹⁾	(continued)		
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
	Port	SYS	LPTIM1/ TIM1/2/16/17	LPTIM3/ PDM_SAI1/ TIM3/4/5/12/15	I3C1/LPTIM2/3/ LPUART1/ OCTOSPI/TIM1/8	CEC/DCMI/ I2C1/2/3/4/ LPTIM1/2/SPI1/ I2S1/TIM15/ USART1	CEC/I3C1/LPTIM1/ SPI1/I2S1/SPI2/I2S2/ SPI3/I2S3/SPI4/5/6	I2C4/OCTOSPI/ SAI1/SPI3/I2S3/ SPI4/UART4/12/ USART10/ USB_PD	SDMMC1/SPI2/ I2S2/SPI3/I2S3/ SPI6/UART7/8/12 /USART1/2/3/6/ 10/11
	PB0	-	TIM1_CH2N	TIM3_CH3	TIM8_CH2N	-	-	OCTOSPI1_IO1	USART11_CK
	PB1	-	TIM1_CH3N	TIM3_CH4	TIM8_CH3N	-	-	OCTOSPI1_IO0	-
	PB2	RTC_OUT2	-	SAI1_D1	TIM8_CH4N	SPI1_RDY	LPTIM1_CH1	SAI1_SD_A	SPI3_MOSI/ I2S3_SDO
	PB3	JTDO/TRACE SWO	TIM2_CH2	-	-	I2C2_SDA	SPI1_SCK/I2S1_CK	SPI3_SCK/I2S3_ CK	UART12_CTS/ UART12_NSS
	PB4	NJTRST	TIM16_BKIN	TIM3_CH1	OCTOSPI1_CLK	LPTIM1_CH2	SPI1_MISO/I2S1_SDI	SPI3_MISO/I2S3 _SDI	SPI2_NSS/ I2S2_WS
	PB5	-	TIM17_BKIN	TIM3_CH2	OCTOSPI1_NCLK	I2C1_SMBA	SPI1_MOSI/I2S1_SDO	I2C4_SMBA	SPI3_MOSI/ I2S3_SDO
	PB6	-	TIM16_CH1N	TIM4_CH1	I3C1_SCL	I2C1_SCL	HDMI_CEC	I2C4_SCL	USART1_TX
в	PB7	-	TIM17_CH1N	TIM4_CH2	I3C1_SDA	I2C1_SDA	-	I2C4_SDA	USART1_RX
	PB8	-	TIM16_CH1	TIM4_CH3	I3C1_SCL	I2C1_SCL	SPI4_RDY	I2C4_SCL	SDMMC1_CKIN
	PB9	-	TIM17_CH1	TIM4_CH4	I3C1_SDA	I2C1_SDA	SPI2_NSS/I2S2_WS	I2C4_SDA	SDMMC1_CDIR
	PB10	-	TIM2_CH3	LPTIM3_CH1	LPTIM2_IN1	I2C2_SCL	SPI2_SCK/I2S2_CK	-	USART3_TX
	PB11	-	TIM2_CH4	-	LPTIM2_ETR	I2C2_SDA	SPI2_RDY	SPI4_RDY	USART3_RX
	PB12	-	TIM1_BKIN	-	OCTOSPI1_NCLK	I2C2_SDA	SPI2_NSS/I2S2_WS	UCPD1_FRSTX	USART3_CK
	PB13	-	TIM1_CH1N	LPTIM3_IN1	LPTIM2_CH1	I2C2_SMBA	SPI2_SCK/I2S2_CK	-	USART3_CTS/ USART3_NSS
	PB14	-	TIM1_CH2N	TIM12_CH1	TIM8_CH2N	USART1_TX	SPI2_MISO/I2S2_SDI	-	USART3_RTS/ USART3_DE
	PB15	RTC_REFIN	TIM1_CH3N	TIM12_CH2	TIM8_CH3N	USART1_RX	SPI2_MOSI/I2S2_SDO	-	USART11_CTS/ USART11_NSS

					Table 15. Al	ternate functions	a AF0 to AF7 ⁽¹⁾ ((continued)		
X			AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
		Port	SYS	LPTIM1/ TIM1/2/16/17	LPTIM3/ PDM_SAI1/ TIM3/4/5/12/15	I3C1/LPTIM2/3/ LPUART1/ OCTOSPI/TIM1/8	CEC/DCMI/ I2C1/2/3/4/ LPTIM1/2/SPI1/ I2S1/TIM15/ USART1	CEC/I3C1/LPTIM1/ SPI1/I2S1/SPI2/I2S2/ SPI3/I2S3/SPI4/5/6	I2C4/OCTOSPI/ SAI1/SPI3/I2S3/ SPI4/UART4/12/ USART10/ USB_PD	SDMMC1/SPI2/ I2S2/SPI3/I2S3/ SPI6/UART7/8/12 /USART1/2/3/6/ 10/11
		PC0	-	TIM16_BKIN	-	-	-	-	SAI1_MCLK_A	SPI2_RDY
		PC1	TRACED0	-	SAI1_D1	-	-	SPI2_MOSI/I2S2_SDO	SAI1_SD_A	USART11_RTS/ USART11_DE
		PC2	PWR_CSLEEP	TIM17_CH1	TIM4_CH4	-	-	SPI2_MISO/I2S2_SDI	OCTOSPI1_IO5	-
		PC3	PWR_CSTOP	-	SAI1_D3	LPTIM3_CH1	-	SPI2_MOSI/I2S2_SDO	OCTOSPI1_IO6	-
		PC4	-	TIM2_CH4	SAI1_CK1	LPTIM2_ETR	-	I2S1_MCK	-	USART3_RX
DS1		PC5	-	TIM1_CH4N	SAI1_D3	-	PSSI_D15	-	SAI1_FS_A	UART12_RTS/ UART12_DE
1425		PC6	-	-	TIM3_CH1	TIM8_CH1	-	I2S2_MCK	SAI1_SCK_A	USART6_TX
8 R		PC7	TRGIO	-	TIM3_CH2	TIM8_CH2	-	-	I2S3_MCK	USART6_RX
ev 5	С	PC8	TRACED1	-	TIM3_CH3	TIM8_CH3	-	-	-	USART6_CK
		PC9	MCO2	-	TIM3_CH4	TIM8_CH4	I2C3_SDA	AUDIOCLK	-	-
		PC10	-	-	LPTIM3_ETR	-	-	-	SPI3_SCK/ I2S3_CK	USART3_TX
		PC11	-	-	LPTIM3_IN1	-	-	-	SPI3_MISO/ I2S3_SDI	USART3_RX
		PC12	TRACED3	-	TIM15_CH1	-	-	SPI6_SCK	SPI3_MOSI/ I2S3_SDO	USART3_CK
		PC13	-	-	-	-	-	-	-	-
		PC14	-	-	-	-	-	-	-	-
		PC15	-	-	-	-	-	-	-	-

105/270

DS14258 Rev 5

2

			Table 15. Alt	ternate functions	s AF0 to AF7 ⁽¹⁾ ((continued)		
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
Port	SYS	LPTIM1/ TIM1/2/16/17	LPTIM3/ PDM_SAI1/ TIM3/4/5/12/15	I3C1/LPTIM2/3/ LPUART1/ OCTOSPI/TIM1/8	CEC/DCMI/ I2C1/2/3/4/ LPTIM1/2/SPI1/ I2S1/TIM15/ USART1	CEC/I3C1/LPTIM1/ SPI1/I2S1/SPI2/I2S2/ SPI3/I2S3/SPI4/5/6	I2C4/OCTOSPI/ SAI1/SPI3/I2S3/ SPI4/UART4/12/ USART10/ USB_PD	SDMMC1/SPI2/ I2S2/SPI3/I2S3/ SPI6/UART7/8/12 /USART1/2/3/6/ 10/11
PD0	-	-	-	TIM8_CH4N	-	-	-	-
PD1	-	-	-	-	-	-	-	-
PD2	TRACED2	-	TIM3_ETR	-	TIM15_BKIN	-	-	-
PD3	-	-	-	-	-	SPI2_SCK/I2S2_CK	-	USART2_CTS/ USART2_NSS
PD4	-	-	-	-	-	-	-	USART2_RTS/ USART2_DE
PD5	-	TIM1_CH4N	-	-	-	SPI2_RDY	-	USART2_TX
PD6	-	-	SAI1_D1	-	-	SPI3_MOSI/I2S3_SDO	SAI1_SD_A	USART2_RX
PD7	-	-	-	-	-	SPI1_MOSI/I2S1_SDO	-	USART2_CK
PD8	-	-	-	-	-	-	-	USART3_TX
PD9	-	-	-	-	-	-	-	USART3_RX
PD10	-	-	-	LPTIM2_CH2	-	-	-	USART3_CK
PD11	-	-	SAI1_CK1	LPTIM2_IN2	I2C4_SMBA	-	-	USART3_CTS/ USART3_NSS
PD12	-	LPTIM1_IN1	TIM4_CH1	LPTIM2_IN1	I2C4_SCL	I3C1_SCL	SAI1_D1	USART3_RTS/ USART3_DE
PD13	-	LPTIM1_CH1	TIM4_CH2	LPTIM2_CH1	I2C4_SDA	I3C1_SDA	-	-
PD14	-	-	TIM4_CH3	-	-	-	-	-
PD15	-	-	TIM4_CH4	-	-	-	-	-

					Table 15. Al	ternate functions	s AF0 to AF7 ⁽¹⁾ ((continued)			
K			AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	
		Port	SYS	LPTIM1/ TIM1/2/16/17	LPTIM3/ PDM_SAI1/ TIM3/4/5/12/15	I3C1/LPTIM2/3/ LPUART1/ OCTOSPI/TIM1/8	CEC/DCMI/ I2C1/2/3/4/ LPTIM1/2/SPI1/ I2S1/TIM15/ USART1	CEC/I3C1/LPTIM1/ SPI1/I2S1/SPI2/I2S2/ SPI3/I2S3/SPI4/5/6	I2C4/OCTOSPI/ SAI1/SPI3/I2S3/ SPI4/UART4/12/ USART10/ USB_PD	SDMMC1/SPI2/ I2S2/SPI3/I2S3/ SPI6/UART7/8/12 /USART1/2/3/6/ 10/11	
		PE0	-	LPTIM1_ETR	TIM4_ETR	LPTIM2_CH2	LPTIM2_ETR	-	SPI3_RDY	-	
		PE1	-	LPTIM1_IN2	-	-	-	-	-	-	
		PE2	TRACECLK	LPTIM1_IN2	SAI1_CK1	-	-	SPI4_SCK	SAI1_MCLK_A	USART10_RX	
		PE3	TRACED0	-	-	-	TIM15_BKIN	-	SAI1_SD_B	USART10_TX	
		PE4	TRACED1	-	SAI1_D2	-	TIM15_CH1N	SPI4_NSS	SAI1_FS_A	-	
		PE5	TRACED2	-	SAI1_CK2	-	TIM15_CH1	SPI4_MISO	SAI1_SCK_A	-	
D		PE6	TRACED3	TIM1_BKIN2	SAI1_D1	-	TIM15_CH2	SPI4_MOSI	SAI1_SD_A	-	
14258		PE7	-	TIM1_ETR	-	-	-	-	UART12_RTS/ UART12_DE	UART7_RX	
Rev 5	E	PE8	-	TIM1_CH1N	-	-	-	-	UART12_CTS/ UART12_NSS	UART7_TX	
		PE9	-	TIM1_CH1	-	-	-	-	UART12_RX	UART7_RTS/ UART7_DE	
		PE10	-	TIM1_CH2N	-	-	-	-	UART12_TX	UART7_CTS	
		PE11	-	TIM1_CH2	-	-	SPI1_RDY	SPI4_NSS	OCTOSPI1_NCS	-	
		PE12	-	TIM1_CH3N	-	-	-	SPI4_SCK	-	-	
		PE13	-	TIM1_CH3	-	-	-	SPI4_MISO	-	-	
		PE14	-	TIM1_CH4	-	-	-	SPI4_MOSI	-	-	
		PE15	-	TIM1_BKIN	-	TIM1_CH4N	-	-	-	USART10_CK	

107/270

DS14258 Rev 5

				Table 15. Al	ternate functions	s AF0 to AF7 ⁽¹⁾ ((continued)			
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	
	Port	SYS	LPTIM1/ TIM1/2/16/17	LPTIM3/ PDM_SAI1/ TIM3/4/5/12/15	I3C1/LPTIM2/3/ LPUART1/ OCTOSPI/TIM1/8	CEC/DCMI/ I2C1/2/3/4/ LPTIM1/2/SPI1/ I2S1/TIM15/ USART1	CEC/I3C1/LPTIM1/ SPI1/I2S1/SPI2/I2S2/ SPI3/I2S3/SPI4/5/6	I2C4/OCTOSPI/ SAI1/SPI3/I2S3/ SPI4/UART4/12/ USART10/ USB_PD	SDMMC1/SPI2/ I2S2/SPI3/I2S3/ SPI6/UART7/8/12 /USART1/2/3/6/ 10/11	
	PF0	-	-	-	-	I2C2_SDA	-	-	-	
	PF1	-	-	-	-	I2C2_SCL	-	-	-	
	PF2	-	-	LPTIM3_CH2	LPTIM3_IN2	I2C2_SMBA	-	UART12_TX	USART11_CK	
	PF3	-	-	LPTIM3_IN1	-	-	-	-	USART11_TX	
	PF4	-	-	LPTIM3_ETR	-	-	-	-	USART11_RX	
	PF5	-	-	LPTIM3_CH1	-	I2C4_SCL	I3C1_SCL	UART12_RX	USART11_CTS/ USART11_NSS	
	PF6	-	TIM16_CH1	-	-	-	SPI5_NSS	SAI1_SD_B	UART7_RX	
-	PF7	-	TIM17_CH1	-	-	-	SPI5_SCK	SAI1_MCLK_B	UART7_TX	
Г	PF8	-	TIM16_CH1N	-	-	-	SPI5_MISO	SAI1_SCK_B	UART7_RTS/ UART7_DE	
	PF9	-	TIM17_CH1N	-	-	-	SPI5_MOSI	SAI1_FS_B	UART7_CTS	
	PF10	-	TIM16_BKIN	SAI1_D3	-	PSSI_D15	-	-	-	
	PF11	-	-	-	-	-	SPI5_MOSI	-	-	
	PF12	-	-	-	-	-	-	-	-	
	PF13	-	-	-	-	I2C4_SMBA	-	-	-	
	PF14	-	-	-	-	-	-	-	-	
	PF15	-	-	-	-	I2C4_SDA	I3C1_SDA	-	-	
					Table 15. Al	ternate functions	s AF0 to AF7 ⁽¹⁾ ((continued)		
-------	---	------	---------	-------------------------	--	--	---	--	--	---
1			AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
		Port	SYS	LPTIM1/ TIM1/2/16/17	LPTIM3/ PDM_SAI1/ TIM3/4/5/12/15	I3C1/LPTIM2/3/ LPUART1/ OCTOSPI/TIM1/8	CEC/DCMI/ I2C1/2/3/4/ LPTIM1/2/SPI1/ I2S1/TIM15/ USART1	CEC/I3C1/LPTIM1/ SPI1/I2S1/SPI2/I2S2/ SPI3/I2S3/SPI4/5/6	I2C4/OCTOSPI/ SAI1/SPI3/I2S3/ SPI4/UART4/12/ USART10/ USB_PD	SDMMC1/SPI2/ I2S2/SPI3/I2S3/ SPI6/UART7/8/12 /USART1/2/3/6/ 10/11
		PG0	-	-	-	-	-	-	-	-
		PG1	-	-	-	-	-	-	-	SPI2_MOSI/ I2S2_SDO
		PG2	-	-	-	TIM8_BKIN	-	-	-	UART12_RX
		PG3	-	-	-	TIM8_BKIN2	-	-	-	UART12_TX
		PG4	-	TIM1_BKIN2	-	-	-	-	-	-
		PG5	-	TIM1_ETR	-	-	-	-	-	-
)S14		PG6	-	TIM17_BKIN	-	I3C1_SDA	I2C4_SDA	SPI1_RDY	-	-
258		PG7	-	-	SAI1_CK2	I3C1_SCL	I2C4_SCL	-	SAI1_MCLK_A	USART6_CK
Rev 5	G	PG8	-	-	-	TIM8_ETR	-	SPI6_NSS	-	USART6_RTS/ USART6_DE
		PG9	-	-	-	-	-	SPI1_MISO/I2S1_SDI	-	USART6_RX
		PG10	-	-	-	-	-	SPI1_NSS/I2S1_WS	-	-
		PG11	-	LPTIM1_IN2	-	-	-	SPI1_SCK/I2S1_CK	USART10_RX	USART11_RTS/ USART11_DE
		PG12	-	LPTIM1_IN1	-	-	PSSI_D15	SPI6_MISO	USART10_TX	USART6_RTS/ USART6_DE
		PG13	TRACED0	LPTIM1_CH1	-	-	-	SPI6_SCK	USART10_CTS/ USART10_NSS	USART6_CTS/ USART6_NSS
		PG14	TRACED1	LPTIM1_ETR	-	-	LPTIM1_CH2	SPI6_MOSI	USART10_RTS/ USART10_DE	USART6_TX
_		PG15	-	-	-	-	-	SPI4_RDY	USART10_CK	USART6_CTS/ USART6_NSS

109/270

110/270

DS14258 Rev 5

			Table 15. Al	ternate functions	s AF0 to AF7 ⁽¹⁾ (continued)		
	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
Port	SYS	LPTIM1/ TIM1/2/16/17	LPTIM3/ PDM_SAI1/ TIM3/4/5/12/15	I3C1/LPTIM2/3/ LPUART1/ OCTOSPI/TIM1/8	CEC/DCMI/ I2C1/2/3/4/ LPTIM1/2/SPI1/ I2S1/TIM15/ USART1	CEC/I3C1/LPTIM1/ SPI1/I2S1/SPI2/I2S2/ SPI3/I2S3/SPI4/5/6	I2C4/OCTOSPI/ SAI1/SPI3/I2S3/ SPI4/UART4/12/ USART10/ USB_PD	SDMMC1/SPI2/ I2S2/SPI3/I2S3/ SPI6/UART7/8/12 /USART1/2/3/6/ 10/11
PH0	-	-	-	-	-	-	-	-
PH1	-	-	-	-	-	-	-	-
PH2	-	LPTIM1_IN2	-	-	-	-	-	-
PH3	-	-	-	-	-	-	-	-
PH4	-	-	-	-	I2C2_SCL	SPI5_RDY	-	SPI6_RDY
PH5	-	-	-	-	I2C2_SDA	SPI5_NSS	-	SPI6_RDY
PH6	-	TIM1_CH3N	TIM12_CH1	TIM8_CH1	I2C2_SMBA	SPI5_SCK	-	-
 PH7	-	TIM1_CH3	-	TIM8_CH1N	I2C3_SCL	SPI5_MISO	-	-
PH8	-	TIM1_CH2N	TIM5_ETR	TIM8_CH2	I2C3_SDA	SPI5_MOSI	-	-
PH9	-	TIM1_CH2	TIM12_CH2	TIM8_CH2N	I2C3_SMBA	SPI5_NSS	-	-
PH10	-	TIM1_CH1N	TIM5_CH1	TIM8_CH3	I2C4_SMBA	SPI5_RDY	-	-
PH11	-	TIM1_CH1	TIM5_CH2	TIM8_CH3N	I2C4_SCL	I3C1_SCL	-	-
PH12	-	TIM1_BKIN	TIM5_CH3	TIM8_BKIN	I2C4_SDA	I3C1_SDA	-	-
PH13	-	LPTIM1_IN2	-	TIM8_CH1N	-	-	-	UART8_TX
PH14	-	-	-	TIM8_CH2N	-	-	-	-
PH15	-	-	-	TIM8_CH3N	-	-	-	-

5

					Table 15. Alt	ternate functions	s AF0 to AF7 ⁽¹⁾ ((continued)		
			AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
•	I	Port	SYS	LPTIM1/ TIM1/2/16/17	LPTIM3/ PDM_SAI1/ TIM3/4/5/12/15	I3C1/LPTIM2/3/ LPUART1/ OCTOSPI/TIM1/8	CEC/DCMI/ I2C1/2/3/4/ LPTIM1/2/SPI1/ I2S1/TIM15/ USART1	CEC/I3C1/LPTIM1/ SPI1/I2S1/SPI2/I2S2/ SPI3/I2S3/SPI4/5/6	I2C4/OCTOSPI/ SAI1/SPI3/I2S3/ SPI4/UART4/12/ USART10/ USB_PD	SDMMC1/SPI2/ I2S2/SPI3/I2S3/ SPI6/UART7/8/12 /USART1/2/3/6/ 10/11
1		PI0	-	-	TIM5_CH4	-	-	SPI2_NSS/I2S2_WS	-	-
		PI1	-	-	-	TIM8_BKIN2	-	SPI2_SCK/I2S2_CK	-	-
		PI2	-	-	-	TIM8_CH4	-	SPI2_MISO/I2S2_SDI	-	-
		PI3	-	-	-	TIM8_ETR	-	SPI2_MOSI/I2S2_SDO	-	-
		Pl4	-	-	-	TIM8_BKIN	-	-	-	SPI2_RDY
		PI5	-	-	-	TIM8_CH1	-	-	-	-
DS	1	Pl6	-	-	-	TIM8_CH2	-	-	-	-
6142		PI7	-	-	-	TIM8_CH3	-	-	-	-
58 F		PI8	-	-	-	-	-	-	-	-
ζev :		PI9	-	-	-	-	-	-	-	-
J		PI10	-	-	-	-	-	-	-	-
		PI11	-	-	-	-	-	-	-	-

DS14258 Rev 5

1. Refer to the next table for AF8 to AF15.

111/270

		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	Port	LPUART1/SAI2 /SDMMC1/SPI6 /UART4/5/8	FDCAN1/2/FMC [NAND16)/FMC [NORmux)/FMC [NOR_RAM)/ OCTOSPI/ SDMMC2/TIM13/14	CRS/FMC[NAND 16)/OCTOSPI/S AI2/SDMMC2/ TIM8/USB_PD	ETH[MII/RMII)/ FMC[NAND16)/ OCTOSPI/ SDMMC2/ UART7/9/USB_PD	FMC[NAND16)/ FMC[NORmux)/ FMC[NOR_RAM)/ FMC[SDRAM_16bit) /SDMMC1	DCMI/FMC[NAND16)/ FMC[NORmux)/ FMC[NOR_RAM)/ LPTIM5	LPTIM3/4/5/6/ TIM2/UART5	SYS
	PA0	UART4_TX	SDMMC2_CMD	SAI2_SD_B	ETH_MII_CRS	-	-	TIM2_ETR	EVENTOL
	PA1	UART4_RX	OCTOSPI1_IO3	SAI2_MCLK_B	ETH_MII_RX_CLK /ETH_RMII_REF_ CLK	-	-	-	EVENTOL
	PA2	SAI2_SCK_B	-	-	ETH_MDIO	-	-	-	EVENTOU
	PA3	-	-	-	ETH_MII_COL	-	-	-	EVENTOU
	PA4	SPI6_NSS	-	-	-	-	DCMI_HSYNC/ PSSI_DE	-	EVENTOL
	PA5	SPI6_SCK	-	-	ETH_MII_TX_EN/ ETH_RMII_TX_EN	-	PSSI_D14	TIM2_ETR	EVENTOU
	PA6	SPI6_MISO	TIM13_CH1	-	-	-	DCMI_PIXCLK/ PSSI_PDCK	-	EVENTO
A	PA7	SPI6_MOSI	TIM14_CH1	OCTOSPI1_IO2	ETH_MII_RX_DV/ ETH_RMII_CRS_ DV	FMC_SDNWE	FMC_NWE	-	EVENTOL
	PA8	-	-	USB_SOF	UART7_RX	FMC_NOE	DCMI_D3/PSSI_D3	-	EVENTOU
	PA9	-	-	-	ETH_MII_TX_ER	FMC_NWE	DCMI_D0/PSSI_D0	-	EVENTO
	PA10	-	FDCAN2_TX	-	-	SDMMC1_D0	DCMI_D1/PSSI_D1	-	EVENTO
	PA11	-	FDCAN1_RX	USB_DM	-	-	-	-	EVENTO
	PA12	SAI2_FS_B	FDCAN1_TX	USB_DP	-	-	-	-	EVENTO
	PA13	-	-	-	-	-	-	-	EVENTO
	PA14	-	-	-	-	-	-	-	EVENTO
	PA15	UART4_RTS/ UART4_DE	_	-	UART7_TX	FMC_NBL1	DCMI_D11/PSSI_D11	TIM2_ETR	EVENTOL

			1	able 16. Altern	ate functions AF	5 to AF15' / (contin	lued)		-
		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF1
	Port	LPUART1/SAI2 /SDMMC1/SPI6 /UART4/5/8	FDCAN1/2/FMC [NAND16)/FMC [NORmux)/FMC [NOR_RAM)/ OCTOSPI/ SDMMC2/TIM13/14	CRS/FMC[NAND 16)/OCTOSPI/S AI2/SDMMC2/ TIM8/USB_PD	ETH[MII/RMII)/ FMC[NAND16)/ OCTOSPI/ SDMMC2/ UART7/9/USB_PD	FMC[NAND16)/ FMC[NORmux)/ FMC[NOR_RAM)/ FMC[SDRAM_16bit) /SDMMC1	DCMI/FMC[NAND16)/ FMC[NORmux)/ FMC[NOR_RAM)/ LPTIM5	LPTIM3/4/5/6/ TIM2/UART5	SYS
	PB0	UART4_CTS	-	-	ETH_MII_RXD2	-	-	LPTIM3_CH1	EVENT
	PB1	-	-	-	ETH_MII_RXD3	-	-	LPTIM3_CH2	EVENT
	PB2	-	OCTOSPI1_CLK	OCTOSPI1_DQS	-	SDMMC1_CMD	LPTIM5_ETR	-	EVENT
	PB3	SPI6_SCK	SDMMC2_D2	CRS_SYNC	UART7_RX	-	-	LPTIM6_ETR	EVENT
	PB4	SPI6_MISO	SDMMC2_D3	-	UART7_TX	-	DCMI_D7/PSSI_D7	-	EVENT
	PB5	SPI6_MOSI	FDCAN2_RX	-	ETH_PPS_OUT	FMC_SDCKE1	DCMI_D10/PSSI_D10	UART5_RX	EVENT
	PB6	LPUART1_TX	FDCAN2_TX	OCTOSPI1_NCS	-	FMC_SDNE1	DCMI_D5/PSSI_D5	UART5_TX	EVENT
	PB7	LPUART1_RX	FDCAN1_TX	SDMMC2_D5	SDMMC2_CKIN	FMC_NL	DCMI_VSYNC/ PSSI_RDY	-	EVENT
B	PB8	UART4_RX	FDCAN1_RX	SDMMC2_D4	ETH_MII_TXD3	SDMMC1_D4	DCMI_D6/PSSI_D6	-	EVENT
D	PB9	UART4_TX	FDCAN1_TX	SDMMC2_D5	SDMMC2_CKIN	SDMMC1_D5	DCMI_D7/PSSI_D7	-	EVENT
	PB10	-	OCTOSPI1_NCS	-	ETH_MII_RX_ER	-	-	-	EVENT
	PB11	-	-	-	ETH_MII_TX_EN/ ETH_RMII_TX_EN	FMC_NBL1	-	-	EVENT
	PB12	-	FDCAN2_RX	-	ETH_MII_TXD0/ ETH_RMII_TXD0	-	-	UART5_RX	EVENT
	PB13	-	FDCAN2_TX	-	-	SDMMC1_D0	-	UART5_TX	EVENT
	PB14	UART4_RTS/ UART4_DE	SDMMC2_D0	-	-	-	-	LPTIM3_ETR	EVENT
	PB15	UART4_CTS	SDMMC2_D1	OCTOSPI1_CLK	ETH_MII_TXD1/ ETH_RMII_TXD1	-	DCMI_D2/PSSI_D2	UART5_RX	EVEN

113/270

		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	Port	LPUART1/SAI2 /SDMMC1/SPI6 /UART4/5/8	FDCAN1/2/FMC [NAND16)/FMC [NORmux)/FMC [NOR_RAM)/ OCTOSPI/ SDMMC2/TIM13/14	CRS/FMC[NAND 16)/OCTOSPI/S Al2/SDMMC2/ TIM8/USB_PD	ETH[MII/RMII)/ FMC[NAND16)/ OCTOSPI/ SDMMC2/ UART7/9/USB_PD	FMC[NAND16)/ FMC[NORmux)/ FMC[NOR_RAM)/ FMC[SDRAM_16bit) /SDMMC1	DCMI/FMC[NAND16)/ FMC[NORmux)/ FMC[NOR_RAM)/ LPTIM5	LPTIM3/4/5/6/ TIM2/UART5	SYS
	PC0	SAI2_FS_B	FMC_A25	OCTOSPI1_IO7	-	FMC_SDNWE	-	-	EVENTO
	PC1	SAI2_SD_A	SDMMC2_CK	OCTOSPI1_IO4	ETH_MDC	-	-	-	EVENTO
	PC2	-	OCTOSPI1_IO2	-	ETH_MII_TXD2	FMC_SDNE0	-	-	EVENTO
	PC3	-	OCTOSPI1_IO0	-	ETH_MII_TX_CLK	FMC_SDCKE0	-	-	EVENTO
	PC4	-	-	-	ETH_MII_RXD0/ ETH_RMII_RXD0	FMC_SDNE0	-	-	EVENTO
	PC5	-	-	OCTOSPI1_DQS	ETH_MII_RXD1/ ETH_RMII_RXD1	FMC_SDCKE0	-	-	EVENTO
	PC6	SDMMC1_D0D IR	FMC_NWAIT	SDMMC2_D6	OCTOSPI1_IO5	SDMMC1_D6	DCMI_D0/PSSI_D0	-	EVENTO
с	PC7	SDMMC1_D12 3DIR	FMC_NE1	SDMMC2_D7	OCTOSPI1_IO6	SDMMC1_D7	DCMI_D1/PSSI_D1	-	EVENTO
	PC8	UART5_RTS/ UART5_DE	FMC_NE2/ FMC_NCE	FMC_INT	FMC_ALE	SDMMC1_D0	DCMI_D2/PSSI_D2	-	EVENTO
	PC9	UART5_CTS	OCTOSPI1_IO0	-	FMC_CLE	SDMMC1_D1	DCMI_D3/PSSI_D3	-	EVENTO
	PC10	UART4_TX	OCTOSPI1_IO1	-	ETH_MII_TXD0/ ETH_RMII_TXD0	SDMMC1_D2	DCMI_D8/PSSI_D8	-	EVENTO
	PC11	UART4_RX	OCTOSPI1_NCS	-	-	SDMMC1_D3	DCMI_D4/PSSI_D4	-	EVENTO
	PC12	UART5_TX	-	_	_	SDMMC1_CK	DCMI_D9/PSSI_D9	-	EVENTO
	PC13	-	-	-	-	-	-	-	EVENTC
	PC14	-	-	-	-	-	-	-	EVENTC
	PC15	-	-	-	-	-	-	-	EVENTC

—				Table 16. Altern	ate functions AF	8 to AF15 ⁽¹⁾ (contir	nued)		
		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	Port	LPUART1/SAI2 /SDMMC1/SPI6 /UART4/5/8	FDCAN1/2/FMC [NAND16)/FMC [NORmux)/FMC [NOR_RAM)/ OCTOSPI/ SDMMC2/TIM13/14	CRS/FMC[NAND 16)/OCTOSPI/S AI2/SDMMC2/ TIM8/USB_PD	ETH[MII/RMII)/ FMC[NAND16)/ OCTOSPI/ SDMMC2/ UART7/9/USB_PD	FMC[NAND16)/ FMC[NORmux)/ FMC[NOR_RAM)/ FMC[SDRAM_16bit) /SDMMC1	DCMI/FMC[NAND16)/ FMC[NORmux)/ FMC[NOR_RAM)/ LPTIM5	LPTIM3/4/5/6/ TIM2/UART5	SYS
	PD0	UART4_RX	FDCAN1_RX	-	UART9_CTS	FMC_D2/FMC_AD2	-	-	EVENTOUT
	PD1	UART4_TX	FDCAN1_TX	-	-	FMC_D3/FMC_AD3	-	-	EVENTOUT
	PD2	UART5_RX	-	-	-	SDMMC1_CMD	DCMI_D11/PSSI_D11	LPTIM4_ETR	EVENTOUT
	PD3	-	-	-	-	FMC_CLK	DCMI_D5/PSSI_D5	-	EVENTOUT
	PD4	-	-	OCTOSPI1_IO4	-	FMC_NOE	-	-	EVENTOUT
-	PD5	-	FDCAN1_TX	OCTOSPI1_IO5	-	FMC_NWE	-	-	EVENTOUT
0	PD6	-	-	OCTOSPI1_IO6	SDMMC2_CK	FMC_NWAIT	DCMI_D10/PSSI_D10	-	EVENTOUT
	PD7	-	-	OCTOSPI1_IO7	SDMMC2_CMD	FMC_NE1/ FMC_NCE	-	LPTIM4_OUT	EVENTOUT
י ז 	PD8	-	-	-	-	FMC_D13/ FMC_AD13	-	-	EVENTOUT
	PD9	-	FDCAN2_RX	-	-	FMC_D14/ FMC_AD14	-	-	EVENTOUT
	PD10	-	-	-	-	FMC_D15/ FMC_AD15	-	-	EVENTOUT
	PD11	UART4_RX	OCTOSPI1_IO0	SAI2_SD_A	-	FMC_A16/FMC_CLE	-	-	EVENTOUT
	PD12	UART4_TX	OCTOSPI1_IO1	SAI2_FS_A	-	FMC_A17/FMC_ALE	DCMI_D12/PSSI_D12	-	EVENTOUT
	PD13	-	OCTOSPI1_IO3	SAI2_SCK_A	UART9_RTS/ UART9_DE	FMC_A18	DCMI_D13/PSSI_D13	LPTIM4_IN1	EVENTOUT
	PD14	UART8_CTS	-	-	UART9_RX	FMC_D0/FMC_AD0	-	-	EVENTOUT
、	PD15	UART8_RTS/ UART8_DE	-	-	UART9_TX	FMC_D1/FMC_AD1	-	-	EVENTOUT

DS14258 Rev 5

115/270

 -					Table 16. Alterna	ate functions AF	3 to AF15 ⁽¹⁾ (contin	ued)		
			AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	F	Port	LPUART1/SAI2 /SDMMC1/SPI6 /UART4/5/8	FDCAN1/2/FMC [NAND16)/FMC [NORmux)/FMC [NOR_RAM)/ OCTOSPI/ SDMMC2/TIM13/14	CRS/FMC[NAND 16)/OCTOSPI/S AI2/SDMMC2/ TIM8/USB_PD	ETH[MII/RMII)/ FMC[NAND16)/ OCTOSPI/ SDMMC2/ UART7/9/USB_PD	FMC[NAND16)/ FMC[NORmux)/ FMC[NOR_RAM)/ FMC[SDRAM_16bit) /SDMMC1	DCMI/FMC[NAND16)/ FMC[NORmux)/ FMC[NOR_RAM)/ LPTIM5	LPTIM3/4/5/6/ TIM2/UART5	SYS
Ī		PE0	UART8_RX	FDCAN1_RX	SAI2_MCLK_A	-	FMC_NBL0	DCMI_D2/PSSI_D2	-	EVENTOUT
		PE1	UART8_TX	FDCAN1_TX	-	-	FMC_NBL1	DCMI_D3/PSSI_D3	-	EVENTOUT
		PE2	UART8_TX	OCTOSPI1_IO2	-	ETH_MII_TXD3	FMC_A23	DCMI_D3/PSSI_D3	-	EVENTOUT
	Ī	PE3	-	-	-	-	FMC_A19	-	-	EVENTOUT
	Ī	PE4	-	-	-	-	FMC_A20	DCMI_D4/PSSI_D4	-	EVENTOUT
,	Ī	PE5	-	-	-	-	FMC_A21	DCMI_D6/PSSI_D6	-	EVENTOUT
Ś	Ī	PE6	-	-	SAI2_MCLK_B	-	FMC_A22	DCMI_D7/PSSI_D7	-	EVENTOUT
	Ī	PE7	-	-	OCTOSPI1_IO4	-	FMC_D4/FMC_AD4	-	-	EVENTOUT
J	_	PE8	-	-	OCTOSPI1_IO5	-	FMC_D5/FMC_AD5	-	-	EVENTOUT
i i		PE9	-	-	OCTOSPI1_IO6	-	FMC_D6/FMC_AD6	-	-	EVENTOUT
	Ī	PE10	-	-	OCTOSPI1_IO7	-	FMC_D7/FMC_AD7	-	-	EVENTOUT
	Ī	PE11	-	-	SAI2_SD_B	-	FMC_D8/FMC_AD8	-	-	EVENTOUT
	Ī	PE12	-	-	SAI2_SCK_B	-	FMC_D9/FMC_AD9	-	-	EVENTOUT
	ĺ	PE13	-	-	SAI2_FS_B	-	FMC_D10/ FMC_AD10	-	-	EVENTOUT
	ĺ	PE14	-	-	SAI2_MCLK_B	-	FMC_D11/ FMC_AD11	-	-	EVENTOUT
	ĺ	PE15	-	-	-	-	FMC_D12/ FMC_AD12	-	-	EVENTOUT

3

				-	Table 16. Altern	ate functions AF	8 to AF15 ⁽¹⁾ (contir	iued)		
			AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	I	Port	LPUART1/SAI2 /SDMMC1/SPI6 /UART4/5/8	FDCAN1/2/FMC [NAND16)/FMC [NORmux)/FMC [NOR_RAM)/ OCTOSPI/ SDMMC2/TIM13/14	CRS/FMC[NAND 16)/OCTOSPI/S AI2/SDMMC2/ TIM8/USB_PD	ETH[MII/RMII)/ FMC[NAND16)/ OCTOSPI/ SDMMC2/ UART7/9/USB_PD	FMC[NAND16)/ FMC[NORmux)/ FMC[NOR_RAM)/ FMC[SDRAM_16bit) /SDMMC1	DCMI/FMC[NAND16)/ FMC[NORmux)/ FMC[NOR_RAM)/ LPTIM5	LPTIM3/4/5/6/ TIM2/UART5	SYS
Ī		PF0	-	-	-	-	FMC_A0	LPTIM5_CH1	-	EVENTOUT
		PF1	-	-	-	-	FMC_A1	LPTIM5_CH2	-	EVENTOUT
		PF2	-	-	-	-	FMC_A2	LPTIM5_IN1	-	EVENTOUT
		PF3	-	-	-	-	FMC_A3	LPTIM5_IN2	-	EVENTOUT
		PF4	-	-	-	-	FMC_A4	-	-	EVENTOUT
_		PF5	-	-	-	-	FMC_A5	-	LPTIM3_IN1	EVENTOUT
212		PF6	-	-	OCTOSPI1_IO3	-	-	LPTIM5_CH1	-	EVENTOUT
1228	F	PF7	-	-	OCTOSPI1_IO2	-	-	LPTIM5_CH2	-	EVENTOUT
R R P	F	PF8	-	TIM13_CH1	OCTOSPI1_IO0	-	-	LPTIM5_IN1	-	EVENTOUT
רכ		PF9	-	TIM14_CH1	OCTOSPI1_IO1	-	-	LPTIM5_IN2	-	EVENTOUT
		PF10	-	OCTOSPI1_CLK	-	-	-	DCMI_D11/PSSI_D11	-	EVENTOUT
		PF11	-	OCTOSPI1_NCLK	SAI2_SD_B	-	FMC_NRAS	DCMI_D12/PSSI_D12	LPTIM6_CH1	EVENTOUT
		PF12	-	-	-	-	FMC_A6	-	LPTIM6_CH2	EVENTOUT
		PF13	-	-	-	-	FMC_A7	-	LPTIM6_IN1	EVENTOUT
		PF14	-	-	-	-	FMC_A8	-	LPTIM6_IN2	EVENTOUT
		PF15	-	-	-	-	FMC_A9	-	-	EVENTOUT

117/270

		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	Port	LPUART1/SAI2 /SDMMC1/SPI6 /UART4/5/8	FDCAN1/2/FMC [NAND16)/FMC [NORmux)/FMC [NOR_RAM)/ OCTOSPI/ SDMMC2/TIM13/14	CRS/FMC[NAND 16)/OCTOSPI/S Al2/SDMMC2/ TIM8/USB_PD	ETH[MII/RMII)/ FMC[NAND16)/ OCTOSPI/ SDMMC2/ UART7/9/USB_PD	FMC[NAND16)/ FMC[NORmux)/ FMC[NOR_RAM)/ FMC[SDRAM_16bit) /SDMMC1	DCMI/FMC[NAND16)/ FMC[NORmux)/ FMC[NOR_RAM)/ LPTIM5	LPTIM3/4/5/6/ TIM2/UART5	SYS
	PG0	-	-	-	UART9_RX	FMC_A10	-	LPTIM4_IN1	EVENTO
	PG1	-	-	-	UART9_TX	FMC_A11	-	-	EVENTO
	PG2	-	-	-	-	FMC_A12	-	LPTIM6_ETR	EVENTO
	PG3	-	-	-	-	FMC_A13	LPTIM5_ETR	-	EVENTO
	PG4	-	-	-	-	FMC_A14/FMC_BA0	-	LPTIM4_ETR	EVENTO
	PG5	-	-	-	-	FMC_A15/FMC_BA1	-	-	EVENTO
	PG6	-	-	OCTOSPI1_NCS	UCPD1_FRSTX	FMC_NE3	DCMI_D12/PSSI_D12	-	EVENTO
	PG7	-	-	-	UCPD1_FRSTX	FMC_INT	DCMI_D13/PSSI_D13	-	EVENTO
	PG8	-	-	-	ETH_PPS_OUT	FMC_SDCLK	-	-	EVENTO
G	PG9	-	OCTOSPI1_IO6	SAI2_FS_B	SDMMC2_D0	FMC_NE2/ FMC_NCE	DCMI_VSYNC/ PSSI_RDY	-	EVENTO
	PG10	-	-	SAI2_SD_B	SDMMC2_D1	FMC_NE3	DCMI_D2/PSSI_D2	-	EVENTO
	PG11	-	-	SDMMC2_D2	ETH_MII_TX_EN/ ETH_RMII_TX_EN	-	DCMI_D3/PSSI_D3	-	EVENTO
	PG12	-	-	SDMMC2_D3	ETH_MII_TXD1/ ETH_RMII_TXD1	FMC_NE4	DCMI_D11/PSSI_D11	LPTIM5_CH1	EVENTO
	PG13	-	-	SDMMC2_D6	ETH_MII_TXD0/ ETH_RMII_TXD0	FMC_A24	LPTIM5_CH2	-	EVENTO
	PG14	-	OCTOSPI1_IO7	SDMMC2_D7	ETH_MII_TXD1/ ETH_RMII_TXD1	FMC_A25	LPTIM5_IN1	-	EVENTO
	PG15	-	-	-	-	FMC_NCAS	DCMI_D13/PSSI_D13	-	EVENTC

3

				1	Table 16. Alterna	ate functions AF	8 to AF15 ⁽¹⁾ (contir	iued)		
			AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
	F	Port	LPUART1/SAI2 /SDMMC1/SPI6 /UART4/5/8	FDCAN1/2/FMC [NAND16)/FMC [NORmux)/FMC [NOR_RAM)/ OCTOSPI/ SDMMC2/TIM13/14	CRS/FMC[NAND 16)/OCTOSPI/S AI2/SDMMC2/ TIM8/USB_PD	ETH[MII/RMII)/ FMC[NAND16)/ OCTOSPI/ SDMMC2/ UART7/9/USB_PD	FMC[NAND16)/ FMC[NORmux)/ FMC[NOR_RAM)/ FMC[SDRAM_16bit) /SDMMC1	DCMI/FMC[NAND16)/ FMC[NORmux)/ FMC[NOR_RAM)/ LPTIM5	LPTIM3/4/5/6/ TIM2/UART5	SYS
		PH0	-	-	-	-	-	-	-	EVENTOUT
		PH1	-	-	-	-	-	-	-	EVENTOUT
		PH2	-	OCTOSPI1_IO4	SAI2_SCK_B	ETH_MII_CRS	FMC_SDCKE0	-	-	EVENTOUT
		PH3	-	OCTOSPI1_IO5	SAI2_MCLK_B	ETH_MII_COL	FMC_SDNE0	-	-	EVENTOUT
		PH4	-	-	-	-	-	PSSI_D14	-	EVENTOUT
_		PH5	-	-	-	-	FMC_SDNWE	-	-	EVENTOUT
) 2 2		PH6	-	-	-	ETH_MII_RXD2	FMC_SDNE1	DCMI_D8/PSSI_D8	-	EVENTOUT
1258		PH7	-	-	-	ETH_MII_RXD3	FMC_SDCKE1	DCMI_D9/PSSI_D9	-	EVENTOUT
Dev л	н	PH8	-	-	-	-	-	DCMI_HSYNC/ PSSI_DE	-	EVENTOUT
		PH9	-	-	-	-	-	DCMI_D0/PSSI_D0	-	EVENTOUT
		PH10	-	-	-	-	-	DCMI_D1/PSSI_D1	-	EVENTOUT
		PH11	-	-	-	-	-	DCMI_D2/PSSI_D2	-	EVENTOUT
		PH12	-	-	TIM8_CH4N	-	-	DCMI_D3/PSSI_D3	-	EVENTOUT
		PH13	UART4_TX	FDCAN1_TX	-	-	-	DCMI_D3/PSSI_D3	-	EVENTOUT
		PH14	UART4_RX	FDCAN1_RX	-	-	-	DCMI_D4/PSSI_D4	-	EVENTOUT
		PH15	-	-	-	-	-	DCMI_D11/PSSI_D11	-	EVENTOUT

119/270

		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
I	Port	LPUART1/SAI2 /SDMMC1/SPI6 /UART4/5/8	FDCAN1/2/FMC [NAND16)/FMC [NORmux)/FMC [NOR_RAM)/ OCTOSPI/ SDMMC2/TIM13/14	CRS/FMC[NAND 16)/OCTOSPI/S Al2/SDMMC2/ TIM8/USB_PD	ETH[MII/RMII)/ FMC[NAND16)/ OCTOSPI/ SDMMC2/ UART7/9/USB_PD	FMC[NAND16)/ FMC[NORmux)/ FMC[NOR_RAM)/ FMC[SDRAM_16bit) /SDMMC1	DCMI/FMC[NAND16)/ FMC[NORmux)/ FMC[NOR_RAM)/ LPTIM5	LPTIM3/4/5/6/ TIM2/UART5	SYS
	PI0	-	-	-	-	-	DCMI_D13/PSSI_D13	-	EVENTOUT
	PI1	-	-	-	-	-	DCMI_D8/PSSI_D8	-	EVENTOUT
	Pl2	-	-	-	-	-	DCMI_D9/PSSI_D9	-	EVENTOUT
	PI3	-	-	-	-	-	DCMI_D10/PSSI_D10	-	EVENTOUT
	PI4	-	-	SAI2_MCLK_A	-	-	DCMI_D5/PSSI_D5	-	EVENTOUT
I	PI5	-	-	SAI2_SCK_A	-	-	DCMI_VSYNC/ PSSI_RDY	-	EVENTOUT
	PI6	-	-	SAI2_SD_A	-	-	DCMI_D6/PSSI_D6	-	EVENTOUT
	PI7	-	-	SAI2_FS_A	-	-	DCMI_D7/PSSI_D7	-	EVENTOUT
	PI8	-	-	-	-	-	-	-	EVENTOUT
	PI9	UART4_RX	FDCAN1_RX	-	-	-	-	-	EVENTOUT
	PI10	-	FDCAN1_RX	-	ETH_MII_RX_ER	-	PSSI_D14	-	EVENTOUT
	PI11	-	-	-	-	-	PSSI_D15	-	EVENTOUT

1. Refer to the previous table for AF0 to AF7.

STM32H562xx and STM32H563xx

5

5 Electrical characteristics

5.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

5.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_J = 25$ °C and $T_J = T_{Jmax}$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes, and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

5.1.2 Typical values

Unless otherwise specified, typical data are based on $T_J = 25$ °C, $V_{DD} = V_{DDA} = 3.3$ V (for the 1.71 $\leq V_{DD} \leq 3.6$ V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

5.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

5.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 18*.

5.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 19.

5.1.6 Power supply scheme

Figure 20. Power supply scheme with SMPS

DS14258 Rev 5

Figure 21. Power supply scheme with LDO

Note:

Refer to "Getting started with STM32H5 Series hardware development" (AN5711) for more details.

Caution: Each power supply pair must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to or below the appropriate pins on the underside of the PCB to ensure the good functionality of the device. It is not recommended to remove filtering capacitors to reduce PCB size or cost. This might cause incorrect operation of the device.

5.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 17*, *Table 18*, and *Table 19* may cause permanent damage to the device. These are stress ratings only and the functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Device mission profile (application conditions) is compliant with JEDEC JESD47 Qualification Standard, extended mission profiles are available on demand.

Symbol	Ratings	Min	Мах	Unit
V _{DDx} - V _{SS}	External main supply voltage (including V _{DDSMPS} ⁽²⁾ , V _{DDA} , V _{DDUSB} , V _{DDIO2} ⁽²⁾⁽³⁾⁽⁴⁾ , V _{BAT} , and V _{REF+})	-0.3	4.0	V
V _{DDIOx} ⁽⁴⁾ -	I/O supply when $HSLV^{(2)} = 0$	-0.3	4.0	V
V _{SS}	I/O supply when $HSLV^{(2)} = 1$	-0.3	2.75	
	Input voltage on FT_xxx pins except FT_c pins	V _{SS} - 0.3	min (min(V _{DD} , V _{DDA} , V _{DDUSB} , V _{DDIO2}) + 4.0, 6.0 V) ⁽⁶⁾⁽⁷⁾	V
	Input voltage on FT_t in V _{BAT} mode	V _{SS} - 0.3	$ \begin{array}{l} \mbox{min} \ (\mbox{min}(\mbox{V}_{BAT},\mbox{V}_{DDA},\mbox{V}_{DDUSB}, \\ \mbox{V}_{DDIO2}) + 4.0 \mbox{V}, \ 6.0 \ \mbox{V}) \end{array} $	
V _{IN} ⁽⁵⁾	Input voltage on TT_xx pins	V _{SS} - 0.3	4.0	
	Input voltage on BOOT0 pin	V_{SS}	$\begin{array}{l} \mbox{min} \ (\mbox{min}(\mbox{V}_{\mbox{DD}},\mbox{V}_{\mbox{DD}A},\mbox{V}_{\mbox{DD}USB}, \\ \mbox{V}_{\mbox{DD}IO2}) \ + \ 4.0, \ 6.0 \ \mbox{V}^{(6)} \end{array}$	V
	Input voltage on FT_c pins	V _{SS} - 0.3	5.5	
	Input voltage on any other pins	V _{SS} - 0.3	4.0	
V _{REF+} -V _{DDA}	Allowed voltage difference for $V_{REF+} > V_{DDA}$	-	0.4	
ΔV _{DDx}	Variations between different V _{DDX} power pins of the same domain - 50.0		50.0	mV
V _{SSx} -V _{SS}	Variations between all the different ground pins	_	50.0	

Table 17. Voltage characteristics

1. All main power (VDD, VDDA, VDDUSB, VDDIO2, VREF+, VDDSMPS, VBAT) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range.

2. HSLV = High-speed low-voltage mode. Refer to General-purpose I/Os (GPIO) section of RM0481.

3. If HSLV = 0.

4. V_{DDIO1} or V_{DDIO2} . $V_{DDIO1} = V_{DD}$.

5. V_{IN} maximum must always be respected. Refer to the maximum allowed injected current values.

6. To sustain a voltage higher than 4 V the internal pull-up/pull-down resistors must be disabled.

7. This formula must be applied on power supplies related to the I/O structure described by the pin definition table.

Symbol	Ratings	Мах	Unit
ΣIV_{DD}	Total current into sum of all V_{DD} power lines (source) ⁽¹⁾	350	
ΣIV_{SS}	Total current out of sum of all V_{SS} ground lines (sink) ⁽¹⁾	350	
IV _{DD}	Maximum current into each V _{DD} power pin (source) ⁽¹⁾	100	
IV _{SS}	Maximum current out of each V_{SS} ground pin (sink) ⁽¹⁾	100	
I _{IO(PIN)}	Output current sunk/sourced by any I/O and control pin		mA
ΣI	Total output current sunk by sum of all I/Os and control $pins^{(2)}$	140	
ک ^I IO(PIN)	Total output current sourced by sum of all I/Os and control $pins^{(2)}$	140	
I _{INJ(PIN)} ⁽³⁾⁽⁴⁾	Injected current on FT_xxx, TT_xx, NRST pins	-5 / 0	
∑II _{INJ(PIN)}	Total injected current (sum of all I/Os and control pins) ⁽⁵⁾	±25	

Table 18. Current characteristics

1. All main power (VDD, VDDA, VDDIO2, and VBAT) and ground (VSS, VSSA) pins must always be connected to the external power supplies, in the allowed range.

 This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.

3. Positive injection (when $V_{IN} > V_{DDIOx}$) is not possible on these I/Os, and does not occur for input voltages lower than the specified maximum value.

4. A negative injection is induced by V_{IN} < V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 17* for the minimum allowed input voltage values.

 When several inputs are submitted to a current injection, the maximum ∑|I_{INJ(PIN)}| is the absolute sum of the negative injected currents (instantaneous values).

Symbol	Ratings	Value	Unit				
T _{STG}	Storage temperature range	-65 to +150	°C				
ТJ	Maximum junction temperature	130 ⁽¹⁾	°C				

Table 19. Thermal characteristics

1. The junction temperature is limited to 105 °C in the VOS0 voltage range.

5.3 Operating conditions

5.3.1 General operating conditions

Table 20. General operating conditions	Table 2	20. General	operating	conditions
--	---------	-------------	-----------	------------

Symbol	Parameter	Operating conditions	Min	Тур	Мах	Unit
V	Standard operating	$HSLV^{(1)} = 0$	1.71 ⁽²⁾	-	3.6	V
voltage		HSLV ⁽¹⁾ = 1	1.71 ⁽²⁾	-	2.7	v
V _{DDSMPS}	Supply voltage for the internal SMPS step-down converter	V _{DD}	V _{DD}	-	V _{DD}	V

Symbol	Parameter	Operating conditions	Min	Тур	Max	Unit
		At least one I/O in PB8, PB9, PD6, PD7, PG[9:14] is used, $HSLV^{(1)} = 0$	1.08	-	3.6	
V _{DDIO2}	PG[9:14] I/Os supply voltage	At least one I/O in PB8, PB9, PD6, PD7, PG[9:14] is used, $HSLV^{(1)} = 1$	1.08	-	2.7	V
		PB8, PB9, PD6, PD7, PG[9:14] are not used	0		3.6	
V		USB is used	3.0	-	3.6	V
V DDUSB	USB supply voltage	USB is not used	0	-	3.6	v
		ADC is used	1.62	-		
V		DAC is used	1.8	-	26	V
V DDA	Analog supply vollage	VREFBUF is used	2.1	-	5.0	v
		ADC, DAC, and VREFBUF are not used	0	-		
V _{BAT}	Backup domain supply voltage	-	1.2	-	3.6	V
		All I/Os except FT_c and TT_xx	-0.3	-	$\begin{array}{c} \text{min (min} \\ (V_{DD}, \\ V_{DDA}, \\ V_{DDUSB}, \\ V_{DDIO2}) \\ + 3.6V, \\ 5.5 \ V) \\ (3)(4) \end{array}$	
V _{IN}	I/O input voltage	Input voltage on FT_t in VBAT mode	-0.3	-	$\begin{array}{c} \text{min (min} \\ (V_{BAT}, \\ V_{DDA}, \\ V_{DDUSB}, \\ V_{DDIO2}) \\ + 3.6 \text{ V}, \\ 5.5 \text{ V}) \\ (3)(4) \end{array}$	V
		FT_c I/O	-0.3	-	5.0	
		TT_xx I/O	-0.3	-	V _{DDIOx} + 0.3	

Table 20	General	onerating	conditions	(continued)	١
Table 20.	General	operating	contaitions	(continueu))

Symbol	Parameter	Operating conditions		Тур	Мах	Unit
		VOS0 ⁽⁵⁾ (max frequency for AHB and APB: 250 MHz)	1.30	1.35	1.40	
		VOS1 (max frequency for AHB and APB: 200 MHz)	1.15	1.20	1.26	V
		VOS2 (max frequency for AHB and APB: 150 MHz)	1.05	1.10	1.15	v
		VOS3 (max frequency for AHB and APB: 100 MHz)	0.95	1.00	1.05	
V _{CORE}	Regulator OFF:	VOS0 ⁽⁵⁾	1.32	1.35	1.40	
	external V _{CORE} voltage	VOS1	1.17	1.20	1.26	V
	external regulator on	VOS2	1.07	1.10	1.15	v
	VCAP pins	VOS3	0.97	1.00	1.05	
	Stop mode	SVOS3	-	1.0	-	
Stop mode		SVOS4	-	0.9	-	V
	SVOS5	-	0.74	-		
	HCLK AHB clock frequency	VOS0 ⁽⁵⁾	-	-	250	– MHz
fHCLK		VOS1	-	-	200	
		VOS2	-	-	150	
		VOS3	-	-	100	
		VOS0 ⁽⁵⁾	-	-	250	
f _{PCI Kx}	APB1, APB2, APB3	VOS1	-	-	200	N 41 1-
(x=1,2,3)	2,3) clock frequency	VOS2	-	-	150	MHZ
		VOS3	-	-	100	
		LQFP64	See Ta	<i>ble 140</i> f	or	
P _D		LQFP100	approp resistar	riate ther	mal backage	
		LQFP144	Power	dissipatio	on is	
	Power dissipation at $T_A = 85 \text{ or } 105 ^{\circ}\text{C}$	LQFP176	calculat	ted acco t temper	rding to ature	
	for suffix 6 or 7	UFBGA169	(T _A), m	aximum	junction	mvv
		UFBGA176	selecte	d therma), and al	
		VFQFPN68	resistar	nce.		
		WLCSP80				

Table 20. General operating conditions (continued)

Symbol	Parameter	Operating conditions	Min	Тур	Max	Unit	
Power P _D T _A = 12 for suffi		LQFP100	See Table 140 for				
		LQFP144	resistance and package.				
	Power dissipation at	LQFP176	Power of calculat	Power dissipation is calculated according to		m\\/	
	for suffix 3 version ⁽⁶⁾	UFBGA169	ambien (T₄), m	t temper aximum	ature junction	11174	
		UFBGA176	temperature (T_J) , and selected thermal				
		WLCSP80	resistar	nce.	41		
	Ambient temperature for the suffix 3 version	Maximum power dissipation	-40	-	125		
	T _A Ambient temperature for the suffix 6 version Ambient temperature for the suffix 7 version	Maximum power dissipation	-40	-	85		
T _A		In LDO bypass mode	-40	-	125	°C	
		Maximum power dissipation	-40	-	105		
		In LDO bypass mode	-40	-	125		
т	Junction temperature	VOS0	-40	-	105	°C	
Τ _J	Тј	range	VOS1, VOS2, and VOS3	-40	-	130	

Table 20.	General	operating	conditions	(continued)
	Conorai	oporating	oonantiono	loonanaoa

1. HSLV = High-speed low-voltage mode. Refer to General-purpose I/Os (GPIO) section of RM0481.

2. When RESET is released functionality is guaranteed down to BOR level 0 minimum voltage.

3. This formula must be applied on power supplies related to the I/O structure described by the pin definition table. Maximum I/O input voltage is the smallest value between min (V_{DD} , V_{DDA} , V_{DDIO2}) + 3.6 V and 5.5 V.

4. For operation with voltages higher than min (V_{DD}, V_{DDA}, V_{DDIO2}) + 0.3V, the internal pull-up and pull-down resistors must be disabled.

5. In VOS0 mode the max T_J is 105 °C.

6. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} (see *Table 19*).

Table 21. Maximu	im allowed cl	lock frequencies
------------------	---------------	------------------

Symbol ⁽¹⁾⁽²⁾	Parameter	VOS0	VOS1	VOS2	VOS3	Unit
f _{CPU}	CPU	250	200	150	100	
f _{HCLK}	АНВ	250	200	150	100	
f _{PCLK}	APB	250	200	150	100	
-	FMC	250	200	150	100	
f _{octospi_ker_ck}	OCTOSPI[1:2]	250	200	150	100	
f _{sdmmc_ker_ck}	SDMMC[1:2]	250	200	150	100	MHz
-	HDMI_CEC	4	4	4	4	
f _{fdcan_ker_ck}	FDCAN	250	200	150	100	
f _{l2C_ker_ck}	I2C[1:4]	250	200	150	100	
f _{I3C_ker_ck}	13C	250	200	150	100	
f _{lptim_ker_ck}	LPTIM[1:6]	250	200	150	100	

Symbol ⁽¹⁾⁽²⁾	Parameter	VOS0	VOS1	VOS2	VOS3	Unit
f	TIM[1:8], TIM[12:17]	250	200	150	100	
¹ tim_ker_ck	TIM6/17	64	64	64	64	
f _{rng_clk}	RNG	50	50	50	50	
f _{sai_a_ker_ck}	SAI1/2	250	200	150	100	
f _{sai_b_ker_ck}	SAINZ	200	200	150	100	
f	SPI(I2S)1,2,3	125	100	75	50	
^I spi_ker_ck	SPI4,5,6	125	100	75	50	
f _{lpuart_ker_ck}	LPUART1	250	200	150	100	
f _{usart_ker_ck}	USART/UART	250	200	150	100	MHz
f _{usb_ker_ck}	USB FS	50	50	50	50	
fadc_ker_ck_input	ADC	250	200	150	100	
f _{adc_ker_ck} ⁽³⁾	ADC	125	100	75	50	
f _{dac_ker_ck}	DAC	250	200	150	100	1
f _{ucpd_ker_ck}	USBPD	64	64	64	64	1
f _{rtc_ker_ck}	RTC	1	1	1	1	1
-	DCMI	250	200	150	100]

Table 21. Maximum allowed clock frequencies (continued)

1. Specified by design - Not tested in production.

2. The maximum kernel clock frequencies can be limited by the maximum peripheral clock frequency (refer to each peripheral electrical characteristics).

3. This maximum kernel clock frequency does not consider the maximum ADC clock frequency (refer to *Table 95*).

5.3.2 VCAP external capacitor

The stabilization for the embedded LDO regulator is achieved by connecting an external capacitor C_{EXT} (whose value is specified in *Table 22*) to the VCAPx (one or two pins, depending upon the package). Two external capacitors must be connected to VCAP pins (refer to AN5711 "*STM32H5 Series hardware development*").

Symbol	Parameter	Conditions
C _{EXT}	External capacitor for LDO enabled	2.2 μF ⁽¹⁾
ESR	Equivalent series resistance of the external capacitor	< 100 mΩ

Table 22. Supply voltage and maximum frequency configuration

1. This value corresponds to C_{EXT} typical value. A variation of ±20% is tolerated

5.3.3 SMPS step-down converter

The devices embed a high power efficiency SMPS step-down converter requiring external components.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C.	Capacitance of external capacitor on VDDSMPS pins	-	-	4.7 ⁽¹⁾	-	μF
C _{in}	ESR of external capacitor	2.4 MHz	-	-	10	mΩ
C _{filt}	Capacitance of external capacitor on VLXSMPS pin	-	-	220	-	pF
C	Capacitance of external capacitor on VCAP pin	-	-	10 ⁽¹⁾	-	μF
COUT	ESR of external capacitor	2.4 MHz	-		20	mΩ
	Inductance of external inductor on VLXSMPS pin	-	-	2.2 ⁽¹⁾	-	μH
L		All packages	-	-	150	
	Series DC resistance	WLCSP80 package, V _{DDSMPS} > 3 V	-	-	300	mΩ
I _{SAT}	DC current at which the inductance drops 30% from the value without current	-	1	-	-	^
I _{RMS}	Average current for which the temperature of the inductor is raised 40 °C by the DC current	-	1	-	-	

Table 23. Characteristics of SMPS step-down converter external components

1. Tolerance: -50% and + 30% for all conditions.

The SMPS current consumption can be determined using the following formula based on the maximum LDO current consumption provided in *Section 5.3.7*:

$I_{DDSMPS} = I_{DDLDO} \times V_{CORE} / (V_{DD} \times efficiency)$

 I_{DDLDO} is the current in LDO configuration given in the following tables, V_{CORE} is the digital core supply (VCAP), and efficiency is defined in the following curves.

Figure 23. SMPS efficiency versus load current in Run, Sleep, and Stop modes with SVOS3 mode, T_J = 30 °C

Note:

SVOS3 is equivalent to VOS3 in Run and Sleep modes.

SVOS3 is equivalent to VOS3 in Run and Sleep modes.

Figure 25. SMPS efficiency versus load current in stop SVOV4, SVOS5, T_J = 30 °C

Figure 26. SMPS efficiency versus load current in stop SVOV4, SVOS5, T_J = 130 °C

5.3.4 Operating conditions at power-up/down

Subject to general operating conditions for T_A .

Symbol	Parameter	Min	Max	Unit
т	V _{DD} rise time rate	0	8	
I VDD	V _{DD} fall time rate	10	8	
т	V _{DDA} rise time rate	0	∞	
VDDA	V _{DDA} fall time rate	10	∞	
т	T _{VDDUSB} rise time rate	0	8	ue//
' VDDUSB	T _{VDDUSB} fall time rate	10	8	μ5/ν
т	T _{VDDIO2} rise time rate	0	8	
VDDIO2	T _{VDDIO2} fall time rate	10	8	
т	T _{VBAT} rise time rate	0	8	
' VBAT	T _{VBAT} fall time rate	10	∞	

5.3.5 Embedded reset and power control block characteristics

The parameters given in *Table 25* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 20*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{RSTTEMPO} ⁽²⁾	Reset temporization after BOR0 detection	V _{DD} rising	-	377	550	μs
M	Power-on/down reset threshold	Rising edge	1.62	1.67	1.71	V
¥ POR/PDR	(BORH_EN =0)	Falling edge	1.58	1.62	1.68	v
M	Brownout reset threshold 1	Rising edge	2.04	2.10	2.15	
VBOR1	(BORH_EN =1)	Falling edge	1.95	2.00	2.06	
M	Brownout reset threshold 2	Rising edge	2.34	2.41	2.47	V
VBOR2	(BORH_EN =1)	Falling edge	2.25	2.31	2.37	v
M	Brownout reset threshold 3	Rising edge	2.63	2.70	2.78	
V _{BOR3} (BORH_EN =1)		Falling edge	2.54	2.61	2.68	

Table 25. Embedded reset and power control block characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
Ň		Rising edge	1.90	1.96	2.01		
V _{PVD0}		Falling edge	1.81	1.86	1.91		
N		Rising edge	2.05	2.10	2.16		
V _{PVD1}		Falling edge	1.96	2.01	2.06		
V	PVD throshold 2	Rising edge	2.19	2.26	2.32		
VPVD2		Falling edge	2.10	2.15	2.21		
V	PVD throshold 3	Rising edge	2.35	2.41	2.47	V	
V PVD3		Falling edge	2.25	2.31	2.37	v	
V	PVD threshold 4	Rising edge	2.49	2.56	2.62		
♥ PVD4		Falling edge	2.39	2.45	2.51		
	PVD throshold 5	Rising edge	2.64	2.71	2.78		
▼PVD5		Falling edge	2.55	2.61	2.68		
	PVD threshold 6	Rising edge	2.78	2.86	.86 2.94		
▼PVD6		Falling edge	2.69	2.76	2.83		
V _{POR/PDR}	Hysteresis for power-on/down reset	Hysteresis in Run mode	-	43	-		
V _{hyst_BOR_PVD}	Hysteresis voltage of BOR (unless BORH_EN = 0) and PVD	-	-	100	-	mV	
I _{DD_BOR_PVD} ⁽²⁾	BOR and PVD consumption from V_{DD}	-	-	-	0.630		
IDD_POR_PDR	POR and PDR consumption from V_{DD}	-	0.8	-	1.2	μΑ	
V	V voltage monitor 0 threshold	Rising edge	1.66	1.71	1.76		
▼AVD0	V _{DDA} voltage monitor o timeshold	Falling edge	1.56	1.61	1.66		
V	V	Rising edge	2.06	2.12	2.19		
▼AVD1	VDDA voltage monitor runeshold	Falling edge	1.96	2.02	2.08	V	
Varia	V	Rising edge	2.42	2.50	2.58	v	
VAVD2	V _{DDA} voltage monitor 2 timeshold	Falling edge	2.35	2.42	2.49		
V	V voltage monitor 3 threshold	Rising edge	2.74	2.83	2.91		
VAVD3	V _{DDA} voltage monitor 5 timeshold	Falling edge	2.64	2.72	2.80		
V _{IO2VM}	V _{DDIO2} voltage monitor threshold	-	-	0.9	-	V	
V _{hyst_AVD}	Hysteresis of V _{DDA} voltage monitor	-	-	100	-	mV	
I _{DD_AVD_IO2VM} ⁽²⁾	Power voltage detector consumption from V_{DD} (AVD, IO2VM)	-	-	-	0.25		
I _{DD_AVD_A} ⁽²⁾	Analog voltage detector consumption from V _{DDA} (resistor bridge)	-	-	-	0.25	μΑ	

 Table 25. Embedded reset and power control block characteristics⁽¹⁾ (continued)

1. Evaluated by characterization and not tested in production, unless otherwise specified.

2. Specified by design - Not tested in production

5.3.6 Embedded reference voltage

The parameters given in *Table 26* are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 20*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT} ⁽¹⁾	Internal reference voltage	-40 °C < T _J < +130 °C	1.180	1.216	1.255	V
t _{S_vrefint} ⁽²⁾⁽³⁾	ADC sampling time when reading the internal reference voltage	-	4.3	-	-	
t _{S_vbat}	V _{BAT} sampling time when reading the internal V _{BAT} voltage		9	-	-	μs
t _{start_vrefint} ⁽³⁾	Start time of reference voltage buffer when the ADC is enabled	-	-	-	4.4	
I _{refbuf} ⁽³⁾	Reference buffer consumption for ADC	V _{DD} = 3.3 V	9	13.5	23	μA
ΔV _{REFINT} ⁽³⁾	Internal reference voltage spread over the temperature range	-40 °C < T _J < +130 °C	-	5	15	mV
T _{Coeff}	Average temperature coefficient	Average temperature coefficient	-	20	70	ppm/°C
V _{DDcoeff}	Average voltage coefficient	3.0 V < V _{DD} < 3.6 V	-	10	1370	ppm/V
V _{REFINT_DIV1} ⁽³⁾	1/4 reference voltage		-	25	-	
V _{REFINT_DIV2} ⁽³⁾	1/2 reference voltage	-	-	50	-	%V _{REFINT}
V _{REFINT_DIV3} ⁽³⁾	3/4 reference voltage		-	75	-	

Table 26. Embedded reference vol

1. V_{REFINT} does not take into account package and soldering effects.

2. The shortest sampling time for the application can be determined by multiple iterations.

3. Specified by design - Not tested in production.

Table 27. I	nternal reference	e voltage calil	bration value
-------------	-------------------	-----------------	---------------

Symbol	Parameter	Memory address
V _{REFINT_CAL}	Raw data acquired at 30 °C, V_{DDA} = 3.3 V	0x08FF F810 - 0x08FF F811

5.3.7 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

All the run-mode current consumption measurements given in this section are performed with a CoreMark code.

Typical and maximum current consumption

The MCU is placed under the following conditions:

• All I/O pins are in analog input mode.

- All peripherals are disabled except when explicitly mentioned.
- The flash memory access time is adjusted with the minimum wait-state number, depending on the f_{HCLK} frequency (refer to the tables "FLASH recommended number of wait states and programming delay" available in the reference manual).
- When the peripherals are enabled, the AHB clock frequency is the CPU frequency and the APB clock frequency is AHB frequency.

The parameters given in the following tables are derived from tests performed under supply voltage conditions summarized in *Table 20*, and, unless otherwise specified, at ambient temperature.

The maximum current consumption is given for LDO regulator ON.

Table 28. Typical and maximum current consumption in Run mode, code with data processingrunning from flash memory, 2-way instruction cache ON, PREFETCH ON

Symbol		Conditions		fuerr	Tvn	Тур					
Symbol	Parameter	Conditior	IS	(MHz)	LDO	SMPS	Т _Ј = 25 °С	T _J = 85 ℃	T _J = 105 °C	T _J = 130 ℃	Unit
				250	32.1	17.5	37	65	87	-	
			VOS0	215	27.9	15.0	32	60	82	-	
				200	25.7	13.8	30	59	81	-	
				200	22.1	11.0	25	45	62	93	
			VOS1	180	20.3	10.1	23	43	59	90	
		All peripherals	VOOT	168	18.8	9.3	21	42	58	89	
		disabled		150	16.9	8.5	20	40	56	88	
			VOS2	150	15.4	7.4	17	33	47	73	
	Current coursest		VU52	100	10.8	5.2	13	28	41	68	
			VOS3	100	9.8	4.5	11	23	34	55	
				60	6.4	3.0	8.0	20	30	52	
I _{DD(Run)}	in Run mode			25	3.2	1.7	5.0	17	27	49	mA
				250	86.8	49.8	90	118	140	-	
			VOS0	215	75.0	43.2	78	107	128	-	
				200	69.5	40.1	72	102	123	-	
				200	60.7	31.7	62	82	99	130	
			VOS1	180	55.1	28.5	56	76	92	124	
		All peripherals enabled		150	45.8	23.4	47	68	84	116	
			VOS2	150	41.9	20.0	43	59	72	98	
			V002	100	28.5	13.8	30	45	58	85	
				100	25.9	11.7	27	39	49	71	
		v	VOS3	60	16.2	7.5	17	29	40	61	
				25	7.5	3.8	9.0	21	31	53	

- 1. Evaluated by characterization Not tested in production.
- 2. The maximum values are given for LDO regulator ON. Refer to Section 5.3.3 for the SMPS maximum current consumption.

Table 2	Table 29. Typical and maximum current consumption in Run mode, code with data processing running from flash memory, 1-way instruction cache ON, PREFETCH ON											
						Max ⁽¹⁾⁽²⁾						

	Parameter			f	Typ	Тур					
Symbol	Parameter	Condition	าร	'HCLK (MHz)	LDO	SMPS	Т _Ј = 25 °С	Т _Ј = 85 °С	T _J = 105 °C	T _J = 130 °C	Unit
			VOSO	250	29.2	15.9	34	62	84	-	
			V030	200	23.3	12.5	28	56	78	-	
	Supply current			200	20.1	10.0	23	43	59	91	
			VOS1	180	18.5	9.2	21	41	57	89	
I _{DD(Run)}		All peripherals disabled		150	15.4	7.8	18	38	54	86	mA
			VOS2	150	14.0	6.7	16	32	45	71	
				100	9.8	4.8	12	27	40	67	
			VOS3	100	8.9	4.2	10	22	33	54	
			v033	25	3.0	1.6	4.0	17	27	49	

1. Evaluated by characterization - Not tested in production.

2. The maximum values are given for LDO regulator ON. Refer to Section 5.3.3 for the SMPS maximum current consumption.

Table 30. Typical and maximum current consumption in Run mode, code with data processing
running from SRAM with cache 1-way

				£	Turn	Тур					
Symb	Parameter	Condition	าร	^I HCLK (MHz)	LDO	SMPS	Т _Ј = 25 °С	Т _Ј = 85 °С	Т _Ј = 105 °С	T _J = 130 °C	Unit
				250	27.8	15.5	32	61	82	-	
			VOS0	215	24.1	13.4	29	57	79	-	
		All peripherals		200	22.1	12.3	27	55	77	-	
				200	19.1	9.9	22	42	58	90	
			VOS1	180	17.6	9.1	20	40	56	88	
I _{DD}	Supply current in Run mode			150	14.6	7.6	22	42	58	90	mA
(IXUII)			VOS2	150	13.3	6.6	17	37	53	85	
			V032	100	9.4	4.7	11	27	40	66	
				100	8.5	4.1	10	22	33	54	
			VOS3	60	5.6	2.8	7	19	30	51	
				25	2.9	1.6	4	16	27	48	

1. Evaluated by characterization - Not tested in production.

2. The maximum values are given for LDO regulator ON. Refer to Section 5.3.3 for the SMPS maximum current consumption.

Symbol		Conditions		4	Тур	Тур					
Symbol	Parameter			'HCLK (MHz)	LDO	SMPS	Т _Ј = 25 °С	T _J = 85 ℃	T _J = 105 °C	Т _Ј = 130 °С	Unit
				250	30.8	17.2	35	64	86	-	
			VOS0	215	26.7	14.4	31	60	81	-	
				200	24.6	13.3	29	58	80	-	
				200	21.2	10.5	24	44	61	93	
			VOS1	180	19.5	9.7	22	42	58	90	
	Supply current	All peripherals		168	18.0	9.0	21	41	57	89	mA
'DD(Run)	in Run mode	disabled		150	16.2	8.4	19	39	55	87	
			VOS2	150	14.8	7.2	17	33	46	72	
			VU32	100	10.3	5.1	12	28	41	67	1
				100	9.4	4.5	11	23	33	55	
			VOS3	60	6.1	2.9	8.0	20	30	52	1
				25	3.2	1.7	5.0	17	27	49	

Table 31. Typical and maximum current consumption in Run mode, code with data processingrunning from SRAM with cache 2-way

1. Evaluated by characterization - Not tested in production.

2. The maximum values are given for LDO regulator ON. Refer to Section 5.3.3 for the SMPS maximum current consumption.

Symbol	Parameter	Conditions	S	f _{HCLK}	Тур	Тур	Unit	Тур	Тур	Unit				
Symbol	Farameter	Peripheral	Code	(MHz)	LDO	SMPS	Unit	LDO	SMPS	Unit				
				250	32.1	17.5		128.6	70.1					
		All peripherals disabled.		200	22.1	10.97		110.7	54.8					
		instruction cache	FLASH	168	18.8	9.3		111.8	55.6					
		2-way, prefetch ON		150	15.4	8.5		102.7	56.9					
				100	9.8	4.5		97.9	45.3					
		All peripherals disabled, instruction cache 1-way, prefetch ON	FLASH	250	29.2	15.9		116.6	63.8					
	Supply current in Run mode			200	20.1	12.5		100.4	62.7					
				150	14.0	10.0		93.3	66.4					
				100	8.9	4.2	m۸	88.9	41.7					
^I DD(Run)				250	30.8	17.2	ШA	123.3	68.7	- μΑνΜΗΖ - -				
		All peripherals		200	21.2	10.5		106.2	52.6					
		disabled, instruction cache	SRAM	168	18.0	9.0		107.3	53.4					
		2-way		150	14.8	7.2		98.5	48.2					
				100	9.4	4.5		94.1	44.6					
		All peripherale		250	27.8	15.5		111.1	61.9					
		disabled,	SRAM -	200	19.1	9.9		95.4	49.3					
		instruction cache		150	13.3	6.6		88.9	43.8	1				
	1	1-way		100	8.5	4.1		84.9	40.7					

Table 32. Typical consumption in Run mode with CoreMark runningfrom flash memory and SRAM⁽¹⁾

1. Evaluated by characterization - Not tested in production.

Symbol	Baramotor	Conditions		f _{HCLK}	Тур	Тур	Unit	Тур	Тур	Unit
Symbol	Farameter	Peripheral	Code	(MHz)	LDO	SMPS	Unit	LDO	SMPS	onic
				250	34.1	17.9		136.3	71.8	
		All peripherals disabled.		180	21.8	10.6		120.9	58.8	
		instruction cache 2-way, prefetch ON	FLASH	168	20.1	9.8		119.7	58.5	
	Supply			150	24.9	7.7		166.2	51.2	
				100	10.6	4.8	m۸	106.0	47.6	μΑ/MHz
^I DD(Run)	Run mode	All peripherals disabled, instruction cache 1-way, prefetch ON		250	31.3	16.6	ШA	125.2	66.3	
			FLASH	180	20.1	9.8		111.6	54.5	
				168	18.5	9.1		110.4	54.2	
				150	18.8	7.2		125.1	47.7	
				100	9.8	4.5	98.3		44.5	

Table 33. Typical consumption in Run mode with SecureMark running from flash memory and $\mbox{SRAM}^{(1)}$

1. Evaluated by characterization - Not tested in production.

		Conditions		£	Тур	Тур					
Symbol	Parameter	Condition	IS	'HCLK (MHz)	LDO	SMPS	Т _Ј = 25°С	Т _Ј = 85°С	T _J = 105°C	Т _Ј = 130°С	Unit
			VOSO	250	7.3	4.2	12	40	61	-	
			VU30	200	5.8	3.3	10	38	60	-	
				200	4.8	2.6	8	27	43	75	
			VOS1	180	4.8	2.6	8	27	43	75	
	Supply current	All peripherals		168	4.3	2.3	7	26	42	74	m 4
DD(sleep)	in sleep mode	disabled		150	3.9	2.2	7	26	42	74	ШA
			1000	150	3.5	1.9	6	21	34	60	r
			VU32	100	2.8	1.6	5	20	33	59	
			VOS2	100	2.5	1.4	4	16	26	48	
			v033	60	2.0	1.2	4	15	26	47	

Table 34. Typical and maximum current consumption in Sleep mode

1. Evaluated by characterization - Not tested in production.

2. The maximum values are given for LDO regulator ON. Refer to Section 5.3.3 for the SMPS maximum current consumption.

		Conditions		Тур	Тур		Unit			
Symbol	Parameter	Conditions		LDO	SMPS	Т _Ј = 25 °С	T _J = 85 ℃	T _J = 105 °C	T _J = 130 °C	Unit
		Flash memory in	SVOS3	0.37	0.09	2.00	13.98	24.00	44.39	
		low power mode,	SVOS4	0.27	0.07	1.40	10.48	18.37	34.76	
	Supply surrent	SRAMS ON	SVOS5	0.19	0.06	0.86	7.08	12.88	25.31	
		Flash memory in	SVOS3	0.38	0.10	2.02	14.01	24.06	44.55	
		normal mode, SRAMs ON	SVOS4	0.29	0.09	1.42	10.52	18.46	34.88	
I _{DD(stop)}	in Stop	Flash memory in	SVOS3	0.34	0.09	1.93	13.28	22.75	41.99	mA
		low power mode, SRAMs OFF except	SVOS4	0.25	0.07	1.35	9.87	17.33	32.65	
		SRAM2 16 Kbytes ON	SVOS5	0.17	0.05	0.81	6.46	11.68	22.86	
		Flash memory in	SVOS3	0.35	0.10	1.95	13.45	23.02	42.52	
		low power mode, SRAMs OFF except	SVOS4	0.26	0.08	1.36	10.01	17.52	33.10	
		SRAM2 ON	SVOS5	0.17	0.08	0.82	6.59	11.92	23.37	

Table 35. Typical and maximum current consumption in Stop mode

1. Evaluated by characterization - Not tested in production.

2. The maximum values are given for LDO regulator ON. Refer to Section 5.3.3 for the SMPS maximum current consumption.

Symbol		Cond	litions		Typ ⁽¹⁾				Max ⁽¹⁾					
Symbol	Parameter	Backup RAM	RTC and LSE ⁽²⁾	1.8 V	2.4 V	3 V	3.3 V	Т _Ј = 25 °С	Т _Ј = 85 °С	T _J = 105 °C	T _J = 130 °C	Unit		
	Supply	OFF	OFF	2.58	2.78	3.01	3.19	5.9	11.7	21.2	53			
1	current in standby mode, IWDG OFF	ON	OFF	3.79	4.05	4.38	4.63	8.2	21.0	37.0	90			
IDD(standby)		OFF	ON	2.91	3.15	3.47	3.67	6.9	12.9	22.5	55	μΑ		
		ON	ON	4.16	4.46	4.85	5.12	9.2	22.2	38.3	92			

Table 36. Typical and maximum current consumption in Standby mode

1. Evaluated by characterization - Not tested in production.

2. LSE is in medium-low drive mode.

	Parameter -	Cond		Ту	/p		Мах					
Symbol		Backup RAM	RTC and LSE ⁽²⁾	1.8 V	2.4 V	3 V	3.3 V	Т _Ј = 25 °С	Т _Ј = 85 °С	T _J = 105 °C	T _J = 130 °C	Unit
I _{DD(VBAT)}	Supply current in V _{BAT} mode	OFF	OFF	0.01	0.01	0.02	0.02	0.2	2.45	6.2	19.0	
		ON	OFF	1.11	1.14	1.17	1.29	4.5	16.05	30.0	72.2	
		OFF	ON	0.45	0.46	0.48	0.59	1.2	3.65	7.5	21.0	μΑ
		ON	ON	1.56	1.57	1.62	1.84	5.5	17.25	31.3	74.2	

Table 37. Typical and maximum current consumption in V_{BAT} mode⁽¹⁾

1. Evaluated by characterization - Not tested in production.

2. LSE is in medium-low drive mode.

I/O system current consumption

All the I/Os used as inputs with pull-up generate a current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 58*.

To estimate the current consumption for the output pins, consider also external pull-downs or loads.

An additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this current consumption can be avoided by configuring the I/Os in analog mode. This is notably the case of ADC input pins, to be configured as analog inputs.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid a current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done by using pull-up/down resistors, or by configuring the pins in output mode.

In addition to the internal peripheral current consumption, the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DDx} \times f_{SW} \times C_{L}$$

where

 I_{SW} is the current sunk by a switching I/O to charge/discharge the capacitive load V_{DDx} is the MCU supply voltage

f_{SW} is the I/O switching frequency

 C_L is the total capacitance seen by the I/O pin: C = C_{INT} + C_{EXT} + C_S

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

On-chip peripheral current consumption

The MCU is placed under the following conditions:

- At startup, all I/O pins are in analog input configuration
- All peripherals are disabled unless otherwise mentioned
- The I/O compensation cell is enabled
- f_{HCLK} is the CPU clock, f_{PCLK} = f_{rcc_cpu_ck}, and f_{HCLK} = f_{rcc_cpu_ck}.

The given value is calculated by measuring the difference of current consumption:

- with all peripherals clocked off
- with only one peripheral clocked on
- f_{rcc_cpu_ck} = 250 MHz (Scale 0), f_{rcc_cpu_ck} = 200 MHz (Scale 1), f_{rcc_cpu_ck} = 150 MHz (Scale 2), f_{rcc_cpu_ck} = 100 MHz (Scale 3)
- the ambient operating temperature is 25 °C and V_{DD} = 3.0 V

Bus	Peripheral	I _{DD} (typ)				Unit
		VOS0	VOS1	VOS2	VOS3	Unit
AHB1	SRAM1	0.9	0.85	0.78	0.7	μA/MHz
	BKPRAM	0.95	0.89	0.82	0.74	
	CORDIC	0.5	0.45	0.42	0.4	
	CRC	0.22	0.21	0.18	0.18	
	DCACHE	0.66	0.59	0.55	0.51	
	ETH	11.33	10	9.13	8.32	
	FLASH	10.19	8.87	8.09	7.35	
	FMAC	2.07	1.84	1.68	1.56	
	GPDMA1	0.62	0.55	0.51	0.45	
	GPDMA2	0.45	0.43	0.38	0.35	
	GTZC1	1.19	1.05	0.97	0.9	
	ICACHE	0.86	0.81	0.75	0.67	
	RAMCFG	0.88	0.79	0.71	0.67	
	AHB1	1.09	0.94	0.86	0.79	

Table 38. Peripheral current consumption in Sleep mode

Bus	Peripheral	I _{DD} (typ)				11::4
		VOS0	VOS1	VOS2	VOS3	Unit
AHB2	ADC12	2.35	2.1	1.9	1.74	µA/MHz
	DAC1	1.35	1.19	1.07	0.98	
	DCMI	3.49	3.09	2.83	2.55	
	GPIOA	0.1	0.08	0.07	0.08	
	GPIOB	0.07	0.06	0.05	0.05	
	GPIOC	0.08	0.05	0.04	0.04	
	GPIOD	0.09	0.06	0.05	0.04	
	GPIOE	0.09	0.09	0.08	0.05	
	GPIOF	0.06	0.08	0.08	0.05	
	GPIOG	0.07	0.07	0.06	0.04	
	GPIOH	0.07	0.07	0.05	0.06	
	GPIOI	0.07	0.07	0.06	0.04	
	HASH1	1.37	1.2	1.1	1	
	PKA	5.43	4.78	4.37	3.98	
	RNG1	1.12	0.99	0.9	0.82	
	SRAM2	1.33	1.18	1.06	0.96	
	SRAM3	1.5	1.33	1.22	1.1	
	AHB2	1.59	1.39	1.29	1.16	
AHB4	FMC	9.73	8.48	7.69	6.95	uA/MHz
	OSPI1	2.88	2.54	2.29	2.08	
	SDMMC1	8.71	7.64	6.98	6.36	
	SDMMC2	8.46	7.45	6.82	6.2	
	AHB4	0.36	0.32	0.32	0.28	

 Table 38. Peripheral current consumption in Sleep mode (continued)

Due	Basinkanal		I _{DD}	(typ)		,
Bus	renpilerai	VOS0	VOS1	VOS2	VOS3	Unit
	CEC	0.15	0.15	0.14	0.11	
	CRS	0.22	0.23	0.20	0.19	
	FDCAN1	6.37	5.63	5.14	4.70	
	I2C1	0.57	0.5	0.49	0.42	
	I2C2	0.57	0.52	0.5	0.46	
	I3C1	0.28	0.27	0.28	0.25	
	LPTIM2	0.91	0.81	0.75	0.69	
	SPI2	1.04	0.93	0.89	0.78	
	SPI3	1.00	0.92	0.85	0.76	
	TIM12	1.41	1.26	1.18	1.06	
	TIM13	0.92	0.82	0.77	0.70	
	TIM14	0.89	0.78	0.75	0.66	
	TIM2	2.86	2.51	2.30	2.11	
	TIM3	2.52	2.21	2.03	1.87	
	TIM4	2.43	2.15	1.96	1.79	
	TIM5	2.79	2.48	2.26	2.06	
APDI	TIM6	0.54	0.49	0.45	0.42	μΑνινιπΖ
	TIM7	0.56	0.5	0.48	0.43	
	UART12	1.17	1.06	0.95	0.88	
	UART4	1.12	0.98	0.93	0.83	
	UART5	1.09	0.99	0.93	0.84	
	UART7	1.28	1.14	1.05	0.93	
	UART8	1.17	1.06	0.94	0.86	
	UART9	1.12	1.00	0.90	0.84	
	UCPD1	1.1	1.00	0.90	0.84	
	USART10	1.35	1.22	1.14	1.02	
	USART11	1.24	1.11	1.04	0.94	
	USART2	1.42	1.29	1.19	1.07	
	USART3	1.35	1.24	1.14	1.02	
	USART6	1.19	1.08	1.02	0.92	
	WWDG1	0.39	0.35	0.35	0.30	
	APB1	1.85	1.61	1.49	1.34	

 Table 38. Peripheral current consumption in Sleep mode (continued)

Dur	Peripheral		I _{DD} ((typ)		Unit
Bus		VOS0	VOS1	VOS2	VOS3	Unit
	SAI1	1.13	0.99	0.93	0.82	
	SAI2	1.06	0.9	0.85	0.75	
	SPI1	1.03	0.91	0.85	0.75	
	SPI4	1.03	0.89	0.83	0.73	
	SPI6	1.03	0.9	0.85	0.74	
	TIM1	4.35	3.86	3.52	3.2	
APB2	TIM15	2.08	1.84	1.69	1.54	µA/MHz
	TIM16	1.43	1.26	1.16	1.05	
	TIM17	1.44	1.25	1.17	1.05	
	TIM8	4.33	3.82	3.5	3.18	
	USART1	1.24	1.11	1.02	0.91	
	USBFS	2.53	2.22	2.04	1.84	
	APB2	1.04	0.92	0.84	0.77	
	I2C3	2.43	2.14	1.93	1.76	
	I2C4	2.37	2.08	1.89	1.73	
	LPTIM1	0.92	0.82	0.75	0.67	
	LPTIM3	0.88	0.77	0.71	0.65	
	LPTIM4	0.49	0.45	0.41	0.37	
	LPTIM5	0.84	0.76	0.69	0.63	
APB3	LPTIM6	0.93	0.82	0.76	0.70	uA/MHz
	LPUART1	0.84	0.74	0.66	0.63	
	RTCAPB	1.93	1.70	1.54	1.38	
	SBS	0.45	0.41	0.38	0.34	
	SPI5	1.05	0.93	0.84	0.75	
	VREFBUF	0.08	0.08	0.07	0.05	
-	APB3	0.64	0.57	0.53	0.48	

 Table 38. Peripheral current consumption in Sleep mode (continued)

Wake-up time from low-power modes

The times given in *Table 39* are measured starting from the wake-up event trigger up to the first instruction executed by the CPU:

- for Stop or Sleep modes: the wake-up event is WFE.
- WKUP (PA0) pin is used to wake-up from Standby, Stop and Sleep modes.

All timings are derived from tests performed under ambient temperature and V_{DD} = 3.0 V.

Symbol	Parameter	Conditions	Тур	Max	Unit
	Wake-up time from	Instruction cache enabled	15	16	CPU
^I WUSLEEP	Sleep mode	Instruction cache disabled	15	16	ciock
		SVOS3, HSI 64 MHz, flash memory in normal mode	4.0	4.8	
		SVOS3, HSI 64 MHz, flash memory in low-power mode	7.9	11.5	
		SVOS4, HSI 64 MHz, flash memory in normal mode	13.8	16.0	
	Wake-up time from	SVOS4, HSI 64 MHz, flash memory in low-power mode	17.7	21.9	
+		SVOS5, HSI 64 MHz, flash memory in low-power mode	31.4	36.8	
WUSTOP	Stop mode	SVOS3, CSI 4 MHz, flash memory in normal mode	25.5	31.0	μs
		SVOS3, CSI 4 MHz, flash memory in low power mode	27.7	34.2	
		SVOS4, CSI 4 MHz, flash memory in normal mode	35.3	40.8	
		SVOS4, CSI 4 MHz, flash memory in low-power mode	37.5	44.0	
		SVOS5, CSI 4 MHz, flash memory in low-power mode	51.2	58.9	
t _{WUSTBY}	Wake-up time from Standby mode	VCAP capacitors discharged	506.0	653.6	

Table 39. Low-power mode wake-up timings⁽¹⁾

1. Evaluated by characterization - Not tested in production.

5.3.8 External clock source characteristics

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal must respect the *Table 40* in addition to *Table 58*. The external clock can be low-swing (analog) or digital. In case of a low-swing analog input clock, the clock squarer must be activated (refer to RM0481).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{HSE_ext}	User external clock source frequency	External digital/analog clock	4	25	50	MHz
V _{HSEH}	Digital OSC_IN input high-level voltage	Extornal digital clock	0.7 V _{DD}	-	V _{DD}	V
V _{HSEL}	Digital OSC_IN input low-level voltage		V _{SS}	-	0.3 V _{DD}	v
$t_{w(HSEH)}/t_{w(HSEL)}^{(2)}$	Digital OSC_IN input high or low time	External digital clock	7	-	-	ns

 Table 40. High-speed external user clock characteristics⁽¹⁾

			,			
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{isw(HSEH)} (V _{HSEH} -V _{HSEL}) ⁽³⁾	Analog low-swing OSC_IN peak-to-peak amplitude	External analog low	0.2	-	2/3 V _{DD}	V
DuCy _{HSE}	Analog low-swing OSC_IN duty cycle		45	50	55	%
t _{r(HSE)} / t _{f(HSE)}	Analog low-swing OSC_IN rise and fall times	External analog low swing clock, 10% to 90%	0.05 / f _{HSE_ext}	-	0.3 / f _{HSE_ext}	ns

Table 40. High-speed external user clock characteristics⁽¹⁾ (continued)

1. Specified by design - Not tested in production..

2. The rise and fall times for a digital input signal are not specified, but the V_{HSEH} and V_{HSEL} conditions must be fulfilled anyway.

3. The DC component of the signal must ensure that the signal peaks are located between V_{DD} and V_{SS} .

Figure 27. High-speed external clock source AC timing diagram

Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal must respect the *Table 41* in addition to *Table 58*. The external clock can be low-swing (analog) or digital. In case of a low-swing analog input clock, the clock squarer must be activated (refer to RM0481).

Table 41. I	_ow-speed	external	user	clock	characteristics ⁽¹)

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{LSE_ext}	User external clock source frequency	External digital/analog clock	-	32.768	1000	kHz
V _{LSEH}	Digital OSC32_IN input high-level voltage	External digital clock	0.7 V _{DD}	-	V_{DD}	V
V _{LSEL}	Digital OSC32_IN input low-level voltage		V _{SS}	-	0.3 V _{DD}	V

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{w(LSEH)} /t _{w(LSEL)}	Digital OSC_IN input high or low time	External digital clock	250	-	-	ns
V _{isw_H}	Analog low-swing OSC_IN high-level voltage	External analog low swing	0.6	-	1.225	
V _{isw_L}	Analog low-swing OSC_IN low-level voltage		0.35	-	0.8	V
V _{iswLSE} (V _{LSEH} -V _{LSEL})	Analog low-swing OSC_IN peak-to-peak amplitude	clock	0.5	-	0.875	
DuCy _{LSE}	Analog low-swing OSC_IN duty cycle		45	50	55	%
t _{r(LSE)} /t _{f(LSE)}	Analog low-swing OSC_IN rise and fall times	External analog low swing clock, 10% to 90%	-	100	200	ns

Table 41. Low-speed external user clock characteristics⁽¹⁾ (continued)

1. Specified by design - Not tested in production.

Note: For information on selecting the crystal, refer to AN2867 "Guidelines for oscillator design on STM8AF/AL/S and STM32 MCUs/MPUs" available from www.st.com.

Figure 28. Low-speed external clock source AC timing diagram

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 50 MHz crystal/ceramic resonator oscillator.

All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 42*. In the application, the resonator and the load capacitors must be placed as close as possible to the oscillator pins to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Operating conditions ⁽²⁾	Min	Тур	Max	Unit
F	Oscillator frequency	-	4	-	50	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
		During startup ⁽³⁾	-	-	10	
		V_{DD} = 3 V, Rm = 20 Ω , C_{L} = 10 pF at 4 MHz	-	0.44	-	
	HSE current consumption	V_{DD} = 3 V, Rm = 20 Ω, C_{L} = 10 pF at 8 MHz	-	0.44	-	
I _{DD(HSE)}		V _{DD} = 3 V, Rm = 20 Ω, CL = 10 pF at 16 MHz	-	0.55	-	mA
		V_{DD} = 3 V, Rm = 20 Ω, C _L = 10 pF at 32 MHz	-	0.67	-	
		V _{DD} = 3 V, Rm = 20 Ω, C _L = 10 pF at 48 MHz	-	1.17	-	
Gm _{critmax}	Maximum critical crystal gm	Startup	-	-	1.5	mA/V
t _{SU(HSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	2	-	ms

Table 42. 4-50 MHz HSE oscillator characteristics⁽¹⁾

1. Evaluated by design - Not tested in production.

2. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

3. This consumption level occurs during the first 2/3 of the $t_{SU(HSE)}$ startup time

 t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

Note:

For information on selecting the crystal, refer to AN2867 "Guidelines for oscillator design on STM8AF/AL/S and STM32 MCUs/MPUs", available from www.st.com.

Figure 29. Typical application with an 8 MHz crystal

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph is based on design simulation results obtained with typical external components specified in *Table 43*. In the application, the resonator and the load capacitors must be placed as close as possible to the oscillator pins to minimize output distortion and startup stabilization time. Refer to the crystal resonator

manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽²⁾	Min	Тур	Max	Unit	
F	Oscillator frequency	-	-	32.768	-	kHz	
		LSEDRV[1:0] = 00 Low drive capability	-	246	-		
1	ISE current consumption	LSEDRV[1:0] = 01 Medium low drive capability	-	333	-	n۸	
DD	LSE current consumption	LSEDRV[1:0] = 10 Medium high drive capability	-	462	-	ПА	
		LSEDRV[1:0] = 11 High drive capability	-	747	-		
		LSEDRV[1:0] = 00 Low drive capability	-	-	0.5		
Gm	Maximum critical crystal	LSEDRV[1:0] = 01 Medium low drive capability	-	-	0.75	μΑ/ν	
Gincritmax	gm	LSEDRV[1:0] = 10 Medium high drive capability	-	-	1.7		
		LSEDRV[1:0] = 11 High drive capability	-	-	2.7		
t _{SU(LSE)} ⁽³⁾	Startup time	V _{DD} is stabilized	-	2	-	S	

Table 43. Low-speed external user clock characteristics⁽¹⁾

1. Specified by design - Not tested in production.

2. Refer to the note and caution paragraphs below the table, and to AN2867 "Guidelines for oscillator design on STM8AF/AL/S and STM32 MCUs/MPUs".

 t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to when a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and can vary significantly with the crystal manufacturer

Note: For information on selecting the crystal, refer to AN2867 "Guidelines for oscillator design on STM8AF/AL/S and STM32 MCUs/MPUs", available from www.st.com.

Note:

An external resistor is not required between OSC32_IN and OSC32_OUT, and it is forbidden to add one.

5.3.9 Internal clock source characteristics

The parameters given in *Table 44* to *Table 47* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 20*.

48 MHz high-speed internal RC oscillator (HSI48)

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{HSI48}	HSI48 frequency	V _{DD} = 3.3 V, T _J = 30 °C	47.5 ⁽¹⁾	48	48.5 ⁽¹⁾	MHz
TRIM ⁽³⁾	User trimming step	-	-	0.175	0.250	
USER TRIM COVERAGE ⁽²⁾	User trimming coverage	±32 steps	±4.70	±5.6	-	%
DuCy(HSI48) ⁽³⁾	Duty cycle	-	45	-	55	%
ACCHSI48_REL ⁽³⁾	Accuracy of the HSI48 oscillator over temperature (reference is 30 °C)	T _J = -40 to 130 °C	-4.5	-	4	%
	HSI48 oscillator frequency drift with	V _{DD} = 3.0 to 3.6 V	-	0.025	0.05	0/.
	V _{DD} (reference is 3.3 V)	V _{DD} = 1.71 to 3.6 V	-	0.05	0.1	70
t _{su} (HSI48) ⁽³⁾	HSI48 oscillator start-up time	-	-	2.1	4.0	μs
I _{DD} (HSI48) ⁽³⁾	HSI48 oscillator power consumption	-	-	350	400	μA
N _T jitter ⁽³⁾	Next transition jitter accumulated jitter on 28 cycles	-	-	±0.15	-	ne
P _T jitter ⁽³⁾	Paired transition jitter accumulated jitter on 56 cycles ⁽⁴⁾	-	-	±0.25	-	115

Table 44. HSI48 oscillator characteristics

1. Calibrated during manufacturing tests.

2. Evaluated by characterization - Not tested in production.

3. Specified by design - Not tested in production.

4. Jitter measurements are performed without clock sources activated in parallel.

64 MHz high-speed internal RC oscillator (HSI)

Symbol	Parameter Conditions			Тур	Max	Unit
f _{HSI}	Frequency	V _{DD} = 3.3 V, T _J = 30 °C	63.7 ⁽²⁾	64.0 ⁽²⁾	64.3 ⁽²⁾	MHz
		Trimming is not a multiple of 32 ⁽³⁾	-	0.24	0.32	
		Trimming is 128, 256, and 384 ⁽³⁾	-5.2	-1.8	-	
TRIM User trimming step	User trimming step	Trimming is 64, 192, 320, and 488 ⁽³⁾	-1.4	-0.8	-	%
		Other trimmings are multiples of 32 (not including multiples of 64 and 128) ⁽³⁾	-0.6	-0.25	-	
DuCy(HSI)	Duty cycle	-	45	-	55	%

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$\Delta_{VDD}(HSI)$	Frequency drift with V _{DD} (reference is 3.3 V)	V _{DD} = 1.71 to 3.6 V	-0.12	-	0.03	
۸ (LICI)	Frequency drift with V _{DD}	T _J = -20 to 105 °C	-1 ⁽⁴⁾	-	1 ⁽⁴⁾	%
ATEMP(HSI)	(reference is 64 MHz)	T _J = -40 to 130 °C	-2 ⁽⁴⁾	-	1 ⁽⁴⁾	
t _{su} (HSI)	Start-up time	-	-	1.4	2.0	μs
t _{stab} (HSI) Stabilization til	Stabilization time	At 1% of target frequency	-	4	8	
	Stabilization time	At 1% of target frequency	-	-	4	μs
I _{DD} (HSI)	Power consumption	-	-	300	450	μΑ

Table 45. HSI oscillator characteristics⁽¹⁾ (continued)

1. Specified by design - Not tested in production, unless otherwise specified.

2. Calibrated during manufacturing tests.

3. Trimming value of HSICAL[8:0].

4. Guaranteed by characterization - Not tested in production.

4 MHz low-power internal RC oscillator (CSI)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{CSI}	Frequency	V _{DD} = 3.3 V, T _J = 30 °C	3.96 ⁽²⁾	4	4.04 ⁽²⁾	MHz
		Trimming is not a multiple of 16	-	0.40	0.75	
TRIM	User trimming step	Trimming is not a multiple of 32	-4.75	-2.75	0.75	%
		Other trimmings are a multiple of 32 (not including multiples of 64 and 128)	-0.43	0.00	0.75	
DuCy(CSI)	Duty cycle	-	45	-	55	%
A (CSI)	Frequency drift over	T _J = 0 to 85 °C	-3.7 ⁽³⁾	-	4.5 ⁽³⁾	%
ATEMP(CSI)	temperature	T _J = -40 to T _J = 130 °C	-11 ⁽³⁾	-	7.5 ⁽³⁾	%
$\Delta_{VDD}(CSI)$	Frequency drift over V _{DD}	V _{DD} = 1.71 to 3.6 V	-0.06	-	0.06	%
t _{su} (CSI)	Start-up time	-	-	1	2	μs
t _{stab} (CSI)	Stabilization time (to reach ± 3% of f _{CSI})	-	-	-	4	cycle
I _{DD} (CSI)	Power consumption	-	-	23	30	μA

Table 46. CSI oscillator characteristics⁽¹⁾

1. Specified by design - Not tested in production, unless otherwise specified.

2. Calibrated during manufacturing tests.

3. Evaluated by characterization - Not tested in production.

Low-speed internal (LSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		V _{DD} = 3.3 V, T _J = 25 °C	31.4 ⁽¹⁾	32	32.6 ⁽¹⁾	
f _{LSI}	Frequency	$T_{\rm J}$ = -40 to 110 °C, $V_{\rm DD}$ =1.71 to 3.6 V	29.76 ⁽²⁾	-	33.6 ⁽²⁾	kHz
		$T_{\rm J}$ = -40 to 130 °C, $V_{\rm DD}$ =1.71 to 3.6 V	29.4 ⁽²⁾	-	33.6 ⁽²⁾	
t _{su} (LSI) ⁽³⁾	Start-up time	-	-	80	130	
t _{stab} (LSI) ⁽³⁾	Stabilization time (5% of final value)	-	-	120	170	μs
I _{DD} (LSI) ⁽³⁾	Power consumption	-	-	130	280	nA

	Table 47.	LSI	oscillator	characteristics
--	-----------	-----	------------	-----------------

1. Calibrated during manufacturing tests.

2. Evaluated by characterization - Not tested in production.

3. Specified by design - Not tested in production.

5.3.10 PLL characteristics

The parameters given in *Table 48* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 20*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f	PLL input clock	-	2	-	16	MHz
'PLL_IN	PLL input clock duty cycle	-	10	-	90	%
fpll_p_out		VOS0	1	-	250 ⁽²⁾	
	PLL multiplier output clock P, Q, R	VOS1	1	-	200 ⁽²⁾	
		VOS2	1	-	150 ⁽²⁾	MHz
		VOS3	1	-	100 ⁽²⁾	
f _{VCO_OUT}	PLL VCO output	-	128	-	560 ⁽²⁾	
t _{LOCK}	PLL lock time	Normal mode	-	45	100 ⁽³⁾	μs
		Sigma-delta mode (f _{PLL_IN} ≥ 8 MHz)	-	60	120 ⁽³⁾	

Table 48. PLL characteristics (wide VCO frequency range)⁽¹⁾

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Cycle-to-cycle jitter Jitter Long term jitter		f _{VCO_OUT} = 1	28 MHz	-	60	-	
	Cycle to cycle iitter	f _{VCO_OUT} = 2	00 MHz	-	50	-	+00
		f _{VCO_OUT} = 4	00 MHz	-	20	-	тра
		f _{VCO_OUT} = 5	60 MHz	-	15	-	
		Normal mode (f _{PLL_IN} = 2 MHz), f _{VCO_OUT} = 560 MHz		-	±0.2	-	
	Long term jitter	Normal mode (f _{PLL_IN} = 16 MHz), f _{VCO_OUT} = 560 MHz		-	±0.8	-	0/_
		Sigma-delta mode (f _{PLL_IN} = 2 MHz), f _{VCO_OUT} = 560 MHz		-	±0.2	-	70
		Sigma-delta mode (f _{Pl} f _{VCO_OUT} = 5	_{LL_IN} = 16 MHz), 60 MHz	-	±0.8	-	
	PLL power consumption on V_{DD}	f 560 MHz	V _{DD}	-	330	420	
		PLL power consumption on	IVCO_OUT - 300 MI 12	V _{CORE}	-	630	-
IDD(FLL)		f 128 MU7	V _{DD}	-	155	230	μΑ
		f _{VCO_OUT} = 128 MHz -	V _{CORE}	-	170	-	

Tuble for EE characteriorios (mae ree nequency range) (continuou	Table 48. PLL characteristics	(wide VCO frequ	uency range) ⁽¹⁾ ((continued)
--	-------------------------------	-----------------	-------------------------------	-------------

1. Specified by design - Not tested in production, unless otherwise specified.

2. This value must be limited to the maximum frequency due to the product limitation.

3. Evaluated by characterization - Not tested in production.

Table 49. PLL	characteristics	(medium	vco	frequency	range)
	0114140101101100	linearain		noquonoy	iango,

Symbol	Parameter	Conditions Min ⁽¹⁾ Typ ⁽¹⁾ Max		Max ⁽¹⁾	Unit	
f	PLL input clock	-	1	-	2	MHz
'PLL_IN	PLL input clock duty cycle	-	10	-	90	%
f _{PLL_OUT}		VOS0	1.17	-	210	
	PLL multiplier output clock P, Q, R	VOS1	1.17	-	210	
		VOS2	1.17	-	160 ⁽²⁾	MHz
		VOS3	1.17	-	88 ⁽²⁾	
f _{VCO_OUT}	PLL VCO output	-	150 - 420		420	
t _{LOCK}	PLL lock time	Normal mode	-	45	80 ⁽³⁾	
		Sigma-delta mode	F	orbidde	n	μs

Symbol	Parameter	Conditio	ns	Min ⁽¹⁾	Typ ⁽¹⁾	Max ⁽¹⁾	Unit
Jitter		f _{VCO_OUT} = 150 MHz	-	-	60	-	
	Cycle to cycle iitter	f _{VCO_OUT} = 200 MHz	-	-	40	-	
		f _{VCO_OUT} = 400 MHz	-	-	18	-	+00
		f _{VCO_OUT} = 420 MHz	-	-	15	-	тра
	Period jitter	f _{VCO_OUT} = 150 MHz	f _{PLL_OUT} = 50 MHz	-	75	-	
		f _{VCO_OUT} = 400 MHz		-	25	-	
	Long term jitter	Normal mode f _{VCO_OUT} = 400 MHz		-	±0.2	-	%
I _{DD} (PLL)	PLL power consumption on V_{DD}	f = 420 MHz	V _{DD}	-	275	360	
		otion on	V _{CORE}	-	450	-	uА
		f _ 150 MU	V _{DD}	-	160	240	μΑ
		f _{VCO_OUT} = 150 MHz	V _{CORE}	-	165	-	

1. Specified by design - Not tested in production, unless otherwise specified.

2. This value must be limited to the maximum frequency due to the product limitation.

3. Evaluated by characterization - Not tested in production.

5.3.11 Memory characteristics

Flash memory

The characteristics are given at T_J = -40 to 130 °C unless otherwise specified.

The devices are shipped to customers with the flash memory erased.

Table 50	. Flash	memorv	characteristics
		inclusion y	onuractoristics

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
		Word program ⁽²⁾	-	2.5	3.6	
I _{DD}	Supply current	Sector erase	-	1.8	4	mA
		Mass erase	-	2.0	4	

1. Specified by design - Not tested in production

2. Data are evaluated with a write of 50% of the programmed bits equal to 0.

Table 51. Flash memory programming⁽¹⁾

Symbol	Parameter	Conditions	Min ⁽²⁾	Тур	Max ⁽¹⁾	Unit
+	Word program time	128 bits (user area)	-	31	100	110
Lprog		16 bits (OTP area)	-	31	100	μο
t _{ERASE}	Sector erase time (8 Kbytes)		-	2	10	ms
t _{ME}	Mass erase time		-	0.512	2.6	6
t _{BE}	Bank erase time		-	0.256	1.3	5
V _{prog}	Programming voltage		1.71	-	3.6	V

- 1. Data are valid for program memory and high-cycling data memory.
- 2. Specified by design Not tested in production.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit
N _{PEND}	Endurance program memory	T _J = -40 to +130 °C	10	kovelos
N _{DEND}	Endurance data memory	T _J = -40 to +130 °C	100	RUYCIUS
		1 kcycle at T _A = 125 °C	10	
t _{PRET}	Program memory, data retention	1 kcycles at T _A = 85 °C	30	
		10 kcycles at T _A = 55 °C	30	Vooro
		100 kcycle at T _A = 125 °C	1	Tears
t _{DRET}	Data retention for data memory	100 kcycles at T _A = 85 °C	10	
		100 kcycles at T _A = 55 °C	10	

Table 52. Flash memo	ry endurance and data retention
----------------------	---------------------------------

1. Evaluated by characterization - Not tested in production, unless otherwise specified.

5.3.12 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed (toggling two LEDs through I/O ports), the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD), positive and negative, is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- **FTB**: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows to resume normal operation.

The test results are given in *Table 53*. They are based on the EMS levels and classes defined in AN1709 "*EMC design guide for STM8, STM32 and legacy MCUs*".

Symbol	Parameter	Conditions	Level/Class
V _{FESD}	Voltage limits to apply on any I/O pin to induce a functional disturbance	V _{DD} = 3.3 V, T _A = 25 °C,	2B
V _{FTB}	Fast transient voltage burst limits to apply through 100 pF on VDD and VSS pins to induce a functional disturbance	$f_{rcc_{cpu_{ck}}} = 250 \text{ MHz},$ conform to IEC 61000-4-2	5A

Table 53. EMS characteristics

As a consequence, it is recommended to add a serial resistor (1 k Ω), located as close as possible to the MCU, to the pins exposed to noise (connected to tracks longer than 50 mm on PCB).

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. Note that good EMC performance is highly dependent upon the user application, and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for its application.

Software recommendations

The software flow must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical data corruption (such as control registers)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST or on the oscillator pins for 1 s.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015 *"Software techniques for improving microcontrollers EMC performance"*).

Electromagnetic interference (EMI)

The electromagnetic field emitted by the device is monitored while a simple application, executing EEMBC code, is running. This emission test is compliant with SAE IEC61967-2 standard, which specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Monitored frequency band	Max vs. [f _{HSE} /f _{CPU}]	Unit
				25/250 MHz	
			0.1 to 30 MHz	21	
		$V_{DD} = 3.6 V. T_{A} = 25 °C.$	30 to 130 MHz	22	dBull
S _{EMI}	Peak level ⁽¹⁾	LQFP176-SMPS package,	130 MHz to 1 GHz	29	υσμν
		conforming to IEC61967-2	1 GHz to 2 GHz	21	
			EMI level	4	-

Table 54. EMI characteristics

1. Refer to the EMI radiated test chapter of application note AN1709 "EMC design guide for STM8, STM32 and legacy MCUs" available from the ST website www.st.com.

5.3.13 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive pulse followed by a negative one) are applied to the pins of each sample according to each pin combination. This test conforms to the ANSI/ESDA/JEDEC JS-001 and ANSI/ESDA/JEDEC JS-002 standards.

Symbol	Ratings	Conditions	Packages	Class	Maximum value ⁽¹⁾	Unit
N .	Electrostatic discharge	$T_A = 25 \ ^{\circ}C$, conforming to	Packages with SMPS	1C	1000 ⁽²⁾	V
¥ESD(HBM)	voltage (human body model)	ANSI/ESDA/JEDEC JS-001	Packages without SMPS	2	2000	v
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	T _A = 25 °C, conforming to ANSI/ESDA/JEDEC JS-002	All packages	C2a	500	V

Table 55. ESD absolute maximum ratings

1. Evaluated by characterization - Not tested in production.

2. The electrostatic discharge is 2000 V for all pins, except V_{FBSMPS}, for which the test fails at 2000 V and passes at 1600 V.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with the JESD78 IC latch-up standard.

Table 56. Electrical sensitivities

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_J = 130 \ ^{\circ}C$, conforming to JESD78	II level A

5.3.14 I/O current injection characteristics

As a general rule, avoid current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3.3 V-capable I/O pins) during the normal product operation. To give an indication of the device robustness when an abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during the characterization.

Functional susceptibility to I/O current injection

While a simple application is executed, the device is stressed by injecting current into the I/O pins (one at the time) programmed in floating input mode, and checked for functional failures. The failure is indicated by an out of range parameter: ADC error above a certain

limit (higher than 5 LSB TUE), out of conventional limits (-5 / +0 µA range) of induced leakage current on adjacent pins, or other functional failures (such as reset, oscillator frequency deviation).

The following table shows I/Os current injection susceptibility data. Negative/positive induced leakage currents are caused, respectively, by negative/positive injection.

		Functional s	usceptibility	
Symbol	Description	Negative injection	Positive injection	Unit
I _{INJ}	Injected current on pins PA4, PA5, PB2, PB12, PC14, PC15, PD8, and PH2	0	0	mA
	Injected current on all other pins	5	N/A	

Table 57. I/O current injection susceptibility⁽¹⁾

1. Evaluated by characterization - Not tested in production.

5.3.15 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 58* are derived from tests performed under the conditions summarized in *Table 20*. All I/Os are CMOS and TTL compliant (except for BOOT0).

Note: For information on GPIO configuration, refer to AN4899 "STM32 GPIO configuration for hardware settings and low-power consumption", available on www.st.com.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
	I/O input low level voltage except BOOT0		-	-	0.3 V _{DDIOx} ⁽²⁾	
V _{IL}	I/O input low level voltage except BOOT0	1.08 V < V _{DD} < 3.6 V	-	-	0.4 V _{DDIOx} - 0.1 ⁽³⁾	V
	BOOT0 I/O input low level voltage		-	-	0.19 V _{DDIOx} + 0.1 ⁽³⁾	
	I/O input high level voltage except BOOT0		0.7 V _{DDIOx} ⁽²⁾	-	-	
V _{IH}	I/O input high level voltage except BOOT0	1.08 V < V _{DD} < 3.6 V	0.52 V _{DDIOx} + 0.18 ⁽³⁾	-	-	V
	BOOT0 I/O input high level voltage		0.17 V _{DDIOx} + 0.6 ⁽³⁾	-	-	
V(3)	TT_xx, FT_xxx and NRST I/O input hysteresis	1.08 V < V _{DD} < 3.6 V	-	250	-	m\/
VHYS`″	BOOT0 I/O input hysteresis	1.71 V < V _{DD} < 3.6 V	-	200	-	111V

Table 58. I/O static characteristics [\]

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
l _{leak} ⁽⁴⁾		$0 < V_{IN} \le$ Max $(V_{DDXXX})^{(7)}$	-	-	±200	
	FT_xx input leakage current ⁽³⁾	$\begin{array}{l} Max(V_{DDXXX}) < \\ V_{IN} \leq Max(V_{DDXXX}) + \\ 1 \ V)^{(5)(7)} \end{array}$	-	-	2500	
		$\begin{array}{l} {\rm Max}({\rm V}_{\rm DDXXX}) < {\rm V}_{\rm IN} \le \\ 5.5 \ {\rm V}^{\ (5)(7)} \end{array}$	-	-	750	nA
	TT_xx input leakage current	$0 < V_{IN} \leq Max(V_{DDXXX})$	-	-	±200	
	BOOT0	$0 < V_{IN} \le V_{DDOX}$	-	-	15	
R _{PU}	Weak pull-up equivalent resistor ⁽⁶⁾	V _{IN} = V _{SS}	30	40	50	۲O
R _{PD}	Weak pull-down equivalent resistor ⁽⁶⁾	$V_{IN} = V_{DD}^{(7)}$	30	40	50	N32
C _{IO}	I/O pin capacitance	-	-	5	-	pF

Table 58. I/O static characteristics⁽¹⁾ (continued)

1. V_{DDIOx} represents V_{DD} or V_{DDIO2} .

2. Compliant with CMOS requirements.

3. Specified by design - Not tested in production.

- 4. This parameter represents the pad leakage of the I/O itself. The total product pad leakage is provided by the following formula: $I_{Total_leak_max} = 10 \ \mu A + [number of I/Os where V_{IN} is applied on the pad] \times I_{Ikg(Max)}$.
- 5. V_{IN} must be lower than Max(V_{DDXXX}) + 3.6 V.

6. The pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10%).

7. $Max(V_{DDXXX})$ is the maximum value of all the I/O supplies.

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS technology or TTL parameters. The coverage of these requirements for FT I/Os is shown in the following figure.

Figure 31. VIL/VIH for all I/Os except BOOT0

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ± 8 mA, and sink or source up to ± 20 mA (with a relaxed V_{OL}/V_{OH}).

In the user application, the number of I/O pins that can drive current must be limited to respect the absolute maximum rating specified in *Section 5.2*. In particular:

- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 18*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating ΣI_{VSS} (see *Table 18*).

Output voltage levels

Unless otherwise specified, the parameters given in *Table 59* and *Table 61* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 20*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions ⁽¹⁾	Min	Max	Unit
V _{OL}	Output low level voltage	CMOS port ⁽²⁾ , I_{IO} = 8 mA 2.7 V ≤ V _{DD} ≤ 3.6 V	-	0.4	
V _{OH}	Output high level voltage	CMOS port ⁽²⁾ , $I_{IO} = -8 \text{ mA}$ 2.7 V $\leq V_{DD} \leq 3.6 \text{ V}$	V _{DD} - 0.4	-	
V _{OL} ⁽³⁾	Output low level voltage	TTL port ⁽²⁾ , $I_{IO} = 8 \text{ mA}$ 2.7 V $\leq V_{DD} \leq 3.6 \text{ V}$	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage	TTL port ⁽²⁾ , $I_{IO} = -8 \text{ mA}$ 2.7 V ≤ V _{DD} ≤ 3.6 V	2.4	-	
V _{OL} ⁽³⁾	Output low level voltage	I _{IO} = 20 mA 2.7 V ≤ V _{DD} ≤ 3.6 V	-	1.3	
V _{OH} ⁽³⁾	Output high level voltage	I _{IO} = -20 mA 2.7 V ≤ V _{DD} ≤ 3.6 V	V _{DD} - 1.3	-	
V _{OL} ⁽³⁾	Output low level voltage	I _{IO} = 4 mA 1.71 V ≤ V _{DD} ≤ 3.6 V	-	0.4	V
V _{OH} ⁽³⁾	Output high level voltage	I _{IO} = -4 mA 1.71 V ≤ V _{DD} <3.6 V	V _{DD} - 0.4	-	
V _{OL} ⁽³⁾	Output low level voltage	I _{IO} = 2 mA 1.08 V ≤ V _{DD} ≤ 1.32 V	-	0.3 V _{DDIO2}	
V _{OH} ⁽³⁾	Output high level voltage	I _{IO} = -2 mA 1.71 V ≤ V _{DD} < 1.32 V	0.7 V _{DDIO2}	-	
		I _{IO} = 20 mA 2.3 V≤ V _{DD} ≤3.6 V	-	0.4	
V _{OLFM+} ⁽³⁾	Output low level voltage for an FTf I/O pin in (FT I/O with "f" option)	I _{IO} = 10 mA 1.71 V ≤ V _{DD} ≤ 3.6 V	-	0.4	
		I _{IO} = 4.5 mA 1.08 V ≤ V _{DD} ≤ 3.6 V	-	0.4	

 The I_{IO} current sourced or sunk by the device must always respect the absolute maximum rating specified in *Table 17*, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the absolute maximum ratings ΣI_{IO}.

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. Specified by design - Not tested in production.

Symbol	Parameter	Conditions ⁽¹⁾	Min	Max	Unit
V _{OL}	Output low level voltage	CMOS port ⁽²⁾ , $I_{IO} = 2 \text{ mA}$ 2.7 V $\leq V_{DD} \leq 3.6 \text{ V}$	-	0.4	
V _{OH}	Output high level voltage	CMOS port ⁽²⁾ , $I_{IO} = -2 \text{ mA}$ 2.7 V $\leq V_{DD} \leq 3.6 \text{ V}$	V _{DD} - 0.4	-	
V _{OL} ⁽³⁾	Output low level voltage	TTL port ⁽²⁾ , I _{IO} = 2 mA 2.7 V ≤ V _{DD} ≤ 3.6 V	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage	TTL port ⁽²⁾ , $I_{IO} = -2 \text{ mA}$ 2.7 V $\leq V_{DD} \leq 3.6 \text{ V}$	2.4	-	
V _{OL} ⁽³⁾	Output low level voltage	I _{IO} = 1 mA 2.7 V ≤ V _{DD} ≤ 3.6 V	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage	I _{IO} = -1 mA 2.7 V ≤ V _{DD} ≤ 3.6 V	V _{DD} - 0.4	-	
V _{OL} ⁽³⁾	Output low level voltage	I _{IO} = 0.1 mA 1.71 V ≤ V _{DD} ≤ 3.6 V	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage	I _{IO} = -0.1 mA 1.71 V ≤ V _{DD} < 3.6 V	V _{DD} - 0.4	-	

Table 60. Output	ut voltage	characteristics	for FT_	_c I/Os
------------------	------------	-----------------	---------	---------

1. The I_{IO} current sourced or sunk by the device must always respect the absolute maximum rating specified in *Table 17*, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the absolute maximum ratings ΣI_{IO} .

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. Specified by design - Not tested in production.

		lage characterietiee fer f			
Symbol	Parameter	Conditions ⁽³⁾	Min	Мах	Unit
V _{OL}	Output low level voltage	CMOS port ⁽²⁾ , I _{IO} = 3 mA 2.7 V ≤ V _{DD} ≤ 3.6 V	-	0.4	
V _{OH}	Output high level voltage	CMOS port ⁽²⁾ , I _{IO} = -3 mA 2.7 V ≤ V _{DD} ≤ 3.6 V	V _{DD} - 0.4	-	
V _{OL} ⁽³⁾	Output low level voltage	TTL port ⁽²⁾ , I _{IO} = 3 mA 2.7 V ≤ V _{DD} ≤ 3.6 V	-	0.4	V
V _{OH} ⁽³⁾	Output high level voltage	TTL port ⁽²⁾ , I _{IO} = -3 mA 2.7 V ≤ V _{DD} ≤ 3.6 V	2.4	-	v
V _{OL} ⁽³⁾	Output low level voltage	I _{IO} = 1.5 mA 1.71 V ≤ V _{DD} ≤ 3.6 V	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage	I _{IO} = −1.5 mA 1.71 V ≤ V _{DD} ≤ 3.6 V	V _{DD} - 0.4	-	

Table 61. Output voltage ch	aracteristics for PC13	and PI8 ⁽¹⁾
-----------------------------	------------------------	------------------------

 The I_{IO} current sourced or sunk by the device must always respect the absolute maximum rating specified in *Table 17*, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the absolute maximum ratings ΣI_{IO}.

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. Specified by design - Not tested in production.

Symbol	Parameter	Conditions ⁽³⁾	Min	Max	Unit
V _{OL}	Output low level voltage	CMOS port ⁽²⁾ , I _{IO} = 0.5 mA 2.7 V ≤ V _{DD} ≤ 3.6 V	-	0.4	
V _{OH}	Output high level voltage	CMOS port ⁽²⁾ , I_{IO} = -0.5 mA 2.7 V ≤ V _{DD} ≤ 3.6 V	V _{DD} - 0.4	-	
$V_{OL}^{(3)}$	Output low level voltage	TTL port ⁽²⁾ , I _{IO} = 0.5 mA 2.7 V ≤ V _{DD} ≤ 3.6 V	-	0.4	V
V _{OH} ⁽³⁾	Output high level voltage	TTL port ⁽²⁾ , $I_{IO} = -0.5 \text{ mA}$ 2.7 V ≤ V _{DD} ≤ 3.6 V	2.4	-	v
$V_{OL}^{(3)}$	Output low level voltage	I _{IO} = 0.25 mA 1.71 V ≤ V _{DD} ≤ 3.6 V	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage	I _{IO} = -0.25 mA 1.71 V ≤ V _{DD} ≤ 3.6 V	V _{DD} - 0.4	-	

Table 62. Output voltage characteristics for PC14 and PC15⁽¹⁾

1. The I_{IO} current sourced or sunk by the device must always respect the absolute maximum rating specified in *Table 17*, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the absolute maximum ratings ΣI_{IO} .

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. Specified by design - Not tested in production.

Output buffer timing characteristics (HSLV option disabled)

The HSLV bit of GPIOx_HSLVR register can be used to optimize the I/O speed when the voltage is below 2.7 V.

Speed	Symbol	Parameter	Conditions	Min	Max	Unit
			C = 50 pF, 2.7 V \leq V _{DD} \leq 3.6 V	-	8	
			C = 50 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	5	
			C = 40 pF, 2.7 V \leq V _{DD} \leq 3.6 V	-	10	
			C = 40 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	5	
	r (2)(3)	Maximum froquonov	C = 30 pF, 2.7 V \leq V _{DD} \leq 3.6 V	-	12	
	「max````		C = 30 pF, 1.71 V \leq V _{DD} \leq 2 V	-	5	
			C = 20 pF, 2.7 V \leq V _{DD} \leq 3.6 V	-	14	
			C = 20 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	5	-
			C = 10 pF, 2.7 V \leq V _{DD} \leq 3.6 V	-	16	
00			C = 10 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	5	
00			C = 50 pF, 2.7 V \leq V _{DD} \leq 3.6 V	-	18.0	
			C = 50 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	36.0	
			C = 40 pF, 2.7 V \leq V _{DD} \leq 3.6 V	-	17.0	
			C = 40 pF, 1.71 V \leq V _{DD} \leq 2 V	-	34.0	
	+ /+ (4)(5)	Output high to low level	C = 30 pF, 2.7 V \leq V _{DD} \leq 3.6 V	-	15.5	ne
	۲/ ۲ ^۲ ۲	to high level rise time	C = 30 pF, 1.71 V \leq V _{DD} \leq 2 V	-	32.0	115
			C = 20 pF, 2.7 V \leq V _{DD} \leq 3.6 V	-	14.2	
			C = 20 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	30.0	
			C = 10 pF, 2.7 V ≤ V _{DD} ≤ 3.6 V	-	12.2	1
			C = 10 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	27	

Table 63. Output timing characteristics (HSLV OFF)⁽¹⁾

Speed	Symbol	Parameter	Conditions	Min	Мах	Unit
			C = 50 pF, 2.7 V \leq V _{DD} \leq 3.6 V		40	
			C = 50 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	12	
			C = 40 pF, 2.7 V \leq V _{DD} \leq 3.6 V	-	45	
			C = 40 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	14	
	r (2)(3)	Maximum froquonov	C = 30 pF, 2.7 V \leq V _{DD} \leq 3.6 V	-	50	
	「max` ^` /		C = 30 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	16	
			C = 20 pF, 2.7 V \leq V _{DD} \leq 3.6 V	-	55	
			C = 20 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	18	-
			C = 10 pF, 2.7 V \leq V _{DD} \leq 3.6 V	-	60	
01			C = 10 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	20	
01			C = 50 pF, 2.7 V \leq V _{DD} \leq 3.6 V	-	6.2	
			C = 50 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	11.4	
			C = 40 pF, 2.7 V \leq V _{DD} \leq 3.6 V	-	5.7	
			C = 40 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	10.5	
	+ /+ (4)(5)	Output high to low level	C = 30 pF, 2.7 V \leq V _{DD} \leq 3.6 V	-	5.1	
	۲/۲ ۲	to high level rise time	C = 30 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	9.5	115
			C = 20 pF, 2.7 V \leq V _{DD} \leq 3.6 V	-	4.5	-
			C = 20 pF, 1.71 V ≤ V _{DD} ≤ 2 V		8.4	
			C = 10 pF, 2.7 V \leq V _{DD} \leq 3.6 V		3.7	
			C = 10 pF, 1.71 V ≤ V _{DD} ≤ 2 V		7.0	

Tal	ole 63. (Output	timing o	characteristics	(HSLV OFF	[:]) ⁽¹⁾	(continued)	
_							1	_

Speed	Symbol	Parameter	Conditions	Min	Max	Unit
			C = 50 pF, 2.7 V \leq V _{DD} \leq 3.6 V	-	80	
			C = 50 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	30	
			C = 40 pF, 2.7 V \leq V _{DD} \leq 3.6 V	-	90	
			C = 40 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	35	
	□ (2)(3)	Maximum fraguancy	C = 30 pF, 2.7 V \leq V _{DD} \leq 3.6 V	-	100	
	「max` ^` /	Maximum nequency	C = 30 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	40	
			C = 20 pF, 2.7 V \leq V _{DD} \leq 3.6 V	-	110	
			C = 20 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	45	-
			C = 10 pF, 2.7 V \leq V _{DD} \leq 3.6 V	-	133	
10			C = 10 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	50	
10			C = 50 pF, 2.7 V \leq V _{DD} \leq 3.6 V	-	3.8	
			C = 50 pF, 1.71 V \leq V _{DD} \leq 2 V	-	7.5	-
			C = 40 pF, 2.7 V \leq V _{DD} \leq 3.6 V	-	3.4	
			C = 40 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	6.6	
	t /t.(4)(5)	Output high to low level	C = 30 pF, 2.7 V \leq V _{DD} \leq 3.6 V	-	2.9	
	۲ [,] ۲	to high level rise time	C = 30 pF, 1.71 V \leq V _{DD} \leq 2 V	-	5.7	115
			C = 20 pF, 2.7 V \leq V _{DD} \leq 3.6 V	-	2.5	-
			C = 20 pF, 1.71 V \leq V _{DD} \leq 2 V	-	4.7	
			C = 10 pF, 2.7 V \leq V _{DD} \leq 3.6 V	-	1.9	
			C = 10 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	3.7	

Table 03. Output tilling characteristics (HSLV OF f (continued)

Speed	Symbol	Parameter	Conditions	Min	Max	Unit
			C = 50 pF, 2.7 V ≤ V _{DD} ≤ 3.6 V	-	100	
			C = 50 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	40	
			C = 40 pF, 2.7 V ≤ V _{DD} ≤ 3.6 V	-	120	
			C = 40 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	50	
	r (2)(3)	Maximum froquency	C = 30 pF, 2.7 V \leq V _{DD} \leq 3.6 V	-	140	
	「max` ^` /		C = 30 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	60	
			C = 20 pF, 2.7 V \leq V _{DD} \leq 3.6 V	-	166	
			C = 20 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	70	-
11			C = 10 pF, 2.7 V \leq V _{DD} \leq 3.6 V	-	200	
			C = 10 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	80	
		Output high to low level fall time and output low to high level rise time	C = 50 pF, 2.7 V≤ V _{DD} ≤ 3.6 V	-	3.3	ns
			C = 50 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	6.3	
			C = 40 pF, 2.7 V \leq V _{DD} \leq 3.6 V	-	2.8	
			C = 40 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	5.5	
	+ /+ (4)(5)		C = 30 pF, 2.7 V ≤ V _{DD} ≤ 3.6 V	-	2.3	
	۲/۲f````		C = 30 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	4.6	
			C = 20 pF, 2.7 V ≤ V _{DD} ≤ 3.6 V	-	1.9	
			C = 20 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	3.7	
			C = 10 pF, 2.7 V ≤ V _{DD} ≤ 3.6 V	-	1.4	
			C = 10 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	3]

Table 63. Output timin	g characteristics	HSLV OFF)(1)	(continued)
	g •		, ,	(

1. Specified by design - Not tested in production.

2. The maximum frequency is defined with the conditions ($t_r + t_f$) $\leq 2/3$ T, Skew $\leq 1/20$ T, and 45% < Duty cycle < 55%.

3. When 2 V < V_{DD} < 2.7 V the maximum frequency is between values given for V_{DD} = 1.98 V and V_{DD} = 2.7 V.

4. The fall and rise times are defined between 90% and 10% and between 10% and 90% of the output waveform, respectively.

5. When 2 V < V_{DD} < 2.7 V the maximum t_{rise}/t_{fall} is between values given for V_{DD} = 1.98 V and V_{DD} = 2.7 V.

Output buffer timing characteristics (HSLV option enabled)

Speed	Symbol	Parameter	Conditions	Min	Max	Unit
			C = 50 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	8	
			C = 40 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	10	
	F _{max} ⁽²⁾	Maximum frequency	C = 30 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	12	MHz
			C = 20 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	14	
			C = 10 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	16	
00			C = 50 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	17.8	
		Output high to low level	C = 40 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	15.8	
	$t_r/t_f^{(3)}$	fall time and output low	C = 30 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	14.4	ns
		to high level rise time	C = 20 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	13.1	
			C = 10 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	11.4	
			C = 50 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	40	
	F _{max} ⁽²⁾	Maximum frequency	C = 40 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	45	MHz
			C = 30 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	50	
			C = 20 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	55	
01			C = 10 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	60	
01	$t_r / t_f^{(3)(4)}$	/t _f ⁽³⁾⁽⁴⁾ Output high to low level fall time and output low to high level rise time	C = 50 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	7.2	ns
			C = 40 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	6.5	
			C = 30 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	5.6	
			C = 20 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	4.8	
			C = 10 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	3.8	
			C = 50 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	60	
			C = 40 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	70	
	$F_{max}^{(2)(4)}$	Maximum frequency	C = 30 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	90	MHz
10			C = 20 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	110	1
			C = 10 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	140	
10			C = 50 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	5.3	
		Output high to low level	C = 40 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	4.6	ns
	$t_r/t_f^{(3)(4)}$	fall time and output low	C = 30 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	3.8	
		to high level rise time	C = 20 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	3.0	
			C = 10 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	2.2	

Table 64. Output timing characteristics (HSLV ON)⁽¹⁾

Speed	Symbol	Parameter	Conditions	Min	Max	Unit
11			C = 50 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	67	-
		Maximum frequency	C = 40 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	100	
	$F_{max}^{(2)(4)}$		C = 30 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	120	MHz
			C = 20 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	155	
			C = 10 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	200	
	$t_{r}/t_{f}^{(3)(4)}$	Output high to low level $t_r/t_f^{(3)(4)}$ fall time and output low to high level rise time	C = 50 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	5.0	
			C = 40 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	4.1	
			C = 30 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	3.3	ns
			C = 20 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	2.5	
			C = 10 pF, 1.71 V ≤ V _{DD} ≤ 2 V	-	1.8	

1. Specified by design - Not tested in production.

2. The maximum frequency is defined with the conditions: $(t_r+t_f) \le 2/3$ T, Skew $\le 1/20$ T, 45% < Duty cycle < 55%.

3. The fall and rise times are defined, respectively, between 90 and 10% and between 10 and 90% of the output waveform.

4. Compensation system enabled.

Speed	Symbol	Parameter	Conditions	Min	Max	Unit
00 -		Maximum frequency	C = 50 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	1	
			C = 40 pF, 1.08 V ≤ V _{DDIO2} ≤ 1.32 V	-	1	
	$F_{max}^{(2)}$		C = 30 pF, 1.08 V ≤ V _{DDIO2} ≤ 1.32 V	-	1	MHz
			C = 20 pF, 1.08 V ≤ V _{DDIO2} ≤ 1.32 V	-	1	
			C = 10 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	1	
	t _r /t _f ⁽³⁾	Output high to low level fall time and output low to high level rise time	C = 50 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	83.0	
			C = 40 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	79.0	
			C = 30 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	46.0	ns
			C = 20 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	72.0	
			C = 10 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	68.0	

Table 65. Output timing characteristics V_{DDIO2} 1.2 V range (HSLV OFF)⁽¹⁾

Speed	Symbol	Parameter	Conditions	Min	Max	Unit
			C = 50 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	5	
01			C = 40 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	5	
	$F_{max}^{(2)}$	Maximum frequency	C = 30 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	5	MHz
			C = 20 pF, 1.08 V ≤ V _{DDIO2} ≤ 1.32 V	-	5	
			C = 10 pF, 1.08 V ≤ V _{DDIO2} ≤ 1.32 V	-	5	
01			C = 50 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	24.5	
		Output high to low level fall	C = 40 pF, 1.08 V ≤ V _{DDIO2} ≤ 1.32 V	-	22.2	
	$t_r/t_f^{(3)}$	time and output low to high	C = 30 pF, 1.08 V ≤ V _{DDIO2} ≤ 1.32 V	-	20.0	ns
		level rise time	C = 20 pF, 1.08 V ≤ V _{DDIO2} ≤ 1.32 V	-	17.8	
			C = 10 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	15.0	
			C = 50 pF, 1.08 V ≤ V _{DDIO2} ≤ 1.32 V	-	10	
	F _{max} ⁽²⁾	max ⁽²⁾ Maximum frequency	C = 40 pF, 1.08 V ≤ V _{DDIO2} ≤ 1.32 V	-	10	MHz
			C = 30 pF, 1.08 V ≤ V _{DDIO2} ≤ 1.32 V	-	10	
			C = 20 pF, 1.08 V ≤ V _{DDIO2} ≤ 1.32 V	-	10	
10			C = 10 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	10	
10	t _r /t _f ⁽³⁾		C = 50 pF, 1.08 V ≤ V _{DDIO2} ≤ 1.32 V	-	16.2	
		Output high to low level fall	C = 40 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	14.3	
		$t_r/t_f^{(3)}$ time and output low to high	C = 30 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	12.2	ns
		level rise time	C = 20 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	10.0	
			C = 10 pF, 1.08 V ≤ V _{DDIO2} ≤ 1.32 V	-	7.9	
			C = 50 pF, 1.08 V ≤ V _{DDIO2} ≤ 1.32 V	-	20	
	- (2)		C = 40 pF, 1.08 V ≤ V _{DDIO2} ≤ 1.32 V	-	23	
	F _{max} (2) (4)	Maximum frequency	C = 30 pF, 1.08 V ≤ V _{DDIO2} ≤ 1.32 V	-	25	MHz
			C = 20 pF, 1.08 V ≤ V _{DDIO2} ≤ 1.32 V	-	28	
11			C = 10 pF, 1.08 V ≤ V _{DDIO2} ≤ 1.32 V	-	30	1
			C = 50 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	14.0	
		Output high to low level fall	C = 40 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	12.0	
	$t_r/t_f^{(3)(4)}$	time and output low to high	C = 30 pF, 1.08 V ≤ V _{DDIO2} ≤ 1.32 V	-	10.0	ns
		ievei rise time	C = 20 pF, 1.08 V ≤ V _{DDIO2} ≤ 1.32 V	-	8.0	
			C = 10 pF , 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	6.0	

1. Specified by design - Not tested in production.

2. The maximum frequency is defined with the conditions ($t_r + t_f$) \leq 2/3 T, Skew \leq 1/20 T, 45% < Duty cycle < 55%.

3. The fall and rise times are defined between 90% and 10% and between 10% and 90% of the output waveform, respectively.

4. Compensation system enabled.

Speed	Symbol	Parameter	Conditions	Min	Мах	Unit
			C = 50 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	5	
			C = 40 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	5	
	$F_{max}^{(2)}$	Maximum frequency	C = 30 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	5	MHz
			C = 20 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	5	
			C = 10 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	5	
00			C = 50 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	32.5	
		Output high to low level	C = 40 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	30.0	
	$t_r/t_f^{(3)}$	fall time and output low	C = 30 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	27.5	ns
		to high level rise time	C = 20 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	25.0	
			C = 10 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	22.5	
			C = 50 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	15.0	
	F _{max} ⁽²⁾	Maximum frequency	C = 40 pF, 1.08 V ≤ V _{DDIO2} ≤ 1.32 V	-	17.5	MHz
			C = 30 pF, 1.08 V ≤ V _{DDIO2} ≤ 1.32 V	-	20.0	
			C = 20 pF, 1.08 V ≤ V _{DDIO2} ≤ 1.32 V	-	22.5	
01			C = 10 pF, 1.08 V ≤ V _{DDIO2} ≤ 1.32 V	-	25.0	
01	t _r /t _f ⁽³⁾	Output high to low level $t_r/t_f^{(3)}$ fall time and output low to high level rise time	C = 50 pF, 1.08 V ≤ V _{DDIO2} ≤ 1.32 V	-	14.6	ns
			C = 40 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	12.9	
			C = 30 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	11.2	
			C = 20 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	9.3	
			C = 10 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	7.3	
			C = 50 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	25	
			C = 40 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	30	MHz
	$F_{max}^{(2)(4)}$	Maximum frequency	C = 30 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	33	
			C = 20 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	44	
10			C = 10 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	55	
10			C = 50 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	11.6	
		Output high to low level	C = 40 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	9.7	1
	$t_r/t_f^{(3)(4)}$	fall time and output low	C = 30 pF, 1.08 V ≤ V _{DDIO2} ≤ 1.32 V	-	7.8	ns
		to high level rise time	C = 20 pF, 1.08 V ≤ V _{DDIO2} ≤ 1.32 V	-	6.1	1
			C = 10 pF, 1.08 V ≤ V _{DDIO2} ≤ 1.32 V	-	4.3	

Table 66. Output timing	g characteristics V _{DDIO2}	1.2 V (HS	SLV ON) ⁽¹⁾
			-

Speed	Symbol	Parameter	Conditions	Min	Max	Unit
11) Maximum frequency	C = 50 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	30	
			C = 40 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	35	
	$F_{max}^{(2)(4)}$		C = 30 pF, 1.08 V ≤ V _{DDIO2} ≤ 1.32 V	-	44	MHz
			C = 20 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	55	
			C = 10 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	77	
	t _r /t _f ⁽³⁾⁽⁴⁾	$t_r/t_f^{(3)(4)}$ Output high to low level fall time and output low to high level rise time	C = 50 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	11.1	
			C = 40 pF, 1.08 V ≤ V _{DDIO2} ≤ 1.32 V	-	9.2	
			C = 30 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	7.2	ns
			C = 20 pF, 1.08 V \leq V _{DDIO2} \leq 1.32 V	-	5.4	
			C = 10 pF, 1.08 V ≤ V _{DDIO2} ≤ 1.32 V	-	3.6	

Table 66. Output timing characteristics V_{DDIO2} 1.2 V (HSLV ON)⁽¹⁾ (continued)

1. Specified by design - Not tested in production.

2. The maximum frequency is defined with the conditions ($t_r + t_f$) \leq 2/3 T, Skew \leq 1/20 T, 45% < Duty cycle < 55%.

3. The fall and rise times are defined between 90% and 10% and between 10% and 90% of the output waveform, respectively.

4. Compensation system enabled.

Table 67. Output timing characteristics for FT_c I/Os (PB13/PB14)⁽¹⁾⁽²⁾

Speed	Symbol	Parameter	Conditions	Min	Max	Unit	
00 t _r /t _f	F	Maximum frequency	C = 50 pF, 2.7 V \leq V _{DDIO} \leq 3.6 V	-	2	MЦт	
	' max	Maximum nequency	C = 50 pF, 1.71 V ≤ V _{DDIO} < 2.7 V	-	1		
	t _r /t _f	t /t Output rise and fall t	Output rise and fall time	C = 50 pF, 2.7 V \leq V _{DDIO} $<$ 3.6 V	-	166	
			C = 50 pF, 1.71 V ≤ V _{DDIO} < 2.7 V	-	330	ns	
01 t _r /t _f		C = 30 pF, 2.7 V \leq V _{DDIO} $<$ 3.6 V	-	10			
	Frmax	Maximum nequency	C = 30 pF, 1.71 V ≤ V _{DDIO} < 2.7 V	-	4	MHZ	
	+ /+	Output rise and fall time	C = 30 pF, 2.7 V \leq V _{DDIO} $<$ 3.6 V	-	33		
	ι _r /ፒ _f		C = 30 pF, 1.71 V ≤ V _{DDIO} < 2.7 V	-	65	ns	

1. Specified by design - Not tested in production.

2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the product reference manual for a description of GPIO port configuration register.

5.3.16 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 58*).

Unless otherwise specified, the parameters in *Table 68* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 20*.

P P P P P P P.								
Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
$R_{PU}^{(2)}$	Weak pull-up equivalent resistor ⁽¹⁾	V _{IN} = V _{SS}	30	40	50	kΩ		
V _{F(NRST)} ⁽²⁾	NRST input filtered pulse	$1.71 \text{ V} < \text{V}_{\text{DD}} < 3.6 \text{ V}$	-	-	50	ne		
V _{NF(NRST)} ⁽²⁾	NRST input not filtered pulse	$1.71 \text{ V} < \text{V}_{\text{DD}} < 3.6 \text{ V}$	350	-	-	10		

Table	68.	NRST	pin	charac	teristics
	•••		P	onarao	

1. The pull-up is designed with a true resistance in series with a switchable PMOS. The PMOS contribution to the series resistance is minimum (~10 % order).

2. Specified by design - Not tested in production.

Figure 32. Recommended NRST pin protection

1. The reset network protects the device against parasitic resets.

 The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 58, otherwise the reset is not taken into account by the device.

5.3.17 Extended interrupt and event controller input (EXTI) characteristics

The pulse on the interrupt input must have a minimal length to ensure its detection by the event controller.

Table 69. EXTI input characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
PLEC	Pulse length to event controller	-	20	-	-	ns

1. Specified by design - Not tested in production.

5.3.18 FMC characteristics

Unless otherwise specified, the parameters given in tables 70 to 83 are derived from tests performed under the ambient temperature, f_{HCLK} frequency and V_{DD} supply voltage conditions summarized in *Table 20*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Measurement points are done at CMOS levels: 0.5 V_{DD}
- I/O compensation cell activated
- HSLV activated when $V_{DD} \le 2.7 \text{ V}$
- VOS level set to VOS0

Refer to *Section 5.3.15* for more details on the input/output alternate function characteristics.

Asynchronous waveforms and timings

Figures 33 through 35 represent asynchronous waveforms, tables 70 through 77 provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

- AddressSetupTime = 0x1
- AddressHoldTime = 0x1
- DataSetupTime = 0x1 (except for asynchronous NWAIT mode, DataSetupTime = 0x5)
- BusTurnAroundDuration = 0x0
- Capacitive load C_L = 30 pF

In all timing tables, the T_{fmc ker ck} is the f_{HCLK} clock period.

Figure 33. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms

1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	3 T _{fmc_ker_ck} - 1	3 T _{fmc_ker_ck} + 1	
t _{v(NOE_NE)}	FMC_NEx low to FMC_NOE low	0	0.5	
t _{w(NOE)}	FMC_NOE low time	2 T _{fmc_ker_ck} - 1	2 T _{fmc_ker_ck} + 1	
t _{h(NE_NOE)}	FMC_NOE high to FMC_NE high hold time	FMC_NE high hold T _{fmc_ker_ck} - 0.5		
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	FMC_A valid -		
t _{h(A_NOE)}	Address hold time after FMC_NOE high	2 T _{fmc_ker_ck} - 1.5	-	ns
t _{su(Data_NE)}	Data to FMC_NEx high setup time	T _{fmc_ker_ck} + 10	-	
t _{su(Data_NOE)}	Data to FMC_NOEx high setup time	9	-	
t _{h(Data_NOE)}	Data hold time after FMC_NOE high	0	-	
t _{h(Data_NE)}	Data hold time after FMC_NEx high	0	-	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	-	0.5	
t _{w(NADV)}	FMC_NADV low time	_	T _{fmc_ker_ck} + 1	

Table 70. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings⁽¹⁾

1. Evaluated by characterization - Not tested in production.

Table 71. Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	8 T _{fmc_ker_ck} - 1	8 T _{fmc_ker_ck} + 1	
t _{w(NOE)}	FMC_NOE low time	7 T _{fmc_ker_ck} - 1	7 T _{fmc_ker_ck} + 1	
t _{w(NWAIT)}	FMC_NWAIT low time	T _{fmc_ker_ck} - 0.5	-	ns
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	5 T _{fmc_ker_ck} + 10	-	
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4 T _{fmc_ker_ck} +10	-	

1. Evaluated by characterization - Not tested in production.

2. N_{WAIT} pulse width is equal to one fmc_ker_ck cycle.

Figure 34. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms

1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.

			(4)
Tahlo 72 /	Asynchronous non-multinl	laved SRAM/PSRAM/NOR	write timinas ⁽¹⁾
	asyncinionous non-multipl		write tillings

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	3 T _{fmc_ker_ck} - 1	3 T _{fmc_ker_ck} + 1	
t _{v(NWE_NE)}	FMC_NEx low to FMC_NWE low	T _{fmc_ker_ck} - 1	T _{fmc_ker_ck} + 0.5	
t _{w(NWE)}	FMC_NWE low time	T _{fmc_ker_ck} - 1	T _{fmc_ker_ck} +1	
t _{h(NE_NWE)}	FMC_NWE high to FMC_NE high hold time	T _{fmc_ker_ck} - 1	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	0.5	
t _{h(A_NWE)}	Address hold time after FMC_NWE high T _{fmc_ker_ck} -1		-	ne
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	0.5	115
t _{h(BL_NWE)}	FMC_BL hold time after FMC_NWE high	T _{fmc_ker_ck} -1	-	
t _{v(Data_NE)}	Data to FMC_NEx low to Data valid	- T _{fmc_ker_ck} +		
t _{h(Data_NWE)}	Data hold time after FMC_NWE high	T _{fmc_ker_ck}	-	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	-	0.5	
t _{w(NADV)}	FMC_NADV low time	-	T _{fmc_ker_ck} + 1	

1. Evaluated by characterization - Not tested in production.

Table 73. A	synchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT
	timings ⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	8 T _{fmc_ker_ck} - 1	8 T _{fmc_ker_ck} + 1	
t _{w(NWE)}	FMC_NWE low time	6 T _{fmc_ker_ck} - 1	6 T _{fmc_ker_ck} + 1	
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	5 T _{fmc_ker_ck} + 10	-	ns
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4 T _{fmc_ker_ck} + 10	-	

1. Evaluated by characterization - Not tested in production.

2. N_{WAIT} pulse width is equal to one fmc_ker_ck cycle.

Figure 35. Asynchronous multiplexed PSRAM/NOR read waveforms

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FMC_NE low time	4 T _{fmc_ker_ck} - 1	4 T _{fmc_ker_ck} + 1	
t _{v(NOE_NE)}	FMC_NEx low to FMC_NOE low	2 T _{fmc_ker_ck} - 1	2 T _{fmc_ker_ck} +0.5	
t _{tw(NOE)}	FMC_NOE low time	T _{fmc_ker_ck} - 1	T _{fmc_ker_ck} + 1	
t _{h(NE_NOE)}	FMC_NOE high to FMC_NE high hold time T _{fmc_ker_ck} - 0.5		-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	1	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	0	1	
t _{w(NADV)}	FMC_NADV low time	T _{fmc_ker_ck} - 0.5	T _{fmc_ker_ck} + 1	ns
t _{h(AD_NADV)}	FMC_AD(address) valid hold time after FMC_NADV high		-	
t _{h(A_NOE)}	Address hold time after FMC_NOE high	2 T _{fmc_ker_ck} - 0.5	-	
t _{su(Data_NE)}	Data to FMC_NEx high setup time	T _{fmc_ker_ck} +10	-	
t _{su(Data_NOE)}	Data to FMC_NOE high setup time	9 -		
t _{h(Data_NE)}	Data hold time after FMC_NEx high	0	-	
t _{h(Data_NOE)}	Data hold time after FMC_NOE high	0	-	

Table 74. Asynchronous multiplexed PSRAM/NOR read timings⁽¹⁾

1. Evaluated by characterization - Not tested in production.

Table 75. Asynchronous multiplexed PSRAM/NOR read-NWATT timings '7 '-	Table 75.	Asynchronous	multiplexed	PSRAM/NOR	read-NWAIT	timings ^{(1) (2}	2)
---	-----------	--------------	-------------	-----------	------------	---------------------------	----

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	9 T _{fmc_ker_ck} - 1	9 T _{fmc_ker_ck} + 1	
t _{w(NOE)}	FMC_NOE low time	7 T _{fmc_ker_ck} - 1	7 T _{fmc_ker_ck} + 1	
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	4 T _{fmc_ker_ck} +10	-	ns
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	3 T _{fmc_ker_ck} +10	-	

1. Evaluated by characterization - Not tested in production.

2. NWAIT pulse width is equal to one fmc_ker_ck cycle.

Figure 36. Asynchronous multiplexed PSRAM/NOR write waveforms

Symbol	Baramotor	Min	Max	Unit
Symbol	Falameter	IAIIII	IVIAA	Unit
t _{w(NE)}	FMC_NE low time	4 T _{fmc_ker_ck} -1	4 T _{fmc_ker_ck} +1	
$t_{v(NWE_NE)}$	FMC_NEx low to FMC_NWE low	T _{fmc_ker_ck} - 1	T _{fmc_ker_ck} +0.5	
t _{w(NWE)}	FMC_NWE low time	2 T _{fmc_ker_ck} - 1	2 T _{fmc_ker_ck} + 1	
t _{h(NE_NWE)}	FMC_NWE high to FMC_NE high hold time	T _{fmc_ker_ck} - 0.5	-	
t _{v(A_NE)}	FMC_NEx low to FMC_A valid	-	0.5	
t _{v(NADV_NE)}	FMC_NEx low to FMC_NADV low	0	1	
t _{w(NADV)}	FMC_NADV low time	T _{fmc_ker_ck} - 1	T _{fmc_ker_ck} + 1	ns
t _{h(AD_NADV)}	FMC_AD(adress) valid hold time after FMC_NADV high	T _{fmc_ker_ck} - 1	-	
t _{h(A_NWE)}	Address hold time after FMC_NWE high	T _{fmc_ker_ck} - 1	-	
t _{h(BL_NWE)}	FMC_BL hold time after FMC_NWE high	T _{fmc_ker_ck} - 1	-	
t _{v(BL_NE)}	FMC_NEx low to FMC_BL valid	-	0.5	
t _{v(Data_NADV)}	FMC_NADV high to Data valid	-	T _{fmc_ker_ck} + 0.5	
t _{h(Data_NWE)}	Data hold time after FMC_NWE high	T _{fmc_ker_ck} - 0.5	-	

Table 76. Asynchronous multiplexed PSRAM/NOR write timings⁽¹⁾

Table 77. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings ^{(1)/2}	Table 77. As	synchronous mu	tiplexed PSRAM/NOR	write-NWAIT	timings ⁽¹⁾⁽²⁾
---	--------------	----------------	--------------------	-------------	---------------------------

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	9 T _{fmc_ker_ck} - 1	9 T _{fmc_ker_ck} + 1	
t _{w(NWE)}	FMC_NWE low time	7 T _{fmc_ker_ck} -1	7 T _{fmc_ker_ck} + 1	
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	5 T _{fmc_ker_ck} + 10	-	ns
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4 T _{fmc_ker_ck} + 10	-	

1. Evaluated by characterization - Not tested in production.

2. N_{WAIT} pulse width is equal to one fmc_ker_ck cycle.

Synchronous waveforms and timings

Figures 37 through 40 represent synchronous waveforms, tables 78 through 81 provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:

- BurstAccessMode = FMC_BurstAccessMode_Enable
- MemoryType = FMC_MemoryType_CRAM
- WriteBurst = FMC_WriteBurst_Enable
- CLKDivision = 1
- DataLatency = 1 for NOR flash, DataLatency = 0 for PSRAM.
- With capacity load C_L = 30 pF

In all the timing tables, $T_{fmc_ker_ck}$ is the $f_{mc_ker_ck}$ clock period, with the following FMC_CLK maximum values:

- For 2.7 V < V_{DD} < 3.6 V: maximum FMC_CLK = 100 MHz at C_L = 20 pF
- For 1.71 V < V_{DD} < 1.8 V: maximum FMC_CLK = 95 MHz at C_L = 20 pF
- For 1.71 V < V_{DD} < 1.8 V: maximum FMC_CLK = 100 MHz at C_L = 15 pF

DS14258 Rev 5

	,			
Symbol	Parameter	Min	Мах	Unit
t _{w(CLK)}	FMC_CLK period	2T _{fmc_ker_ck} - 0.5	-	
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x = 02)	-	1	
t _{d(CLKH_NExH)}	FMC_CLK high to FMC_NEx high (x = 02)	T _{fmc_ker_ck} - 1	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	1.5	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0.5	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x = 1625)	-	1	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x = 1625)	T _{fmc_ker_ck} - 1	-	
t _{d(CLKL-NOEL)}	FMC_CLK low to FMC_NOE low	-	1	ns
t _{d(CLKH-NOEH)}	FMC_CLK high to FMC_NOE high	T _{fmc_ker_ck} + 0.5	-	
t _{d(CLKL-ADV)}	FMC_CLK low to FMC_AD[15:0] valid	-	3.5	
t _{d(CLKL-ADIV)}	FMC_CLK low to FMC_AD[15:0] invalid	0.5	-	
t _{su(ADV-CLKH)}	FMC_A/D[15:0] valid data before FMC_CLK high	3.5	-	
t _{h(CLKH-ADV)}	FMC_A/D[15:0] valid data after FMC_CLK high	1.5	-	
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	2.5	-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	1.5	-	

Table 78. Synchronous multiplexed NOR/PSRAM read timings⁽¹⁾

Figure 38. Synchronous multiplexed PSRAM write timings

	·····			
Symbol	Parameter	Min	Мах	Unit
t _{w(CLK)}	FMC_CLK period, V _{DD} = 2.7 to 3.6 V	2T _{fmc_ker_ck} - 0.5	-	
$t_{d(CLKL-NExL)}$	FMC_CLK low to FMC_NEx low (x = 02)	-	1	
t _{d(CLKH-NExH)}	FMC_CLK high to FMC_NEx high (x = 02)	T _{fmc_ker_ck} - 1	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	1.5	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0.5	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x = 1625)	-	1	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x = 1625)	T _{fmc_ker_ck} - 1	-	
t _{d(CLKL-NWEL)}	FMC_CLK low to FMC_NWE low	-		n c
t _(CLKH-NWEH)	FMC_CLK high to FMC_NWE high	T _{fmc_ker_ck} + 0.5	-	115
t _{d(CLKL-ADV)}	FMC_CLK low to FMC_AD[15:0] valid	-	3.5	
t _{d(CLKL-ADIV)}	FMC_CLK low to FMC_AD[15:0] invalid	1	-	
t _{d(CLKL-DATA)}	FMC_A/D[15:0] valid data after FMC_CLK low	-	1	
$t_{d(CLKL-NBLL)}$	FMC_CLK low to FMC_NBL low	-	1	
t _{d(CLKH-NBLH)}	FMC_CLK high to FMC_NBL high	T _{fmc_ker_ck}	-	
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	2.5	-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	1.5	-	

Table 79. Synchronous multiplexed PSRAM write timings⁽¹⁾

Figure 39. Synchronous non-multiplexed NOR/PSRAM read timings

Table 80. S	ynchronous no	on-multiplexed	NOR/PSRAM	read timings ⁽¹⁾
-------------	---------------	----------------	-----------	-----------------------------

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FMC_CLK period	2T _{fmc_ker_ck} –0.5	-	
t _(CLKL-NExL)	FMC_CLK low to FMC_NEx low (x = 02)	-	1	
t _{d(CLKH-NExH)}	FMC_CLK high to FMC_NEx high (x = 02)	T _{fmc_ker_ck} - 1	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	1.5	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0.5	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x = 1625)	5) -		
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x = 1625) $T_{fmc_ker_ck^-}$		-	ns
t _{d(CLKL-NOEL)}	FMC_CLK ow to FMC_NOE low	-	1	
t _{d(CLKH-NOEH)}	FMC_CLK high to FMC_NOE high	T _{fmc_ker_ck} + 0.5	-	
t _{su(DV-CLKH)}	FMC_D[15:0] valid data before FMC_CLK high	3.5	I	
t _{h(CLKH-DV)}	FMC_D[15:0] valid data after FMC_CLK high	1.5	I	
t _(NWAIT-CLKH)	FMC_NWAIT valid before FMC_CLK high	2.5	-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	1.5	-	

Table 81.	Synchronous	non-multiple	xed PSRAM	write timinas	(1)
	oynem onous	non-munipic		write tillings	

Symbol	Parameter	Min	Max	Unit
t _(CLK)	FMC_CLK period	2T _{fmc_ker_ck} - 0.5	-	
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x = 02)	-	1	
t _(CLKH-NExH)	FMC_CLK high to FMC_NEx high (x = 02)	T _{fmc_ker_ck} - 0.5	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	1.5	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0.5	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x = 1625)	-	1	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x = 1625)	T _{fmc_ker_ck} + 0.5	-	20
t _{d(CLKL-NWEL)}	FMC_CLK low to FMC_NWE low	-	1	115
t _{d(CLKH-NWEH)}	FMC_CLK high to FMC_NWE high	T _{fmc_ker_ck} + 0.5	-	
^t d(CLKL-Data)	FMC_D[15:0] valid data after FMC_CLK low	-	3.5	
t _{d(CLKL-NBLL)}	FMC_CLK low to FMC_NBL low	-	1.5	
t _{d(CLKH-NBLH)}	FMC_CLK high to FMC_NBL high	T _{fmc_ker_ck} - 0.5	-	
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	2.5	-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	1.5	-	

NAND controller waveforms and timings

Figures 41 through 44 represent synchronous waveforms, tables 82 and 83 provide the corresponding timings. The results are obtained with the following FMC configuration and a capacitive load (C_L) of 30 pF:

- COM.FMC_SetupTime = 0x01
- COM.FMC_WaitSetupTime = 0x03
- COM.FMC_HoldSetupTime = 0x02
- COM.FMC_HiZSetupTime = 0x01
- ATT.FMC_SetupTime = 0x01
- ATT.FMC_WaitSetupTime = 0x03
- ATT.FMC_HoldSetupTime = 0x02
- ATT.FMC_HiZSetupTime = 0x01
- Bank = FMC_Bank_NAND
- MemoryDataWidth = FMC_MemoryDataWidth_16b
- ECC = FMC_ECC_Enable
- ECCPageSize = FMC_ECCPageSize_512Bytes
- TCLRSetupTime = 0
- TARSetupTime = 0
- Capacitive load C_L = 30 pF

In all timing tables, T_{fmc ker ck} is the HCLK clock period.

1. y = 7 or 15, depending upon the NAND flash memory interface.

Figure 42. NAND controller waveforms for write access

1. y = 7 or 15, depending upon the NAND flash memory interface.

Table 82. Switching characteristics for NAND flash read cycles⁽¹⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(N0E)}	FMC_NOE low width	4T _{fmc_ker_ck} - 0.5	4T _{fmc_ker_ck} + 0.5	
t _{su(D-NOE)}	FMC_D[15-0] valid data before FMC_NOE high	11	-	
t _{h(NOE-D)}	FMC_D[15-0] valid data after FMC_NOE high	0	-	ns
t _{d(ALE-NOE)}	FMC_ALE valid before FMC_NOE low	-	3T _{fmc_ker_ck} + 0.5	
t _{h(NOE-ALE)}	FMC_NWE high to FMC_ALE invalid	4T _{fmc_ker_ck} - 1.5	-	

Table 83. Switching characteristics for NAND flash write cycles⁽¹⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(NWE)}	FMC_NWE low width	$4T_{fmc_ker_ck} - 0.5$	$4T_{fmc_ker_ck} + 0.5$	
t _{v(NWE-D)}	FMC_NWE low to FMC_D[15-0] valid	0	-	
t _{h(NWE-D)}	FMC_NWE high to FMC_D[15-0] invalid	2T _{fmc_ker_ck} + 0.5	-	20
t _{d(D-NWE)}	FMC_D[15-0] valid before FMC_NWE high	5T _{fmc_ker_ck} - 2.5	-	115
t _{d(ALE-NWE)}	FMC_ALE valid before FMC_NWE low	-	$3T_{fmc_ker_ck} + 0.5$	
t _{h(NWE-ALE)}	FMC_NWE high to FMC_ALE invalid	2T _{fmc_ker_ck} - 1	-	

1. Evaluated by characterization - Not tested in production.

SDRAM waveforms and timings

In all timing tables, the $t_{fmc_ker_ck}$ is the f_{HCLK} clock period, with the following FMC_SDCLK maximum values:

- For 2.7 V< V_{DD}< 3.6 V: maximum FMC_SDCLK = 95 MHz at 20 pF (100 MHz for V_{DD} > 3.0V)
- For 1.71 V < V_{DD} < 1.8 V: maximum FMC_SDCLK = 95 MHz at 15 pF
- For 1.71 V < V_{DD} < 1.8 V: maximum FMC_SDCLK = 90 MHz at 20 pF

Table 84. SDRAM read timings⁽¹⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(SDCLK)}	FMC_SDCLK period	2T _{fmc_ker_ck} - 0.5	$2T_{fmc_ker_ck} + 0.5$	
t _{su(SDCLKH _Data)}	Data input setup time	3	-	
^t h(SDCLKH_Data)	Data input hold time	0.5	-	
$t_{d(SDCLKL_Add)}$	Address valid time	-	1.5	
t _{d(SDCLKL} - SDNE)	Chip select valid time	-	1.5	ne
$t_{h(SDCLKL_SDNE)}$	Chip select hold time	0	-	115
t _{d(SDCLKL_SDNRAS)}	SDNRAS valid time	-	1.5	
t _h (SDCLKL_SDNRAS)	SDNRAS hold time	0	-	
t _{d(SDCLKL_SDNCAS)}	SDNCAS valid time	-	1	
t _{h(SDCLKL_SDNCAS)}	SDNCAS hold time	0	-	

Symbol	Parameter	Min	Мах	Unit
t _{W(SDCLK)}	FMC_SDCLK period	2T _{fmc_ker_ck} - 0.5	2T _{fmc_ker_ck} + 0.5	
t _{su(SDCLKH_Data)}	Data input setup time	3	-	
t _{h(SDCLKH_Data)}	Data input hold time	0.5	-	
t _{d(SDCLKL_Add)}	Address valid time	-	1.5	
t _{d(SDCLKL_SDNE)}	Chip select valid time	-	1.5	20
t _{h(SDCLKL_SDNE)}	Chip select hold time	0	-	115
t _{d(SDCLKL_SDNRAS}	SDNRAS valid time	-	1.5	
t _{h(SDCLKL_SDNRAS)}	t _{h(SDCLKL_SDNRAS)} SDNRAS hold time		-	
t _{d(SDCLKL_SDNCAS)}	t _{d(SDCLKL_SDNCAS)} SDNCAS valid time		1	
t _{h(SDCLKL_SDNCAS)}	SDNCAS hold time	0	-	

Table 85. LPSDR SDRAM read timings⁽¹⁾

1. Evaluated by characterization - Not tested in production.

Figure 46. SDRAM write access waveforms

Symbol	Parameter	Min	Мах	Unit
t _{w(SDCLK)}	FMC_SDCLK period	$2T_{fmc_{ker_{ck}}} - 0.5$	2T _{fmc_ker_ck} +0.5	
t _{d(SDCLKL_Data})	Data output valid time	-	1	
t _{h(SDCLKL} _Data)	Data output hold time	0	-	
t _{d(SDCLKL_Add)}	Address valid time	-	2	
t _{d(SDCLKL_SDNWE)}	SDNWE valid time	-	1	
t _{h(SDCLKL_SDNWE)}	SDNWE hold time	0	-	ne
t _{d(SDCLKL_SDNE)}	Chip select valid time	-	1	115
t _{h(SDCLKLSDNE)}	Chip select hold time	0	-	
t _{d(SDCLKL_SDNRAS)}	SDNRAS valid time	-	1.5	
t _{h(SDCLKL_SDNRAS)} SDNRAS hold time		0	-	
t _{d(SDCLKL_SDNCAS)}	t _{d(SDCLKL_SDNCAS)} SDNCAS valid time		1	
t _{d(SDCLKL_SDNCAS)}	SDNCAS hold time	0	_	

Table 86. SDRAM write timings⁽¹⁾

1. Evaluated by characterization - Not tested in production.

Table 87. LPSDR SDRAM write timings⁽¹⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(SDCLK)}	FMC_SDCLK period	2T _{fmc_ker_ck} ₋ 0.5	2T _{fmc_ker_ck} +0.5	
t _{d(SDCLKL_Data})	Data output valid time	-	1	
t _{h(SDCLKL} _Data)	Data output hold time	0.	-	
$t_{d(SDCLKL_Add)}$	Address valid time	-	2	
t _{d(SDCLKL-SDNWE)}	t _{d(SDCLKL-SDNWE)} SDNWE valid time		1	
t _{h(SDCLKL-SDNWE)}	SDNWE hold time	0	-	ne
t _{d(SDCLKL-} SDNE)	CLKL- SDNE) Chip select valid time		1.5	115
t _{h(SDCLKL} - SDNE)	n(SDCLKL- SDNE) Chip select hold time		-	
t _{d(SDCLKL-SDNRAS)}	t _{d(SDCLKL-SDNRAS)} SDNRAS valid time		1.5	
t _{h(SDCLKL-SDNRAS)} SDNRAS hold time		0	-	
t _{d(SDCLKL-SDNCAS)}	SDNCAS valid time	-	1	
t _{d(SDCLKL-SDNCAS)}	SDNCAS hold time	0	-	

5.3.19 Octo-SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 88* and *Table 89* are derived from tests performed under the ambient temperature, f_{HCLK} frequency and V_{DD} supply voltage conditions summarized in *Table 20*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Measurement points are done at CMOS levels: 0.5 V_{DD}
- I/O compensation cell activated
- HSLV activated when $V_{DD} \le 2.7 \text{ V}$
- VOS level set to VOS0

Refer to *Section 5.3.15* for more details on the input/output alternate function characteristics.

Symbol	Parameter	Conditions	Min	Тур	Max ⁽³⁾	Unit
E	Clock frequency	1.71 V < V _{DD} < 1.9 V, C _L = 15 pF	-	-	110	
F(CLK)	Сюск пеquency	1.71 V < V _{DD} < 3.6 V, C _L =15 pF	-	-	150	
t _{w(CLKH)}	Clock high and low time,	PRESCALER[7:0] = n	t _(CLK) / 2 - 0.5	-	t _(CLK) / 2 + 0.5	
t _{w(CLKL)}	even division	(= 0, 1, 3, 5,, 255)	t _(CLK) / 2 - 0.5	-	t _(CK) / 2 + 0.5	
t _{w(CLKH)}	Clock high and low time,	PRESCALER[7:0] = n	(n / 2) * t _(CLK) / (n + 1) - 0.5	-	(n / 2) * t _(CLK) / (n + 1) + 0.5	
t _{w(CLKL)}	odd division (= 2, 4, 6,	(= 2, 4, 6,, 254)	(n / 2 + 1) * t _(CLK) / (n + 1) - 0.5	-	(n / 2 + 1) * t _(CLK) / (n + 1) + 0.5	ns
t _{s(IN)}	Data input setup time	-	4	-	-	
t _{h(IN)}	Data input hold time	-	1	-	-	
t _{v(OUT)}	Data output valid time	-	-	0.5	1	
t _{h(OUT)}	Data output hold time	-	0	-	-	

Table 88. OCTOSPI characteristics in SDR mode⁽¹⁾⁽²⁾

1. All values apply to Octal- and Quad-SPI mode.

2. Evaluated by characterization - Not tested in production.

3. At VOS1 these values are degraded by up to 5%.

Figure 47. OCTOSPI SDR read/write timing diagram

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
OCTOSPI clock		1.71 V < V _{DD} < 1.9 V, C _L = 15 pF	-	-	100 ⁽⁴⁾	MЦэ
FCLK frequency	frequency	2.7 V < V _{DD} < 3.6 V, C _L = 15 pF	-	-	125 ⁽⁴⁾	
t _{w(CLKH)}	OCTOSPI clock	PRESCALER[7:0] = n	t _(CLK) / 2 - 0.5	-	t _(CLK) / 2 + 0.5	
t _{w(CLKL)}	high and low time	(= 0, 1, 3, 5,, 255)	t _(CLK) / 2 - 0.5	-	t _(CLK) / 2 + 0.5	
t _{w(CLKH)}	OCTOSPI clock	PRESCALER[7:0] = n	(n / 2) * t _(CLK) / (n + 1) - 0.5	-	(n / 2) * t _(CLK) / (n + 1) + 0.5	ns
t _{w(CLKL)}	high and low time	(= 2, 4, 6, 8,, 254)	(n / 2 + 1) * t _(CLK) / (n + 1) - 0.5	-	(n / 2 + 1) * t _(CLK) / (n + 1) + 0.5	
t _{v(CLK)}	Clock valid time	-	-	-	t _(CLK) +0.5	ns
t _{sr(IN),} t _{sf(IN)}	Data input setup time	-	4	-	-	
t _{hr(IN),} t _{hf(IN)}	Data input hold time	-	1.5	-	-	
+		DHQC = 0	-	2.5	3.5	ne
^t vr(OUT) t _{vf(OUT)}	Data output valid time	DHQC = 1, Prescaler [7:0] = 1, 2	-	t _(CLK) / 4 + 0.5	t _(CLK) / 4 + 1	115
+		DHQC = 0	1.5	-	-	
^t hr(OUT) t _{hf(OUT)}	Data output hold time	DHQC = 1, Prescaler [7:0] = 1, 2	t _(CLK) / 4 - 1	-	-	

Table 89. OCTOSPI characteristics in DTR mode	(no DQS) ⁽¹⁾⁽²⁾⁽³⁾
---	-------------------------------

1. All values apply to Octal and Quad-SPI mode.

2. Evaluated by characterization - Not tested in production.

3. Delay block bypassed.

4. DHQC must be set to reach the mentioned frequency.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
F		1.71 V < V _{DD} < 1.9 V, C _L = 15 pF	-	-	125 ⁽³⁾⁽⁴⁾	
CLK		2.7 V < V _{DD} < 3.6 V, C _L = 15 pF	-	-	125 ⁽³⁾⁽⁵⁾	
t _{w(CLKH)}	OCTOSPI clock	PRESCALER[7:0] = n	t _(CLK) /2 - 0.5	-	t _(CLK) /2 + 0.5	
t _{w(CLKL)}	high and low time	= (0, 1, 3, 5,, 255)	t _(CLK) /2 - 0.5	-	t _(CLK) /2 + 0.5	
t _{w(CLKH)}	OCTOSPI clock	PRESCALER[7:0] = n	(n/2)*t _(CLK) / (n+1) - 0.5	-	(n/2)*t _(CLK) / (n+1) + 0.5	ne
t _{w(CLKL)}	high and low time	= (2, 4, 6, 8,, 254)	(n/2+1)*t _(CLK) / (n+1) - 0.5	-	(n/2+1)*t _(CLK) / (n+1) + 0.5	115
t _{v(CLK)}	Clock valid time	-	-	-	t _(CLK) + 2	
t _{h(CLK)}	Clock hold time	-	t _(CLK) /2 - 1	-	-	
t _{ODr(CLK)} ⁽⁵⁾	CLK, NCLK crossing level on CLK rising edge	V _{DD} = 1.8 V	890	-	1300	m\/
t _{ODf(CLK)} ⁽⁵⁾	CLK, NCLK crossing level on CLK falling edge	V _{DD} = 1.8 V	790	-	1080	IIIV
t _{w(CS)}	Chip select high time	-	3 * t _(CLK)	-	-	
t _{v(DQ)}	Data input valid time	-	3	-	-	
t _{v(DS)}	Data strobe input valid time	-	1	-	-	ns
t _{h(DS)}	Data strobe input hold time	-	0	-	-	
t _{v(RWDS)}	Data strobe output valid time	-	-	-	3 * t _(CLK)	
t _{sr(DQ),} t _{sf(DQ)}	Data input setup time	-	-0.5	-	-	
t _{hr(DQ),} t _{hf(DQ)}	Data input hold time	-	2	-	-	
		DHQC = 0	-	2.5	3.5	
t _{vr(OUT)} t _{vf(OUT)}	Data output valid time	DHQC = 1, all prescaler values except 0	-	t _(CLK) /4 + 0.5	t _(CLK) /4 + 1	ns
		DHQC = 0	1.5	-	-	1
t _{hr(OUT)} t _{hf(OUT)}	Data output hold time	DHQC = 1, all prescaler values except 0	t _(CLK) /4 - 1	-	-	

Table 90, OCTOSPI characteristics in DTR mode (with DQS) / HyperBus ⁽¹⁾
--

2. Delay block activated.

3. Maximum frequency value are given for a maximum RWDS to DQ skew of \pm 1.0 ns.

4. DHQC must be set to reach the mentioned frequency.

5. It is recommended that PF10/PB5, PB4/PB5 and PA3/PB5 are in line with crossing specification.

Figure 49. OCTOSPI HyperBus clock

Figure 50. OCTOSPI HyperBus read

Figure 51. OCTOSPI HyperBus write

5.3.20 Delay block (DLYB) characteristics

Unless otherwise specified, the parameters given in *Table 91* are derived from tests performed under the ambient temperature, f_{HCLK} frequency and V_{DD} supply voltage summarized in *Table 20*, with the following configuration:

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{init}	Initial delay	-	750	1100	1700	ps
t_Δ	Unit delay	-	38	44	54	ps

Table 91. Delay block characteristics

5.3.21 DCMI interface characteristics

Unless otherwise specified, the parameters given in *Table 92* are derived from tests performed under the ambient temperature, f_{HCLK} frequency and V_{DD} supply voltage summarized in *Table 20*, with the following configuration:

- DCMI_PIXCLK polarity: falling
- DCMI_VSYNC and DCMI_HSYNC polarity: high
- Data formats: 14 bits
- Capacitive load C₁ = 30 pF
- Measurement points done at CMOS levels: 0.5 V_{DD}
- I/O compensation cell activated
- HSLV activated when $V_{DD} \le 2.7 \text{ V}$
- Voltage scaling VOS0 selected

Symbol	Parameter	Min	Max	Unit
-	Frequency ratio DCMI_PIXCLK/fHCLK		0.4	-
DCMI_PIXCLK	Pixel clock input	-	100	MHz
D _{PIXEL}	Pixel clock input duty cycle		70	%
t _{su(DATA)}	Data input setup time		-	
t _{h(DATA)}	Data hold time		-	
$t_{su(HSYNC),} t_{su(VSYNC)}$	J(HSYNC), t _{su(VSYNC)} DCMI_HSYNC and DCMI_VSYNC input setup times		-	115
t _{h(HSYNC)} , t _{h(VSYNC)}	DCMI_HSYNC and DCMI_VSYNC input hold times	1.5	-	

Table 92. DCMI characteristics⁽¹⁾

5.3.22 PSSI interface characteristics

Unless otherwise specified, the parameters given in *Table 92* and *Table 93* are derived from tests performed under the ambient temperature, f_{HCLK} frequency and V_{DD} supply voltage summarized in *Table 20* and *Section 5.3.1*, with the following configuration:

- PSSI_PDCK polarity: falling
- PSSI_RDY and PSSI_DE polarity: low
- Bus width: 16 lines
- DATA width: 32 bits
- Capacitive load C_L= 30 pF
- Measurement points are done at CMOS levels: 0.5 V_{DD}
- I/O compensation cell activated
- HSLV activated when $V_{DD} \le 2.7 \text{ V}$
- Voltage scaling VOS0 selected

Symbol	Parameter	Conditions	Min	Max	Unit
-	Frequency ratio PSSI_PDCK/f _{HCLK}	-	-	0.4	-
	DSSI alaak input	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	-	90 ⁽²⁾	
F33I_FDCK	PSSI Clock Input	$1.71 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	-	86	
D _{pixel}	PSSI clock input duty cycle		30	70	%
	Deta output valid time	$2.7~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 3.6~\textrm{V}$	-	11	
ι _{ον} (DATA)		$1.71 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$	-	11.5	
t _{oh} (DATA)	Data output hold time		5.5	-	
t _{ov(} (DE)	DE output valid time		-	11.5	ns
t _{oh} (DE) DE output hold time		1.71 V ≤ V _{DD} ≤ 3.6 V	5.5	-	
tsu(RDY)	tsu(RDY) RDY input setup time		0.5	-	
th(RDY)	RDY input hold time		0.5	-	

Table 93.	PSSI	transmit	characteristics ⁽¹⁾
-----------	------	----------	--------------------------------

2. This maximal frequency does not consider receiver setup and hold timings.

Table 94. PSSI receive characteristics								
Symbol	Symbol Parameter Condition		Min	Max	Unit			
-	Frequency ratio PSSI_PDCK/f _{HCLK}		-	0.4	-			
PSSI_PDCK	PSSI clock input	$1.71~\textrm{V} \leq \textrm{V}_\textrm{DD} \leq 3.6~\textrm{V}$	-	100	MHz			
D _{pixel}	PSSI clock input duty cycle	-	30	70	%			
t _{su} (DATA)	Data input setup time		2	-				
t _h (DATA)	Data input hold time		2.5	-				
t _{su(} DE)	DE input setup time		1.5	-				

torioti **~**(1) 4 80 ~

 $1.71~\mathrm{V} \leq \mathrm{V_{DD}} \leq 3.6~\mathrm{V}$

2

-

5.5

1. Evaluated by characterization - Not tested in production.

DE input hold time

RDY output valid time

RDY output hold time

t_h(DE)

 $t_{ov}(RDY)$

 $t_{oh}(RDY)$

ns

_

16.5

-

Figure 53. PSSI transmit timing diagram

5.3.23 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 95* are derived from tests performed under the ambient temperature, f_{HCLK} frequency, and V_{DDA} supply voltage conditions summarized in *Table 20*.

Symbol	Parameter	Conditions				Min	Тур	Max	Unit			
V _{DDA}	Analog supply voltage for ADC ON	-					1.62	-	3.6			
V _{REF+}	Positive reference voltage			-				1.62	-	V _{DDA}	V	
V _{REF-}	Negative reference voltage			-					V _{SSA}			
f _{adc_ker_ck} ⁽³⁾	Clock frequency			1.62 V ≤ V _{DDA} ≤	≤ 3.6 V			1.5	-	75	MHz	
			Continuous	$1.8V \le V_{DDA} \le 3.6V$		f _{adc_ker_ck} = 75 MHz		-	5.00	-		
		Resolution	mode	1.6V ≤ V _{DDA} ≤ 3.6V		f _{adc_ker_ck} = 70 MHz	1	-	4.66	-		
		= 12 bits	Single or	$2.4V \le V_{DDA} \le 3.6V$		f _{adc_ker_ck} = 60 MHz		-	4.00	-		
f _S ⁽⁴⁾ with R _{AIN} = 47 Ω and	Sampling rate for fast channels (VIN[0:5])		mode	1.6V ≤ V _{DDA} ≤ 3.6V	-40°C ≤ T _J ≤ 130°C	f _{adc_ker_ck} = 50 MHz	-	-	3.33	-	-	
		ampling rate for fast channels (VIN[0:5]) Resolution = 10 bits	Continuous mode	$1.6V \le V_{DDA} \le 3.6V$		fado kar ok		-	5.77	-		
			ution bits Discontinuous mode	$2.4V \le V_{DDA} \le 3.6V$		= 75 MHz	-	5.77	-			
				1.6V ≤ V _{DDA} ≤ 3.6V		f _{adc_ker_ck} = 65 MHz	SMP =2.5	-	5.00	-	MSPS	
C _{PCB} = 22 μF			Resolution = 8 bits				fado kar ok	ado ker ok	-	6.82	-	
		Resolution = 6 bits	- All modes	1.6V ≤ V _{DDA} ≤ 3.6V		= 75 MHz	-	8.33	-			
		Resolution = 12 bits				f _{adc_ker_ck} = 35 MHz	-	-	2.30	-	-	
	Sampling rate	Resolution = 10 bits	All					-	2.70	-		
	channels	Resolution = 8 bits	All modes	1.0V S V _{DDA} S 3.0V		f _{adc_ker_ck} = 50 MHz		-	4.50	-		
		Resolution = 6 bits				f _{adc_ker_ck} = 50 MHz		-	5.50	-		
t _{TRIG}	External trigger period			Resolution = 1	2 bits			-	-	15	1/f _{adc_ker_ck}	
V _{AIN} ⁽²⁾	Conversion voltage range			-				0	-	V _{REF+}		
V _{CMIV}	Common mode input voltage			-				V _{REF} / 2 - 10%	V _{REF} / 2	V _{REF} / 2 + 10%	V	

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		Resolution = 12 bits, T _J = 130°C (tolerance 4 LSBs)	-	-	321	
		Resolution = 12 bits, T _J = 125°C	-	-	220	
		Resolution = 10 bits, T _J = 130°C	-	-	1039	
D (6)	External input	Resolution = 10 bits, T_J = 125°C	-	-	2100	
RAIN'''	impedance	Resolution = 8 bits, T _J = 130°C	-	-	6327	Ω
		Resolution = 8 bits, T _J = 125°C	-	-	12000	
		Resolution = 6 bits, T_J = 130°C	-	-	47620	
		Resolution = 6 bits, T_J = 125°C	-	-	80000	
C _{ADC}	Internal sample and hold capacitor	-	-	3	-	pF
t _{ADCVREG_} STUP	LDO startup time	-	-	5	10	μs
t _{STAB}	Power-up time	LDO already started	1	-	-	Conversion cycle
t _{OFF_CAL}	Offset calibration time	-		1335		
	Trigger conversion latency for regular and injected channels without aborting the conversion	CKMODE = 00	1.5	2	2.5	
		CKMODE = 01	-	-	2.5	1
^t LATR		CKMODE = 10	-	-	2.5	
		CKMODE = 11	-	-	2.25	
	Trigger conversion latency for regular and injected channels when a regular	CKMODE = 00	2.5	3	3.5	1/fada kar ak
		CKMODE = 01	-	-	3.5	auc_kei_ck
t _{latrinj}		CKMODE = 10	-	-	3.5	
	conversion is aborted	CKMODE = 11	-	-	3.25	
t _S	Sampling time	-	2.5	-	640.5	
t _{CONV}	Total conversion time (including sampling)	N-bits resolution	t _S + 0.5 + N	-	-	
	Consumption	fs = 5 MSPS	-	600	-	
I _{DDA_D(ADC)}	on v _{DDA} and V _{REF} ,	fs = 1 MSPS	-	190	-	
	mode	fs = 0.1 MSPS	-	50	-	
	Consumption	fs = 5 MSPS	-	500	-	
IDDA_SE(ADC)	on V _{DDA} and V _{REE} , single-	fs = 1 MSPS	-	150	-	
	ended mode	fs = 0.1 MSPS	-	50	-	
		f _{adc_ker_ck} = 75 MHz	-	265	-	μΑ
		f _{adc_ker_ck} = 50 MHz		175	-	
I	Consumption	f _{adc_ker_ck} = 25 MHz	-	90	-	
'DD(ADC)	on V _{DD}	f _{adc_ker_ck} = 12.5 MHz	-	45	-	
		f _{adc_ker_ck} = 6.25 MHz	-	22	-	
		f _{adc_ker_ck} = 3.125 MHz	-	11	-	

Table 95. 12-bit ADC characteristics ⁽¹⁾⁽²⁾	(continued)
--	-------------

1. Specified by design - Not tested in production.

2. The voltage booster on ADC switches must be used for V_{DDA} < 2.7 V (embedded I/O switches).

- 3. This frequency is the analog ADC specification, it must respect the value in Table 21.
- 4. These values are valid on BGA packages.
- 5. Depending upon the package, V_{REF+} can be internally connected to V_{DDA} , and V_{REF-} to V_{SSA} .
- 6. The tolerance is two LSBs for 12-bit, 10-bit and 8-bit resolutions, otherwise specified.

Devel (ter	D (0)	Minimum sampling time (s)			
Resolution	R _{AIN} (12)	Fast channel	Slow channel ⁽³⁾		
	47	3.75E-08	6.12E-08		
	68	3.94E-08	6.25E-08		
	100	4.36E-08	6.51E-08		
12 bits	150	5.11E-08	7.00E-08		
	220	6.54E-08	7.86E-08		
	330	8.80E-08	9.57E-08		
	470	1.17E-07	1.23E-07		
	680	1.60E-07	1.65E-07		
	47	3.19E-08	5.17E-08		
	68	3.35E-08	5.28E-08		
	100	3.66E-08	5.45E-08		
	150	4.35E-08	5.83E-08		
	220	5.43E-08	6.50E-08		
10 bito	330	7.18E-08	7.89E-08		
TO DILS	470	9.46E-08	1.00E-07		
	680	1.28E-07	1.33E-07		
	1000	1.81E-07	1.83E-07		
	1500	2.63E-07	2.63E-07		
	2200	3.79E-07	3.76E-07		
	3300	5.57E-07	5.52E-07		

Table 96. Minimum sampling time versus R_{AIN}⁽¹⁾⁽²⁾

		Minimum sampling time (s)			
Resolution	R _{AIN} (Ω)	Fast channel	Slow channel ⁽³⁾		
	47	2.64E-08	4.17E-08		
	68	2.76E-08	4.24E-08		
	100	3.02E-08	4.39E-08		
	150	3.51E-08	4.66E-08		
	220	4.27E-08	5.13E-08		
	330	5.52E-08	6.19E-08		
8 bits	470	7.17E-08	7.72E-08		
	680	9.68E-08	1.00E-07		
	1000	1.34E-07	1.37E-07		
	1500	1.93E-07	1.94E-07		
	2200	2.76E-07	2.74E-07		
	3300	4.06E-07	4.01E-07		
	4700	5.73E-07	5.62E-07		
	6800	8.21E-07	7.99E-07		
	10000	1.20E-06	1.17E-06		
	15000	1.79E-06	1.74E-06		
	47	2.14E-08	3.16E-08		
	68	2.23E-08	3.21E-08		
	100	2.40E-08	3.31E-08		
	150	2.68E-08	3.52E-08		
	220	3.13E-08	3.87E-08		
	330	3.89E-08	4.51E-08		
	470	4.88E-08	5.39E-08		
6 bito	680	6.38E-08	6.79E-08		
0 bits	1000	8.70E-08	8.97E-08		
	1500	1.23E-07	1.24E-07		
	2200	1.73E-07	1.73E-07		
	3300	2.53E-07	2.49E-07		
	4700	3.53E-07	3.45E-07		
	6800	5.04E-07	4.90E-07		
	10000	7.34E-07	7.11E-07		
	15000	1.09E-06	1.05E-06		

Table 96. Minimum sampling time ver	rsus R _{AIN} ⁽¹⁾⁽²⁾ (continued)
-------------------------------------	---

1. Specified by design - Not tested in production.

2. Data valid up to 130 °C, with a 22 pF PCB capacitor, and V_{DDA} = 1.6 V.

3. Slow channels correspond to all ADC inputs except for the fast channels.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit	
ст	Total upadjusted arrar	Fast and slow	Single ended	-	±3.5	±12		
	Total unadjusted error	channels	Differential	-	±2.5	±7.5		
ГО	Offect error	-	Single ended	-	±3	±5.5		
EO	Olisetenoi	-	Differential	-	±2	±3.5		
ГО	Coin orror	-	Single ended	-	±3.5	±11		
EG	Gainenoi	-	Differential		±2.5	±7	LOD	
FD	Differential linearity error	-	Single ended	-	±0.75	+2/-1		
ED	Differential lifeanty error	-	Differential	-	±0.75	+2/-1		
-	Integral linearity error	Fast and slow	Single ended	-	±2	±6.5		
EL		channels	Differential	-	±1	±4	l	
ENOR	Effective number of hite	Single	ended	-	10.8	-	Dito	
ENOB		Differential		-	11.5	-	DIIS	
	Signal-to-noise and	Single	ended	-	68	-		
SINAD	distortion ratio	Differe	ential	-	71	-		
SND	Signal to poise ratio	Single	ended	-	70	-	dD	
SINK	Signal-lo-hoise ralio	Differe	ential	-	72	-	uБ	
тир	Total harmonic distortion	Single	ended	-	-70	-		
THD		Differe	ential	-	-80	-		

Table 97. ADC accuracy⁽¹⁾⁽²⁾

1. Evaluated by characterization for BGA packages. The values for LQFP package can differ. Not tested in production.

2. ADC DC accuracy values are measured after internal calibration in continuous mode.

Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins, which may potentially inject negative currents.

- 1. Example of an actual transfer curve.
- 2. Ideal transfer curve.
- 3. End point correlation line.
- 4. E_T = Total unadjusted error: maximum deviation between the actual and the ideal transfer curves.
- 5. EO = Offset error: deviation between the first actual transition and the first ideal one.
- 6. EG = Gain error: deviation between the last ideal transition and the last actual one.
- 7. ED = Differential linearity error: maximum deviation between actual steps and the ideal one.
- 8. EL = Integral linearity error: maximum deviation between any actual transition and the end point correlation line.

Figure 57. Typical connection diagram when using the ADC with FT/TT pins featuring analog switch function

- 1. Refer to *Table 95* for the values of R_{AIN}, and C_{ADC}.
- 2. C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the

pad capacitance (refer to Table 58). A high $C_{\text{parasitic}}$ value downgrades conversion accuracy. To remedy this, f_{ADC} should be reduced.

- 3. Refer to Table 58 for the value of I_{lkg} .
- 4. Refer to Figure 20.

General PCB design guidelines

It is recommended to perform power supply decoupling as shown in *Figure 58* or *Figure 59*, depending on whether V_{REF+} is connected to V_{DDA} or not. The 100 nF capacitors must be ceramic (good quality), and placed as close as possible to the chip.

 V_{REF+} input is not available on all packages (refer to *Table 14*), V_{REF-} is available only on UFBGA176+25, UFBGA169 with SMPS, LQFP100, UFBGA169, and UFBGA176+25 packages. When V_{REF+} is not available, it is internally connected to V_{SSA}.

Figure 59. Power supply and reference decoupling (V_{REF+} connected to V_{DDA})

V_{REF+} input is not available on all packages (refer to *Table 14*), V_{REF-} is available only on UFBGA176+25, UFBGA169 with SMPS, LQFP100, UFBGA169, and UFBGA176+25 packages. When V_{REF-} is not available, it is internally connected to V_{SSA}. If V_{REF-} is available and connected to VDDA, refer to *Figure 20* for more detailslf.

5.3.24 DAC characteristics

 Table 98. DAC characteristics⁽¹⁾

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{DDA}	Analog supply voltage	-		1.8	3.3	3.6	
V _{REF+}	Positive reference voltage	-		1.8	-	V_{DDA}	V
V _{REF-}	Negative reference voltage	-		-	V _{SSA}	-	
RL	Posistivo load	DAC output buffer	Connected to V _{SSA}	5	-	-	
		ON	Connected to V _{DDA}	25	-	-	kΩ
R _O	Output impedance	DAC output buffer OF	DAC output buffer OFF			16	
_	Output impedance sample and hold mode, output buffer ON	DAC output buffer ON	V _{DD} = 2.7 V	-	-	1.6	
R _{BON}			V _{DD} = 2.0 V	-	-	2.6	KΩ
	Output impedance sample	DAC output buffer	V_{DD} = 2.7 V	-	-	17.8	1.0
RBOFF	and hold mode, output buffer OFF	OFF	V _{DD} = 2.0 V	-	-	18.7	KΩ
CL	Capacitivo load	DAC output buffer OF	F	-	-	50	pF
C _{SH}		Sample and Hold mod	le	-	0.1	1	μF
V _{DAC OUT}	Voltage on DAC_OUT	DAC output buffer ON		0.2	-	V _{DDA} -0.2	V
DAC_001	ouipui	DAC output buffer OFF		0	-	V_{REF^+}	ΞF+

Symbol	Parameter	Conditior	IS	Min	Тур	Max	Unit
			±0.5 LSB	-	2.05	3	
tSETTLING	Settling time (full scale: for a	Normal mode, DAC	±1 LSB	-	1.97	2.87	
	between the lowest and the	output buffer ON, $C_1 \leq 50 \text{ pF}.$	±2 LSB	-	1.67	2.84	
	highest input codes when	$R_L \ge 5 k\Omega$	±4 LSB	-	1.66	2.78	μs
	value of ± 0.5 LSB, ± 1 LSB,		±8 LSB	-	1.65	2.7	
	±2LSB, ±4LSB, ±8LSB)	Normal mode, DAC of OFF, ±1LSB C _L = 10 p	utput buffer F	-	1.7	2	
twokend	Wake-up time from off state (setting the ENx bit in the	Normal mode, DAC of ON, $C_L \le 50 \text{ pF}, R_L =$	utput buffer 5 kΩ	-	5	7.5	
(2)	the final value of ±1LSB is reached	Normal mode, DAC of OFF, C _L ≤ 10 pF	utput buffer	-	2	5	μs
PSRR	DC V _{DDA} supply rejection ratio	Normal mode, DAC of ON, $C_L \le 50 \text{ pF}, R_L =$	utput buffer 5 kΩ	-	-80	-28	dB
	Sampling time in Sample and Hold mode, C _L = 100 nF	MODE<2:0>_V12 = 100/101 (BUFFER ON)		-	0.7	2.6	
t _{SAMP}	(code transition between the lowest and the highest input code when DAC_OUT reaches the ±1LSB final value)	MODE<2:0>_V12 = 110 (BUFFER OFF)		-	11.5	18.7	1115
		MODE<2:0>_V12=111 ⁽³⁾ (INTERNAL BUFFER OFF)		-	0.3	0.6	μs
I _{leak}	Output leakage current	-	-		-	(4)	nA
C _{lint}	Internal sample and hold capacitor	-		1.8	2.2	2.6	pF
t _{TRIM}	Middle code offset trim time	Minimum time to verify	y each code	50	-	-	μs
V	Middle code offset for	V _{REF+} = 3.6 V		-	850	-	
v offset	1 trim code step	V _{REF+} = 1.8 V		-	425	-	μν
		DAC output buffer	No load, middle code (0x800)	-	360	-	
I _{DDA(DAC)}	DAC quiescent consumption		No load, worst code (0xF1C)	-	490	-	μA
UDA(DAC)	from V _{DDA}	DAC output buffer OFF	No load, middle/ worst code (0x800)	-	20	-	
		Sample and Hold mod C_{SH} = 100 nF	Sample and Hold mode, $C_{SH} = 100 \text{ nF}$		360*T _{ON} / (T _{ON} +T _{OFF}) ⁽⁵⁾	_	

Table 98. DAC characteristics⁽¹⁾ (continued)

Symbol	Parameter	Condition	s	Min	Тур	Max	Unit
I _{DDV(DAC)}	DAC consumption from V _{REF+}	DAC output buffer	No load, middle code (0x800)	-	170	-	
			No load, worst code (0xF1C)	-	170	-	
		DAC output buffer OFF	No load, middle/ worst code (0x800)	-	160	-	μA
		Sample and Hold mode, buffer ON, $C_{SH} = 100 \text{ nF} (\text{worst code})$		-	170*T _{ON} / (T _{ON} +T _{OFF}) ⁽⁵⁾	-	
		Sample and Hold mode, buffer OFF, C _{SH} = 100 nF (worst code)		-	$160^{*}T_{ON}^{}/(T_{ON}^{}+T_{OFF}^{})^{(5)}$	_	

Table 98. DAC characteristics⁽¹⁾ (continued)

1. Specified by design - Not tested in production, unless otherwise specified.

2. In buffered mode, the output can overshoot above the final value for low input code (starting from the minimum value).

3. DACx_OUT pin is not connected externally (internal connection only).

4. Refer to *Table 58*.

5. T_{ON} is the refresh phase duration, T_{OFF} is the hold phase duration. Refer to the reference manual for more details.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
	Differential non	DAC output buffer ON		-2	-	2	
DINL	linearity ⁽²⁾	DAC output buffer OFF		-2	-	2	LOD
-	Monotonicity	10 bits		-	-	-	-
INII	Integral pop linearity ⁽³⁾	DAC output buffer ON, C _L ≤50 pF, R _L ≥5 kΩ		-4	-	4	
		DAC output buffer OFF, C _L ≤ 50 pF, no R _L		-4	-	4	
		DAC output buffer ON,	V _{REF+} = 3.6 V	-	-	±12	
Offset	Offset error at code	C _L ≤50 pF, R _L ≥5 kΩ	V _{REF+} = 1.8 V	-	-	±25	
0x80	0x800 (0)	DAC output buffer OFF, $C_L \le 50 \text{ pF}$, no R_L		-	-	±8	LSB
Offset1	Offset error at code 0x001 ⁽⁴⁾	DAC output buffer OFF, $C_L \le 50 \text{ pF}$, no R_L		-	-	±5	
011-10-1	Offset error at code	DAC output buffer ON,	V _{REF+} = 3.6 V	-	-	±5	
UnsetCal	calibration	C _L ≤50 pF, R _L ≥5 kΩ	V _{REF+} = 1.8 V	-	-	±7	1

Table 99. DAC accuracy⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Gain	Gain error ⁽⁵⁾	DAC output buffer ON, C _L ≤50 pF, R _L ≥5 kΩ	-	-	±1	0/2
Guin	Gainenoix	DAC output buffer OFF, C _L ≤ 50 pF, no R _L	-	-	±1	/0
TUE Total unadjusted erro	Total upadiustod orror	DAC output buffer ON, C _L ≤50 pF, R _L ≥5 kΩ	-	-	±30	
		DAC output buffer OFF, C _L ≤50 pF, no R _L			±12	LSB
TUECal	Total unadjusted error after calibration	DAC output buffer ON, C _L ≤50 pF, R _L ≥5 kΩ	-	-	±23	
SNR Signal-to-noise ratio ⁽⁶	DAC output buffer ON, C _L ≤50 pF, R _L ≥5 kΩ, 1 kHz, BW = 500 kHz	-	67.8	-		
	Signal-to-hoise ratio	DAC output buffer OFF, $C_L \le 50$ pF, no R_L ,1 kHz, BW = 500 kHz	-	67.8	-	
тип	Total harmonic	DAC output buffer ON, C _L ≤50 pF, R _L ≥5 kΩ, 1 kHz	-	-78.6	-	dB
	distortion ⁽⁶⁾	DAC output buffer OFF, C _L ≤ 50 pF, no R _L , 1 kHz	-	-78.6	-	UD
	Signal-to-noise and	DAC output buffer ON, C _L ≤50 pF, R _L ≥5 kΩ, 1 kHz	-	67.5	-	
SINAD	distortion ratio ⁽⁶⁾	DAC output buffer OFF, C _L ≤ 50 pF, no R _L , 1 kHz	-	67.5	-	
ENOP	Effective number of	DAC output buffer ON, C _L ≤50 pF, R _L ≥ 5 kΩ, 1 kHz	-	10.9	-	bite
ENOB	bits	DAC output buffer OFF, C _L ≤ 50 pF, no R _L , 1 kHz	-	10.9	-	มแจ

Table 99. DAC accuracy⁽¹⁾ (continued)

2. Difference between two consecutive codes minus 1 LSB.

3. Difference between the value measured at Code i and the value measured at Code i on a line drawn between Code 0 and last Code 4095.

4. Difference between the value measured at Code (0x001) and the ideal value.

5. Difference between the ideal slope of the transfer function and the measured slope computed from code 0x000 and 0xFFF when the buffer is OFF, and from code giving 0.2 V and (V_{REF+} - 0.2 V) when the buffer is ON.

6. Signal is –0.5 dBFS with $F_{sampling}$ = 1 MHz.

1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly, without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

5.3.25 Analog temperature sensor characteristics

Symbol	Parameter	Min	Тур	Мах	Unit
т. (1)	V_{SENSE} linearity with temperature (from V_{SENSOR} voltage)	-	-	3	ംറ
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	V _{SENSE} linearity with temperature (from ADC counter)	-	-	3	C
Ava Slopo ⁽²⁾	Average slope (from V _{SENSOR} voltage)		2	-	m\//°C
Avg_Slope	Average slope (from ADC counter)		2	-	IIIV/ C
V ₃₀ ⁽³⁾	Voltage at 30 °C ± 5 °C		0.62	-	V
t _{start_run}	Startup time in Run mode (buffer startup)	-	-	25.2	
t _{S_temp} ⁽¹⁾	ADC sampling time when reading the temperature		-	-	μs
I _{sens} ⁽¹⁾	Sensor consumption	-	0.18	0.31	
I _{sensbuf} ⁽¹⁾	Sensor buffer consumption	-	3.8	6.5	μΑ

Table 100. Analog temperature sensor characteristics

1. Specified by design - Not tested in production.

2. Evaluated by characterization - Not tested in production.

3. Measured at V_{DDA} = 3.3 V ± 10 mV. The V_{30} ADC conversion result is stored in the TS_CAL1 bytes.

Table 101.	. Temperature	sensor	calibration	values
------------	---------------	--------	-------------	--------

Symbol	Parameter	Memory address
TS_CAL1	Temperature sensor raw data acquired value at 30 °C, V_{DDA} = 3.3 V	0x08FF F814 -0x08FF F815
TS_CAL2	Temperature sensor raw data acquired value at 130 °C, V_{DDA} = 3.3 V	0x08FF F818 - 0x08FF F819

5.3.26 Digital temperature sensor characteristics

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
f _{DTS} ⁽²⁾	Output clock frequency	-	500	750	1150	kHz	
$T_{LC}^{(2)}$	Temperature linearity coefficient	VOS2	1660	2100	2750	Hz/°C	
T(2)	Temperature offset	$T_J = -40$ to 30 °C	-13	-	4	°C	
'TOTAL_ERROR` ´	measurement, all VOS	$\rm T_J$ = 30 °C to $\rm T_{Jmax}$	-7	-	2		
	Additional orror due to supply	VOS2	0	-	0		
T _{VDD_CORE}	variation	VOS0, VOS1, VOS3	-1	-	1	°C	
t _{TRIM}	Calibration time	-	-	-	2	ms	
t _{WAKE_UP}	Wake-up time from off state until DTS ready bit is set	-	-	67	116	μs	
IDDCORE_DTS	DTS consumption on $V_{\text{DD}_\text{CORE}}$	_	8.5	30	70	μA	

Table 102. Digital temperature sensor characteristics⁽¹⁾

1. Specified by design - Not tested in production, unless otherwise specified.

2. Evaluated by characterization - Not tested in production.

5.3.27 V_{CORE} monitoring characteristics

Table 103. V_{CORE} monitoring characteristics⁽¹⁾

T_{S_VCORE} ADC sampling time when reading the V _{CORE} voltage 1 - μ s	Symbol	Parameter	Min	Тур	Max	Unit
	T_{S_VCORE}	ADC sampling time when reading the V_{CORE} voltage	1	-	-	μs

1. Specified by design - Not tested in production.

5.3.28 Temperature and V_{BAT} monitoring

Table 104. V_{BAT} monitoring characteristics

Symbol	Parameter	Min	Тур	Мах	Unit	
R	Resistor bridge for V _{BAT}	-	4 x 26	-	kΩ	
Q	Ratio on V _{BAT} measurement		4	-	-	
Er ⁽¹⁾	Error on Q	-10	-	+10	%	
t _{S_vbat} (1)	ADC sampling time when reading V_{BAT} input	9	-	-	μs	
V _{BAThigh}	High supply monitoring	3.50	3.575	3.63	V	
V _{BATlow}	Low supply monitoring	-	1.36	-		
I _{VBATbuf}	Sensor buffer consumption	-	3.8	6.5	μA	

1. Specified by design - Not tested in production.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{BC}	Battery charging resistor	VBRS in PWR_CR3 = 0	-	5	-	٢O
		VBRS in PWR_CR3 = 1	-	1.5	-	KΩ

Table 105. V_{BAT} charging characteristics

Table 106. Temperature monitoring characteristics

Symbol	Parameter	Min	Тур	Мах	Unit
TEMP _{high}	High temperature monitoring	-	126	-	°C
TEMPlow	Low temperature monitoring	-	-37	-	C

5.3.29 Voltage booster for analog switch

Table 107. Voltage booster for analog switch characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DD}	Supply voltage	-	1.71	2.6	3.6	V
t _{SU(BOOST)}	Booster startup time	-	-	-	50	μs
I _{DD(BOOST)}	Roostor consumption	1.71 V ≤ V _{DD} ≤ 2.7 V	-	-	125	
		2.7 V < V _{DD} < 3.6 V	-	-	250	μΑ

1. Evaluated by characterization - Not tested in production.

5.3.30 VREFBUF characteristics

Table 108. VREFBUF characteristics⁽¹⁾

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
			VRS = 000	2.8	3.3	3.6	
		Normal mode at	VRS = 001	2.4	-	3.6	
V	Analog supply	VDDA 0.0 V	VRS = 010	2.1	-	3.6	V
V DDA	voltage	age Degraded mode ⁽²⁾	VRS = 000	1.62	-	2.80	v
			VRS = 001	1.62	-	2.40	
			VRS = 010	1.62	-	2.10	
		Normal mode at 30 °C, I _{LOAD} = 100 μA	VRS = 000	2.498 ⁽³⁾	2.5000	2.5035 ⁽³⁾	
			VRS = 001	2.0460	2.0490	2.0520	
V _{REFBUF}	Voltage reference		VRS = 010	1.8010	1.8040	1.8060	V
OUT	buffer output		VRS = 000	V _{DDA} – 150 mV	-	2.5035	v
		Degraded mode ⁽²⁾	VRS = 001	V _{DDA} – 150 mV	-	2.0520	
			VRS = 010	V _{DDA} – 150 mV	-	1.8060	
TRIM	Trim step resolution	-	-	-	±0.05	±0.1	%

Symbol	Parameter	Conditior	าร	Min	Тур	Max	Unit
CL	Load capacitor	-	-	0.5	1	1.50	μF
esr	Equivalent serial resistor of C _L	-	-	-	-	2	Ω
I _{load}	Static load current	-	-	-	-	4	mA
1	Line regulation		I _{load} = 500 μA	-	200	-	ppm/
^I line_reg	Line regulation	$2.0 \text{ V} \leq \text{V}_{\text{DDA}} \leq 3.0 \text{ V}$	I _{load} = 4 mA	-	100	-	V
I _{load_reg}	Load regulation	500 µA ≤ I _{load} ≤ 4 mA	Normal mode	-	50	-	ppm/ mA
T _{coeff}	Temperature coefficient	-40 °C < T _J < +130 °C	-	-	-	100	ppm/ °C
DODD	Power supply rejection	DC	-	-	60	-	dB
1 OKK		100 kHz	-	-	40	-	
	Start-up time	C _L = 0.5 μF	-	-	300	-	μs
t _{START}		C _L = 1 μF	-	-	500	-	
		C _L = 1.5 μF	-	-	650	-	
I _{INRUSH}	Control of maximum DC current drive on V _{REFBUF_OUT} during startup ⁽⁴⁾	-		-	8	-	mA
	a	I _{LOAD} = 0 μA	-	-	15	25	
IDDA(VREF	Consumption from VDDA	I _{LOAD} = 500 μA	-	-	16	30	μA
501)		I _{LOAD} = 4 mA	-	-	32	50	

Table 108. VREFBUF characteristics⁽¹⁾ (continued)

1. Specified by design - Not tested in production, unless otherwise specified.

2. In degraded mode, the voltage reference buffer cannot accurately maintain the output voltage (V_{DDA}-drop voltage).

3. Evaluated by characterization - Not tested in production.

 To properly control V_{REFBUF} I_{INRUSH} current during the startup phase and the change of scaling, V_{DDA} voltage must be in the range of 2.1 V - 3.6 V, 2.4 V - 3.6 V, and 2.8 V - 3.6 V, respectively, for VRS = 010, 001, and 000.

5.3.31 Timer characteristics

The parameters given in *Table 109* are guaranteed by design.

Refer to *Section 5.3.15* for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions ⁽³⁾	Min	Мах	Unit
t _{res(TIM)}	Timor recolution time	AHB/APBx prescaler = 1, 2, or 4, f _{TIMxCLK} = 250 MHz		-	t _{TIMxCLK}
		AHB/APBx prescaler > 4, f _{TIMxCLK} = 125 MHz	1	-	t _{TIMxCLK}
f _{EXT}	Timer external clock frequency on CH1 to CH4	f _{TIMxCLK} = 250 MHz	0	f _{TIMxCLK} / 2	MHz
Res _{TIM}	Timer resolution		-	16 / 32	bit
t _{MAX_COUNT}	Maximum possible count with 32-bit counter	-	-	65536 × 65536	t _{TIMxCLK}

Table 109. TIMx characteristics ⁽¹⁾⁽

1. TIMx is used as a general term to refer to the TIM1 to TIM17 timers.

2. Specified by design - Not tested in production.

 The maximum timer frequency on APB1 or APB2 is up to 250 MHz, by setting the TIMPRE bit in the RCC_CFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = rcc_hclk1, otherwise TIMxCLK = 4 x F_{rcc_pclkx1} or TIMxCLK = 4 x F_{rcc_pclkx2}.

5.3.32 Low-power timer characteristics

Table 110. LPTIMx characteristics⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Мах	Unit
t _{res(TIM)}	Timer resolution time	1	-	t _{lptim_ker_ck}
f _{lptim_ker_ck}	Timer kernel clock	0	250	
f _{EXT}	Timer external clock frequency on Input1 and Input2	0	f _{lptim_ker_ck} / 3	
Res _{TIM}	Timer resolution	-	16	bit
t _{MAX_COUNT}	Maximum possible count	-	65535	t _{lptim_ker_ck}

1. LPTIMx is used as a general term for LPTIM1 to LPTIM6 timers.

2. Specified by design - Not tested in production.

5.3.33 Communication interfaces

I²C interface characteristics

The I²C interface meets the timings requirements of the I²C-bus specification and user manual revision 03 for:

- Standard-mode (Sm): with a bit rate up to 100 kbit/s
- Fast-mode (Fm): with a bit rate up to 400 kbit/s
- Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.

The I²C timings requirements are specified by design, not tested in production, when the I²C peripheral is properly configured (refer to the product reference manual)

The SDA and SCL I/O requirements are met with the following restrictions:

 The SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but still present. Only FT_f I/O pins support Fm+ low level output current maximum requirement. Refer to Section 5.3.15 for the I2C I/Os characteristics

All I²C SDA and SCL I/Os embed an analog filter, refer to *Table 111* for its characteristics.

Table 111. I ² C analog	filter	characteristics ⁽¹⁾⁽²⁾
------------------------------------	--------	-----------------------------------

Symbol	Parameter	Min	Мах	Unit
t _{AF}	Maximum pulse width of spikes suppressed by analog filter	50 ⁽³⁾	160 ⁽⁴⁾	ns

1. Evaluated by characterization - Not tested in production.

- 2. Measurement points are done at 50% $V_{\text{DD}}.$
- 3. Spikes with widths below t_{AF(min)} are filtered.
- 4. Spikes with widths above $t_{AF(max)}$ are not filtered.

USART interface characteristics

Unless otherwise specified, the parameters given in *Table 112* are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 20*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C_L = 30 pF
- Measurement points are done at CMOS levels: 0.5 V_{DD}
- I/O compensation cell activated
- VOS level set to VOS0
- HSLV activated when $V_{DD} \le 2.7 V$

Refer to Section 5.3.15 for more details on the input/output alternate function characteristics (NSS, CK, TX, RX for USART).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		Master receiver 1.71 V < V _{DD} < 3.6 V			31	
£		Master transmitter 1.71 V < V _{DD} < 3.6 V			31/6 ⁽²⁾	
		Master transmitter 2.7 V < V _{DD} < 3.6 V			31/6 ⁽²⁾	
ICK	USART clock frequency	Slave receiver 1.71 V < V _{DD} < 3.6 V		-	83	MHZ
		Slave transmitter 1.71 V < V _{DD} < 3.6 V			32/6 ⁽²⁾	-
		Slave transmitter 2.7 V < V _{DD} < 3.6 V			35/6 ⁽²⁾	
t _{su(NSS)}	NSS setup time	Slave mode	$t_{ker}^{(3)}$ + 3.5	-	-	
t _{h(NSS)}	NSS hold time	Slave mode	2.5	-	-	
t _{w(SCKH)} t _{w(SCKL)}	CK high and low time	Master mode	1/f _{ck} /2 -1	1/f _{ck} /2	1/f _{ck} /2 +1	
+	Data input actus time	Master mode	13	-	-	
^L su(RX)	Data input setup time	Slave mode	3.5	-	$ \begin{array}{c c} & 32/6^{(2)} \\ \hline & 35/6^{(2)} \\ \hline & - \\ \hline &$	
4	Data input hold time	Master mode	0.5	-	-	
^ı h(RX)	Data input noid time	Slave mode	1.5	-	-	ns
		Slave mode, 1.71 V < V _{DD} < 3.6 V	-	11 E	15.5/71 ⁽²⁾	
t _{v(TX)}	Data output valid time	Slave mode, 2.7 V < V _{DD} < 3.6 V	-	11.5	14/35 ⁽²⁾	-
		Slave mode, 1.71 V < V _{DD} < 3.6 V	-	2.5	3/52 ⁽²⁾	
		Slave mode, 2.7 V < V _{DD} < 3.6 V	-	2.5	3/22 ⁽²⁾	
t	Data output hold time	Slave mode	7.5	-	-	00
ካ(TX)		Master mode	0	-	-	115

Table 112. USART characteristics⁽¹⁾

1. Evaluated by characterization - Not tested in production.

2. For PB14 with OSPEEDRy[1:0] = 01.

3. T_{ker} is the usart_ker_ck_pres clock period.

Figure 61. USART timing diagram in Master mode

1. Measurement points are done at 0.5V $_{\rm DD}$ and with external C $_{\rm L}$ = 30 pF.

Figure 62. USART timing diagram in Slave mode

I3C interface characteristics

The I3C interface meets the timings requirements of the MIPI[®] I3C specification v1.1.

The I3C peripheral supports:

- I3C SDR-only as controller
- I3C SDR-only as target
- I3C SCL bus clock frequency up to 12.5 MHz

The parameters given in *Table 113* are obtained with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- I/O compensation cell activated
- HSLV activated when $V_{DD} \le 2.7 \text{ V}$
- VOS level set to VOS0

The timings are in line with MIPI specification, except for the ones given in *Table 113* and *Table 114*. For t_{SU_OD} and t_{SU_PP} this can be mitigated by increasing the corresponding SCL low duration in the I3C_TIMINGR0 register. For t_{SCO} this can be mitigated by enabling and adjusting the clock stall time both on the address ACK phase and on the data read Tbit phase in the I3C_TIMINGR2 register. This can also be mitigated by increasing the SCL low duration in the I3C_TIMINGR0 register. For further details refer to AN5879.

Symbol	Parameter	er Conditions I3C open drain mode (specification)		I3C open drain mode (specification) Timing		Unit
			Min	Max	measurements	
^t su_od	SDA data setup time during open drain mode	Controller 1.71 V < V _{DD} < 3.6 V	3	-	16.5	ns

Table 113. I3C open-drain measured timing

Table 114. I3C push-pull measured timing

Symbol	Parameter	Conditions	I3C open drain mode (specification)		Timing	Unit
			Min	Мах	measurements	
t _{SU_PP}	SDA signal data setup in push-pull mode	Controller 1.71 V < V _{DD} < 3.6 V	3	-	12	ns

SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 115* are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 20*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C_L = 30 pF
- Measurement points are done at CMOS levels: 0.5 V_{DD}
- I/O compensation cell activated
- HSLV activated when $V_{DD} \le 2.7 \text{ V}$
- VOS level set to VOS0

Refer to Section 5.3.15 for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
^f scк 1/tscк		Master receiver mode 2.7 V < V _{DD} < 3.6 V	-	-	135/3 ⁽²⁾		
		Master receiver mode 1.71 V < V _{DD} < 2.7 V	-	-	120/3 ⁽²⁾		
		Master transmitter mode 2.7 V < V _{DD} < 3.6 V			135/3 ⁽²⁾		
	SPI clock frequency	Master transmitter mode 1.71 V < V _{DD} < 3.6 V	-	-	120/3 ⁽²⁾	MHz	
		Slave receiver mode 1.71 V < V _{DD} < 3.6 V	-	-	120		
		Slave transmitter mode 2.7 V < V _{DD} < 3.6 V	-	-	43/6 ⁽³⁾		
		Slave transmitter mode 1.71 V < V _{DD} < 2.7 V	-	-	41/6 ⁽³⁾		
t _{su(NSS)}	NSS setup time	Slave mode	3.5	-	-	ns	
t _{h(NSS)}	NSS hold time	Slave mode	4.5	-	-	ns	
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode	(t _{SCK} /2) - 1	(t _{SCK} /2)	(t _{SCK} /2) + 1	ns	
t _{su(MI)}	Dete input exture time	Master mode	3.5	-	-		
t _{su(SI)}	Data input setup time	Slave mode	2	-	-	ns	
t _{h(MI)}	Data input hald time	Master mode	1	-	-		
t _{h(SI)}		Slave mode	1.5	-	-	ns	
t _{a(SO)}	Data output access time	Slave mode	6.5	-	15	ns	
t _{dis(SO)}	Data output disable time	Slave mode	7.5	-	18	ns	
		Slave mode, 2.7 V < V _{DD} < 3.6 V	-	8.5/25 ⁽³⁾	11.5/33 ⁽³⁾		
^ι v(SO)	Data output valid time	Slave mode, 1.71 V < V _{DD} < 3.6 V	-	10/59 ⁽³⁾	12/76 ⁽³⁾	ns	
t _{v(MO)}		Master mode	-	1.5	2		
t _{h(SO)}	Data output hold time	Slave mode, 1.71 V < V _{DD} < 3.6 V	6.5/20.5 ⁽³⁾	-	-	ns	
t _{h(MO)}		Master mode	0	-	-		

1. Evaluated by characterization - Not tested in production.

2. When using PB13.

3. When using PB14.

Figure 63. SPI timing diagram - Master mode

1. The SS input can be configured to active low or active high.

Figure 65. SPI timing diagram - Slave mode and CPHA = 1

1. The SS input can be configured to active low or active high.

I²S interface characteristics

Unless otherwise specified, the parameters given in *Table 116* are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 20*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C_L = 30 pF
- Measurement points are done at CMOS levels: 0.5 V_{DD}
- I/O compensation cell activated
- HSLV activated when $V_{DD} \leq 2.7 \text{ V}$
- VOS level set to VOS0

Refer to Section 5.3.15 for more details on the input/output alternate function characteristics (CK,SD,WS).

Symbol	Parameter	Conditions	Min	Max	Unit	
f _{MCK}	I ² S main clock output	-	-	50		
f _{CK}		Master transmitter	-	50		
	I ² S clock output	Slave transmitter (TX)	- 21			
		Slave receiver (RX)	-	50	1	

Table 116. I²S dynamic characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
t _{v(WS)}	WS valid time	Master mode	-	2	
t _{h(WS)}	WS hold time			-	
t _{su(WS)}	WS setup time	Slave mode	3	-	
t _{h(WS)}	WS hold time		1.5	-	
t _{su(SD_MR)}	Data input actus time	Master receiver	4	-	
t _{su(SD_SR)}		Slave receiver	2	-	20
t _{h(SD_MR)}	Data input hold time	Master receiver	1	-	115
t _{h(SD_SR)}		Slave receiver	1.5	-	
t _{v(SD_ST)}	Data output valid timo	Slave transmitter (after enable edge)	-	14	
t _{v(SD_MT)}		Master transmitter (after enable edge)	-	1	
t _{h(SD_ST)}	Data output hold time	Slave transmitter (after enable edge)	5.5	-	
t _{h(SD_MT)}		Master transmitter (after enable edge)	0	-	

Table 116. I²S dynamic characteristics⁽¹⁾ (continued)

1. Evaluated by characterization - Not tested in production.

Figure 66. I²S slave timing diagram (Philips protocol)⁽¹⁾

LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first 1. byte.

Figure 67. I²S master timing diagram (Philips protocol)⁽¹⁾

1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

USB full speed (FS) characteristics

The USB interface is fully compliant with the USB specification version 2.0.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
V _{DD}	USB full speed transceiver operating voltage	-	3.0 ⁽²⁾	-	3.6	V
V _{DI} ⁽³⁾	Differential input sensitivity	Over VCM range	0.2	-	-	
V _{CM} ⁽³⁾	Differential input common mode range	Includes V _{DI} range	0.8	-	2.5	V
V _{SE} ⁽³⁾	Single ended receiver input threshold	-	0.8	-	2.0	
V _{OL}	Static output level low	R_L of 1.5 k Ω to 3.6 $V^{(4)}$	-	-	0.3	V
V _{OH}	Static output level high	R_L of 15 k Ω to $V_{SS}{}^{(4)}$	2.8	-	3.6	v
R _{PD} ⁽³⁾	Pull down resistor on PA11, PA12 (USB_DP/DM)	V _{IN} = V _{DD}	14.25	-	24.8	
D (3)	Pull-up resistor on PA12 (USB_DP)	$V_{IN} = V_{SS}$, during idle	0.9	1.25	1.575	kΩ
R _{PU} ^(e)	Pull-up resistor on PA12 (USB_DP)	$V_{IN} = V_{SS}$ during reception	1.425	2.25	3.09	

1. All the voltages are measured from the local ground potential.

 The USB full speed transceiver functionality is ensured down to 2.7 V but not the full USB full speed electrical characteristics, which are degraded in the 2.7-to-3.0 V V_{DD} voltage range.

3. Specified by design - Not tested in production.

4. R_L is the load connected on the USB full speed drivers.

Figure 68. USB timings - definition of data signal rise and fall time

Table	118.	USB	startup	o time
-------	------	-----	---------	--------

Symbol	Parameter	Мах	Unit
t _{STARTUP} ⁽¹⁾	USB transceiver startup time	1	μs

1. Specified by design - Not tested in production.

Table 119. USB electrical characteristics⁽¹⁾

Driver characteristics									
Symbol	Parameter Conditions		Min	Мах	Unit				
t _{rLS}	Rise time in LS ⁽²⁾	C _L = 200 to 600 pF	75	300	ns				
t _{fLS}	Fall time in LS ⁽²⁾	C _L = 200 to 600 pF	75	300	ns				
t _{rfmLS}	Rise/fall time matching in LS	t _r /t _f	80	125	%				
t _{rFS}	Rise time in FS ⁽²⁾	C _L = 50 pF	4	20	ns				
t _{fFS}	Fall time in FS ⁽²⁾	C _L = 50 pF	4	20	ns				
t _{rfmFS}	Rise/fall time matching in FS	t _r /t _f	90	111	%				
V _{CRS}	Output signal crossover voltage (LS/FS)	-	1.3	2.0	V				
Z _{DRV}	Output driver impedance ⁽³⁾	Driving high or low	28	44	Ω				

1. Specified by design - Not tested in production.

2. Measured from 10% to 90% of the data signal. For more detailed information, refer to USB specification - chapter 7 (version 2.0).

3. No external termination series resistors are required on DP (D+) and DM (D-) pins since the matching impedance is included in the embedded driver.

Table 120.	USB BCD	DC electrical	characteristics ⁽¹⁾
------------	---------	---------------	--------------------------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{DD(USBBCD)}	Primary detection mode consumption	-	-	-	300	
	Secondary detection mode consumption	-	-	-	300	μA 00
RDAT_LKG	Data line leakage resistance	-	300	-	-	kΩ
VDAT_LKG	Data line leakage voltage	-	0.0	-	3.6	V

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
RDCP_DAT	Dedicated charging port resistance across D+/D-	-	-	-	200	Ω
VLGC_HI	Logic high	-	2.0	-	3.6	
VLGC_LOW	Logic low	-	-	-	0.8	
VLGC	Logic threshold	-	0.8	-	2.0	V
VDAT_REF	Data detect voltage	-	0.25	-	0.4	v
VDP_SRC	D+ source voltage	-	0.5	-	0.7	
VDM_SRC	D- source voltage	-	0.5	-	0.7	
IDP_SINK	D+ sink current	-	25	-	175	
IDM_SINK	D- sink current	-	25	-	175	μΑ

 Table 120. USB BCD DC electrical characteristics⁽¹⁾ (continued)

1. Specified by design - Not tested in production.

SAI characteristics

Unless otherwise specified, the parameters given in *Table 121* are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 20*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C_L = 30 pF
- I/O compensation cell activated
- Measurement points are done at CMOS levels: 0.5 V_{DD}
- VOS level set to VOS0

Refer to Section 5.3.15 for more details on the input/output alternate function characteristics (SCK, SD, WS).

Symbol	Parameter	Conditions	Min	Мах	Unit	
f _{MCK}	SAI main clock output	-	-	50		
fск		Master transmitter, 2.7 V \leq V _{DD} \leq 3.6 V	-	38		
	SAI clock frequency	Master transmitter, 1.71 V \leq V _{DD} \leq 3.6 V	-	38		
		Master receiver, 1.71 V \leq V _{DD} \leq 3.6 V	-	38	MHz	
		SAI clock frequency	Slave transmitter, 2.7 V \leq V _{DD} \leq 3.6 V	-	34	
		Slave transmitter, 1.71 V \leq V _{DD} \leq 3.6 V	-	33		
		Slave receiver, 1.71 V \leq V _{DD} \leq 3.6 V	-	50		

Table 121. SAI characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Мах	Unit
4		Master mode, 2.7 V \leq V _{DD} \leq 3.6 V	-	13	
^L v(FS)	F _S valid time	Master mode, 1.71 V \leq V _{DD} \leq 3.6 V	-	13	
t _{su(FS)}	F _S setup time	Slave mode	3	-	
	E hold time	Master mode	5	-	
^L h(FS)	r _s noid time	Slave mode	2	-	
t _{su(SD_A_MR)}	Data innut actus time	Master receiver	4	-	
t _{su(SD_B_SR)}	- Data input setup time	Slave receiver	3.5	-	
t _{h(SD_A_MR)}	Data input hold time	Master receiver	1.5	-	
t _{h(SD_B_SR)}		Slave receiver	0.5	-	ns
4	Data output valid time	Slave transmitter (after enable edge), 2.7 V \leq V _{DD} \leq 3.6 V	-	14.5	
^I v(SD_B_ST)		Slave transmitter (after enable edge), 1.71 V \leq V _{DD} \leq 3.6 V	-	15	
t _{h(SD_B_ST)}	Data output hold time	Slave transmitter (after enable edge)	7	-	
t _{v(SD_A_MT)}	Data autaut valid time	Master transmitter (after enable edge), 2.7 V \leq V _{DD} \leq 3.6 V	-	13	
	Data output valid time	Master transmitter (after enable edge), 1.71 V \leq V _{DD} \leq 3.6 V	-	13	
t _{h(SD_A_MT)}	Data output hold time	Master transmitter (after enable edge)	5.5	-	

Table 121. SAI characteristics⁽¹⁾ (continued)

1. Evaluated by characterization - Not tested in production.

Figure 69. SAI master timing waveforms

Figure 70. SAI slave timing waveforms

SD/SDIO MMC card host interface (SDMMC) characteristics

Unless otherwise specified, the parameters given in *Table 122* and *Table 123* are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage summarized in *Table 20*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C_L= 30 pF
- Measurement points are done at CMOS levels: 0.5 V_{DD}
- I/O compensation cell activated
- HSLV activated when $V_{DD} \le 2.7 V$

Refer to Section 5.3.15 for more details on the input/output characteristics.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f _{PP}	Clock frequency in data transfer mode	-	0	-	130 ⁽²⁾ /6 ⁽³⁾	MHz	
t _{W(CKL)}	Clock low time	f = 52 MHz	8.5	9.5	-	ne	
t _{W(CKH)}	Clock high time	трр – 52 імі і2	8.5	9.5	-	115	
CMD, D inputs (referenced to CK) in eMMC legacy/SDR/DDR and SD HS/SDR ⁽⁴⁾ /DDR ⁽⁴⁾ mode							
t _{ISU}	Input setup time HS	-	3	-	-		
t _{IH}	Input hold time HS	-	1	-	-	ns	
t _{IDW} ⁽⁵⁾	Input valid window (variable window)	-	4.5	-	-		
CMD, D outputs (referenced to CK) in eMMC legacy/SDR/DDR and SD HS/SDR ⁽⁴⁾ /DDR ⁽⁴⁾ mode							
t _{OV}	Output valid time HS	-	-	5	5.5/38 ⁽³⁾	ne	
t _{OH}	Output hold time HS	-	3	-	-	115	

Table 122. Dynamic characteristics: SD/MMC, V_{DD} = 2.7 to 3.6 V⁽¹⁾

					·				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
CMD, D inputs (referenced to CK) in SD default mode									
t _{ISUD}	Input setup time SD	-	2.5		-	ne			
t _{IHD}	Input hold time SD	-	1.5		-				
CMD, D	CMD, D outputs (referenced to CK) in SD default mode								
t _{OVD}	Output valid default time SD	-	-	0.5	1/33 ⁽³⁾	ne			
t _{OHD}	Output hold default time SD	-	0	-	-	115			

Table 122. Dynamic characteristics: SD/MMC, V_{DD} = 2.7 to 3.6 V⁽¹⁾ (continued)

1. Evaluated by characterization - Not tested in production.

2. C_L applied is 20 pF.

3. When using PB13 and PB14.

4. For SD 1.8 V support, an external voltage converter is needed.

5. The minimum window of time where the data needs to be stable for proper sampling in tuning mode.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
f _{PP}	Clock frequency in data transfer mode	-	0	-	110 ⁽²⁾ /6 ⁽³⁾	MHz		
t _{W(CKL)}	Clock low time	f −52 M⊔z	8.5	9.5	-	00		
t _{W(CKH)}	Clock high time	1pp -52 IVII 12	8.5	9.5	-	115		
CMD, D inputs (referenced to CK) in eMMC mode								
t _{ISU}	Input setup time HS	-	1.5	-	-			
t _{IH}	Input hold time HS	-	1.5	-	-	ns		
t _{IDW} ⁽⁴⁾	Input valid window (variable window)	-	4	-	-			
CMD, D outputs (referenced to CK) in eMMC mode								
t _{OV}	Output valid time HS	-	-	5.5	6/75 ⁽³⁾	200		
t _{OH}	Output hold time HS	-	3	-	-	115		

Table 123. Dynamic characteristics: eMMC, V_{DD} = 1.71 to 1.9 V⁽¹⁾

1. Evaluated by characterization - Not tested in production.

2. C_L = 20 pF.

3. When using PB13 and PB14.

4. The minimum window of time where the data needs to be stable for proper sampling in tuning mode.

Figure 71. SDIO high-speed/eMMC timing

Figure 72. SD default speed timings

Figure 73. DDR mode timings

Ethernet interface characteristics

Unless otherwise specified, the parameters given in *Table 124*, *Table 125*, and *Table 126* are derived from tests performed under the ambient temperature, $f_{rcc_c_ck}$ frequency and V_{DD} supply voltage conditions summarized in *Table 20*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C₁ = 20 pF
- Measurement points are done at CMOS levels: 0.5 V_{DD}
- I/O compensation cell activated
- HSLV activated when V_{DD} ≤ 2.5 V

Refer to Section 5.3.15 for more details on the input/output characteristics.

, , , , , , , , , , , , , , , , ,								
Symbol	Parameter	Min	Тур	Мах	Unit			
t _{MDC}	MDC cycle time (2.5 MHz)	400	400	403				
T _{d(MDIO)}	Write data valid time	0	0.5	1	ne			
t _{su(MDIO)}	Read data setup time	12.5	-	-	115			
t _{h(MDIO)}	Read data hold time	0	-	-]			

Table 124. Dynamic characteristics: Ethernet MAC signals for SMI	(1)
--	----	---

1. Evaluated by characterization - Not tested in production.

Table 123. Dynamic characteristics. Ethernet MAC signals for NMI								
Symbol	Parameter	Min	Тур	Мах	Unit			
t _{su(RXD)}	Receive data setup time	3	-	-				
t _{ih(RXD)}	Receive data hold time	1	-	-				
t _{su(CRS)}	Carrier sense setup time	2	-	-	ne			
t _{ih(CRS)}	Carrier sense hold time	1	-	-	115			
t _{d(TXEN)}	Transmit enable valid delay time	7.5	9.5	15				
t _{d(TXD)}	Transmit data valid delay time	7.5	10	15.5				

Table 125. Dynamic characteristics: Ethernet MAC signals for RMII ⁽¹⁾

1. Evaluated by characterization - Not tested in production.

Symbol	Parameter	Min	Тур	Мах	Unit
t _{su(RXD)}	Receive data setup time	3	-	-	
t _{ih(RXD)}	Receive data hold time	1.5	-	-	
t _{su(DV)}	Data valid setup time	2	-	-	
t _{ih(DV)}	Data valid hold time	1	-	-	ne
t _{su(ER)}	Error setup time	3	-	-	115
t _{ih(ER)}	Error hold time	1	-	-	
t _{d(TXEN)}	Transmit enable valid delay time	7.5	10	16	
t _{d(TXD)}	Transmit data valid delay time	8	10.5	16.5	

Table 126. Dynamic characteristics: Ethernet MAC signals for MII ⁽¹⁾

1. Evaluated by characterization - Not tested in production.

Figure 75. Ethernet MII timing diagram

JTAG/SWD interface characteristics

Unless otherwise specified, the parameters given in *Table 127* and *Table 128* for JTAG/SWD are derived from tests performed under the ambient temperature, $f_{rcc_c_ck}$ frequency and V_{DD} supply voltage summarized in *Table 20*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C_L= 30 pF
- HSLV activated when $V_{DD} \le 2.7 \text{ V}$
- Measurement points are done at CMOS levels: 0.5 V_{DD}

Refer to Section 5.3.15 for more details on the input/output characteristics:

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
F _{TCK}	T clock frequency	$2.7 \text{ V} < \text{V}_{\text{DD}} < 3.6 \text{ V}$	-	-	50	MНт
1/t _{c(TCK)}		1.71 V < V _{DD} < 3.6 V	-	-	45	
ti _{su(TMS)}	TMS input setup time	-	2	-	-	
ti _{h(TMS)}	TMS input hold time	-	1.5	-	-	
ti _{su(TDI)}	TDI input setup time	-	1.5	-	-	
ti _{h(TDI)}	TDI input hold time	-	1.5	-	-	ns
t _{ov(TDO)}	TDO output valid time	2.7V < V _{DD} < 3.6 V	-	8	10	
		1.71 < V _{DD} < 3.6 V	-	8	11	
t _{oh(TDO)}	TDO output hold time	-	6.5	-	-	

Table 127. Dynamic JTAG characteristics

Table 128	. Dynamic	SWD	characteristics
-----------	-----------	-----	-----------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
F _{SWCLK}	SWCLK clock frequency	2.7 V < V _{DD} < 3.6 V	-	-	80	MНт
1/t _{c(SWCLK)}	SWEEK COCK nequency	1.71 V < V _{DD} < 3.6 V	-	-	71	
ti _{su(SWDIO)}	SWDIO input setup time	-	1.5	-	-	
ti _{h(SWDIO)}	SWDIO input hold time	-	1.5	-	-	
t _{ov(SWDIO)}		2.7 V < V _{DD} < 3.6 V	-	10.5	12.5	ns
		1.71 V < V _{DD} < 3.6 V	-	10.5	14.0	
t _{oh(SWDIO)}	SWDIO output hold time	-	8.5	-	-	

Figure 77. JTAG timing diagram

Figure 78. SWD timing diagram

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK is an ST trademark.

6.1 Device marking

Refer to "*Reference device marking schematics for STM32 microcontrollers and microprocessors*" (TN1433), available on *www.st.com*, for the location of pin 1 / ball A1 as well as the location and orientation of the marking areas versus pin 1 / ball A1.

Parts marked as "ES", "E" or accompanied by an engineering sample notification letter, are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

A WLCSP simplified marking example (if any) is provided in the corresponding package information subsection.

6.2 LQFP64 package information (5W)

This LQFP is 64-pin, 10 x 10 mm low-profile quad flat package.

Note: See list of notes in the notes section.

STM32H562xx and STM32H563xx

Symbol		millimeters			inches ⁽¹⁴⁾	
Symbol	Min	Тур	Max	Min	Тур	Max
A	-	-	1.60	-	-	0.0630
A1 ⁽¹²⁾	0.05	-	0.15	0.0020	-	0.0059
A2	1.35	1.40	1.45	0.0531	0.0551	0.0570
b ⁽⁹⁾⁽¹¹⁾	0.17	0.22	0.27	0.0067	0.0087	0.0106
b1 ⁽¹¹⁾	0.17	0.20	0.23	0.0067	0.0079	0.0091
c ⁽¹¹⁾	0.09	-	0.20	0.0035	-	0.0079
c1 ⁽¹¹⁾	0.09	-	0.16	0.0035	-	0.0063
D ⁽⁴⁾		12.00 BSC			0.4724 BSC	
D1 ⁽²⁾⁽⁵⁾		10.00 BSC			0.3937 BSC	
E ⁽⁴⁾		12.00 BSC			0.4724 BSC	
E1 ⁽²⁾⁽⁵⁾	10.00 BSC				0.3937 BSC	
е		0.50 BSC			0.1970 BSC	
L	0.45	0.60	0.75	0.0177	0.0236	0.0295
L1		1.00 REF			0.0394 REF	
N ⁽¹³⁾				64		
θ	0°	3.5°	7°	0°	3.5°	7°
θ1	0°	-	-	0°	-	-
θ2	10°	12°	14°	10°	12°	14°
θ3	10°	12°	14°	10°	12°	14°
R1	0.08	-	-	0.0031	-	_
R2	0.08	-	0.20	0.0031	-	0.0079
S	0.20	-	-	0.0079	-	-
aaa ⁽¹⁾		0.20 0.0079				
bbb ⁽¹⁾		0.20		0.0079		
ccc ⁽¹⁾		0.08		0.0031		
ddd ⁽¹⁾		0.08		0.0031		

Notes:

- 1. Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994.
- 2. The Top package body size may be smaller than the bottom package size by as much as 0.15 mm.
- 3. Datums A-B and D to be determined at datum plane H.
- 4. To be determined at seating datum plane C.
- 5. Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash or protrusions is "0.25 mm" per side. D1 and E1 are Maximum plastic body size dimensions including mold mismatch.
- 6. Details of pin 1 identifier are optional but must be located within the zone indicated.
- 7. All Dimensions are in millimeters.
- 8. No intrusion allowed inwards the leads.
- 9. Dimension "b" does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum "b" dimension by more than 0.08 mm. Dambar cannot be located on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm for 0.4 mm and 0.5 mm pitch packages.
- 10. Exact shape of each corner is optional.
- 11. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.
- 12. A1 is defined as the distance from the seating plane to the lowest point on the package body.
- 13. "N" is the number of terminal positions for the specified body size.
- 14. Values in inches are converted from mm and rounded to 4 decimal digits.
- 15. Drawing is not to scale.

Figure 80. LQFP64 - Footprint example

1. Dimensions are expressed in millimeters.

6.3 VFQFPN68 package information (B029)

This VFQFPN is a 68 pins, 8 x 8 mm, 0.4 mm pitch, very thin fine pitch quad flat package.

Figure 81. VFQFPN68 - Outline

1. VFQFPN stands for Thermally Enhanced Very thin Fine pitch Quad Flat Packages No lead. Sawed version. Very thin profile: $0.80 < A \le 1.00$ mm.

2. The pin #1 identifier must be existed on the top surface of the package by using indentation mark or other feature of package body. Exact shape and size of this feature is optional.

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах
А	0.80	0.90	1.00	0.0315	0.0354	0.0394
A1	0	0.02	0.05	0	0.0008	0.0020
A3	-	0.20	-	-	0.0008	-
b	0.15	0.20	0.25	0.0059	0.0079	0.0098
D	7.85	8.00	8.15	0.3091	0.3150	0.3209
D2	6.30	6.40	6.50	0.2480	0.2520	0.2559
E	7.85	8.00	8.15	0.3091	0.3150	0.3209
E2	6.30	6.40	6.50	0.2480	0.2520	0.2559
е	-	0.40	-	-	0.0157	-
L	0.40	0.50	0.60	0.0157	0.0197	0.0236
ddd	-	-	0.08	-	-	0.0031

Table 130. VFQFPN68 - Mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 82. VFQFPN68 - Footprint example

1. Dimensions are expressed in millimeters.

6.4 WLCSP80 package information (B0D4)

This WLCSP is a 80 ball, 3.50 x 3.27 mm, 0.35 mm pitch, wafer level chip scale package.

- 1. Drawing is not to scale.
- 2. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
- 3. Primary datum Z and seating plane are defined by the spherical crowns of the bump.
- 4. Bump position designation per JESD 95-1, SPP-010. The tolerance of position that controls the location of the pattern of balls with respect to datums X and Y. For each ball there is a cylindrical tolerance zone ccc perpendicular to datum Z and located on true position with respect to datums X and Y as defined by e. The axis perpendicular to datum Z of each ball must lie within this tolerance zone.

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
A ⁽²⁾	-	-	0.58	-	-	0.228
A1	-	0.17	-	-	0.0067	-
A2	-	0.38	-	-	0.0150	-
A3 ⁽³⁾	-	0.025	-	-	0.0098	-
b	0.22	0.24	0.27	0.0087	0.0094	0.0106
D	3.47	3.50	3.52	0.1366	0.1378	0.1386
E	3.25	3.27	3.30	0.1279	0.1287	0.1299
е	-	0.35	-	-	0.138	-
e1	-	2.73	-	-	0.1075	-
e2	-	2.45	-	-	0.0964	-
F ⁽⁴⁾	-	0.384	-	-	0.0151	-
G ⁽⁴⁾	-	0.484	-	-	0.0190	-
Н	-	0.1025	-	-	0.0040	-
aaa	-	-	0.10	-	-	0.0039
bbb	-	-	0.10	-	-	0.0039
ccc ⁽⁵⁾	-	-	0.10	-	-	0.0039
ddd ⁽⁶⁾	-	-	0.05	-	-	0.0020
eee	-	-	0.05	-	-	0.0020

Table 131. WLCSP80 - Mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. The maximum total package height is calculated by the RSS method (Root Sum Square) using nominal and tolerances values of A1 and A2.

3. Back side coating. Nominal dimension is rounded to the 3rd decimal place resulting from process capability.

4. Calculated dimensions are rounded to the 3rd decimal place

5. Bump position designation per JESD 95-1, SPP-010. The tolerance of position that controls the location of the pattern of balls with respect to datums X and Y. For each ball there is a cylindrical tolerance zone ccc perpendicular to datum Z and located on true position with respect to datums X and Y as defined by e. The axis perpendicular to datum Z of each ball must lie within this tolerance zone.

6. The tolerance of position that controls the location of the balls within the matrix with respect to each other. For each ball there is a cylindrical tolerance zone ddd perpendicular to datum Z and located on true position as defined by e. The axis perpendicular to datum Z of each ball must lie within this tolerance zone. Each tolerance zone ddd in the array is contained entirely in the respective zone ccc above. The axis of each ball must lie simultaneously in both tolerance zones.

Table 132. WLCSP80 - Example of PCB design rules

Dimension	Values				
Pitch	0.35 mm				
Dpad	0.225 mm				
Dsm	0.290 mm typ. (depends on soldermask registration tolerance)				
Stencil opening	0.235 mm				
Stencil thickness	0.080 mm				

Example of device marking for WLCSP80

The following figure gives an example of the locations and orientation of the marking areas versus ball A1, and allows engineering samples to be identified.

With the device text markings oriented as in the figure, ball A1 is always located at top left.

Figure 85. WLCSP80 marking example (package top view)

6.5 LQFP100 package information (1L)

This LQFP is 100 lead, 14 x 14 mm low-profile quad flat package.

Note: See list of notes in the notes section.

Symbol	millimeters			inches ⁽¹⁴⁾		
	Min	Тур	Мах	Min	Тур	Мах
А	-	1.50	1.60	-	0.0590	0.0630
A1 ⁽¹²⁾	0.05	-	0.15	0.0019	-	0.0059
A2	1.35	1.40	1.45	0.0531	0.0551	0.0570
b ⁽⁹⁾⁽¹¹⁾	0.17	0.22	0.27	0.0067	0.0087	0.0106
b1 ⁽¹¹⁾	0.17	0.20	0.23	0.0067	0.0079	0.0090
c ⁽¹¹⁾	0.09	-	0.20	0.0035	-	0.0079
c1 ⁽¹¹⁾	0.09	-	0.16	0.0035	-	0.0063
D ⁽⁴⁾	16.00 BSC			0.6299 BSC		
D1 ⁽²⁾⁽⁵⁾	14.00 BSC			0.5512 BSC		
E ⁽⁴⁾	16.00 BSC			0.6299 BSC		
E1 ⁽²⁾⁽⁵⁾	14.00 BSC			0.5512 BSC		
е	0.50 BSC			0.0197 BSC		
L	0.45	0.60	0.75	0.177	0.0236	0.0295
L1 ⁽¹⁾⁽¹¹⁾	1.00			-	0.0394	-
N ⁽¹³⁾	100					
θ	0°	3.5°	7°	0°	3.5°	7°
θ1	0°	-	-	0°	-	-
θ2	10°	12°	14°	10°	12°	14°
θ3	10°	12°	14°	10°	12°	14°
R1	0.08	-	-	0.0031	-	-
R2	0.08	-	0.20	0.0031	-	0.0079
S	0.20	-	-	0.0079	-	-
aaa ⁽¹⁾	0.20			0.0079		
bbb ⁽¹⁾	0.20			0.0079		
ccc ⁽¹⁾	0.08			0.0031		
ddd ⁽¹⁾	0.08			0.0031		

Table 133. LQFP100 - Mechanical data

Notes:

- 1. Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994.
- 2. The Top package body size may be smaller than the bottom package size by as much as 0.15 mm.
- 3. Datums A-B and D to be determined at datum plane H.
- 4. To be determined at seating datum plane C.
- 5. Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash or protrusions is "0.25 mm" per side. D1 and E1 are Maximum plastic body size dimensions including mold mismatch.
- 6. Details of pin 1 identifier are optional but must be located within the zone indicated.
- 7. All Dimensions are in millimeters.
- 8. No intrusion allowed inwards the leads.
- 9. Dimension "b" does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum "b" dimension by more than 0.08 mm. Dambar cannot be located on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm for 0.4 mm and 0.5 mm pitch packages.
- 10. Exact shape of each corner is optional.
- 11. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.
- 12. A1 is defined as the distance from the seating plane to the lowest point on the package body.
- 13. "N" is the number of terminal positions for the specified body size.
- 14. Values in inches are converted from mm and rounded to 4 decimal digits.
- 15. Drawing is not to scale.

Figure 87. LQFP100 - Footprint example

1. Dimensions are expressed in millimeters.

6.6 LQFP144 package information (1A)

This LQFP is a 144-pin, 20 x 20 mm low-profile quad flat package.

Note: See list of notes in the notes section.

DS14258 Rev 5

Symbol	millimeters			inches ⁽¹⁴⁾		
	Min	Тур	Мах	Min	Тур	Max
A	-	-	1.60	-	-	0.0630
A1 ⁽¹²⁾	0.05	-	0.15	0.0020	-	0.0059
A2	1.35	1.40	1.45	0.0531	0.0551	0.0571
b ⁽⁹⁾⁽¹¹⁾	0.17	0.22	0.27	0.0067	0.0087	0.0106
b1 ⁽¹¹⁾	0.17	0.20	0.23	0.0067	0.0079	0.0090
c ⁽¹¹⁾	0.09	-	0.20	0.0035	-	0.0079
c1 ⁽¹¹⁾	0.09	-	0.16	0.0035	-	0.0063
D ⁽⁴⁾	22.00 BSC 0.8661 BSC					
D1 ⁽²⁾⁽⁵⁾	20.00 BSC			0.7874 BSC		
E ⁽⁴⁾	22.00 BSC			0.8661 BSC		
E1 ⁽²⁾⁽⁵⁾	20.00 BSC			0.7874 BSC		
е	0.50 BSC			0.0197 BSC		
L	0.45	0.60	0.75	0.0177	0.0236	0.0295
L1	1.00 REF			0.0394 REF		
N ⁽¹³⁾	144					
θ	0°	3.5°	7°	0°	3.5°	7°
θ1	0°	-	-	0°	-	-
θ2	10°	12°	14°	10°	12°	14°
θ3	10°	12°	14°	10°	12°	14°
R1	0.08	-	-	0.0031	-	-
R2	0.08	-	0.20	0.0031	-	0.0079
S	0.20	-	-	0.0079	-	-
aaa	0.20			0.0079		
bbb	0.20			0.0079		
CCC	0.08			0.0031		
ddd	0.08			0.0031		

Table 134. LQFP144 - Mechanical data

Notes:

- 1. Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994.
- 2. The Top package body size may be smaller than the bottom package size by as much as 0.15 mm.
- 3. Datums A-B and D to be determined at datum plane H.
- 4. To be determined at seating datum plane C.
- 5. Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash or protrusions is "0.25 mm" per side. D1 and E1 are Maximum plastic body size dimensions including mold mismatch.
- 6. Details of pin 1 identifier are optional but must be located within the zone indicated.
- 7. All Dimensions are in millimeters.
- 8. No intrusion allowed inwards the leads.
- 9. Dimension "b" does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum "b" dimension by more than 0.08 mm. Dambar cannot be located on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm for 0.4 mm and 0.5 mm pitch packages.
- 10. Exact shape of each corner is optional.
- 11. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.
- 12. A1 is defined as the distance from the seating plane to the lowest point on the package body.
- 13. "N" is the number of terminal positions for the specified body size.
- 14. Values in inches are converted from mm and rounded to 4 decimal digits.
- 15. Drawing is not to scale.

Figure 89. LQFP144 - Footprint example

1. Dimensions are expressed in millimeters.

6.7 UFBGA169 package information (A0YV)

This UFBGA is a 169-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package.

Figure 90. UFBGA169 - Outline

1. Drawing is not to scale.

- 2. Primary datum C is defined by the plane established by the contact points of three or more solder balls that support the device when it is placed on top of a planar surface.
- 3. The terminal (ball) A1 corner must be identified on the top surface of the package by using a corner chamfer, ink or metallized markings, or other feature of package body or integral heat slug. A distinguish feature is allowable on the bottom surface of the package to identify the terminal A1 corner. Exact shape of each corner is optional.

Gumbal	millimeters				inches ⁽¹⁾		
бутрог	Min.	Тур.	Max.	Min.	Тур.	Max.	
A ⁽²⁾	-	-	0.60	-	-	0.0236	
A1 ⁽³⁾	0.05	-	-	0.0020	-	-	
A2	-	0.43	-	-	0.0169	-	
b ⁽⁴⁾	0.23	0.28	0.33	0.0091	0.0110	0.0130	
D ⁽⁵⁾		7.00 BSC			0.2756 BSC		
D1 ⁽⁵⁾	6.00 BSC			0.2362 BSC			
E ⁽⁵⁾	7.00 BSC			0.2756 BSC			
E1 ⁽⁵⁾	6.00 BSC			0.2362 BSC			
e ⁽⁵⁾⁽⁶⁾	0.50 BSC			0.0197 BSC			
N ⁽⁷⁾	169						
SD ⁽⁵⁾⁽⁸⁾		0.50 BSC			0.0197 BSC		
SE ⁽⁵⁾⁽⁸⁾		0.50 BSC			0.0197 BSC		
aaa ⁽⁹⁾	0.15			0.0059			
ccc ⁽⁹⁾	0.20			0.0079			
ddd ⁽⁹⁾	0.08			0.0031			
eee ⁽⁹⁾		0.15		0.0059			
fff ⁽⁹⁾		0.05			0.0020		

Table 135. UFBGA169 - Mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. The profile height, A, is the distance from the seating plane to the highest point on the package. It is measured perpendicular to the seating plane.

3. A1 is defined as the distance from the seating plane to the lowest point on the package body.

4. Dimension b is measured at the maximum diameter of the terminal (ball) in a plane parallel to primary datum C.

5. BSC stands for BASIC dimensions. It corresponds to the nominal value and has no tolerance. For tolerances refer to form and position table.

6. e represents the solder ball grid pitch.

7. N represents the total number of balls on the BGA.

8. Basic dimensions SD and SE are defined with respect to datums A and B. It defines the position of the centre ball(s) in the outer row or column of a fully populated matrix.

9. Tolerance of form and position drawing

Table 136. UFBGA169 - Example of PCB design rules (0.5 mm pitch BGA)

Dimension	Values
Pitch	0.5 mm
Dpad	0.27 mm
Dsm	0.35 mm typ. (depends on the soldermask registration tolerance)
Solder paste	0.27 mm aperture diameter.

Note: Non-solder mask defined (NSMD) pads are recommended.

Note: 4 to 6 mils solder paste screen printing process.

6.8 LQFP176 package information (1T)

This LQFP is a 176-pin, 24 x 24 mm, 0.5 mm pitch, low profile quad flat package.

Note: See list of notes in the notes section.

Figure 92. LQFP176 - Outline⁽¹⁵⁾

Symbol	millimeters			inches ⁽¹⁴⁾			
Symbol	Min	Тур	Max	Min	Тур	Мах	
A	-	-	1.600	-	-	0.0630	
A1 ⁽¹²⁾	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b ⁽⁹⁾⁽¹¹⁾	0.170	0.220	0.270	0.0067	0.0087	0.0106	
b1 ⁽¹¹⁾	0.170	0.200	0.230	0.0067	0.0079	0.0091	
c ⁽¹¹⁾	0.090	-	0.200	0.0035	-	0.0079	
c1 ⁽¹¹⁾	0.090	-	0.160	0.0035	-	0.063	
D ⁽⁴⁾		26.000			1.0236		
D1 ⁽²⁾⁽⁵⁾		24.000			0.9449		
E ⁽⁴⁾		26.000			0.0197		
E1 ⁽²⁾⁽⁵⁾	24.000			0.9449			
е		0.500		0.1970			
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
$L1^{(1)(11)}$	1				0.0394 REF		
N ⁽¹³⁾			1	76			
θ	0°	3.5°	7°	0°	3.5°	7°	
θ1	0°	-	-	0°	-	-	
θ2	10°	12°	14°	10°	12°	14°	
θ3	10°	12°	14°	10°	12°	14°	
R1	0.080	-	-	0.0031	-	-	
R2	0.080	-	0.200	0.0031	-	0.0079	
S	0.200	-	-	0.0079	-	-	
aaa ⁽¹⁾		0.200	•	0.0079			
bbb ⁽¹⁾		0.200			0.0079		
ccc ⁽¹⁾		0.080			0.0031		
ddd ⁽¹⁾		0.080		0.0031			

Table 137. LQFP176 - Mechanical data

Notes:

- 1. Dimensioning and tolerancing schemes conform to ASME Y14.5M-1994.
- 2. The Top package body size may be smaller than the bottom package size by as much as 0.15 mm.
- 3. Datums A-B and D to be determined at datum plane H.
- 4. To be determined at seating datum plane C.
- 5. Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash or protrusions is "0.25 mm" per side. D1 and E1 are Maximum plastic body size dimensions including mold mismatch.
- 6. Details of pin 1 identifier are optional but must be located within the zone indicated.
- 7. All Dimensions are in millimeters.
- 8. No intrusion allowed inwards the leads.
- 9. Dimension "b" does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum "b" dimension by more than 0.08 mm. Dambar cannot be located on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm for 0.4 mm and 0.5 mm pitch packages.
- 10. Exact shape of each corner is optional.
- 11. These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.
- 12. A1 is defined as the distance from the seating plane to the lowest point on the package body.
- 13. "N" is the number of terminal positions for the specified body size.
- 14. Values in inches are converted from mm and rounded to 4 decimal digits.
- 15. Drawing is not to scale.

Figure 93. LQFP176 - Footprint example

1. Dimensions are expressed in millimeters.

6.9 UFBGA(176+25) package information (A0E7)

This UFBGA is a 176+25-ball, 10 x 10 mm, 0.65 mm pitch, ultra fine pitch ball grid array package.

1. Drawing is not to scale.

Table 138	UFBGA(176+25) -	Mechanical data
-----------	-----------------	-----------------

Symbol		millimeters		inches ⁽¹⁾		
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
А	-	-	0.600	-	-	0.0236
A1	0.050	0.080	0.110	0.0020	0.0031	0.0043
A2	-	0.450	-	-	0.0177	-
A3	-	0.130	-	-	0.0051	-
A4	-	0.320	-	-	0.0126	-
b	0.240	0.290	0.340	0.0094	0.0114	0.0134
D	9.850	10.000	10.150	0.3878	0.3937	0.3996
D1	-	9.100	-	-	0.3583	-
E	9.850	10.000	10.150	0.3878	0.3937	0.3996
E1	-	9.100	-	-	0.3583	-
е	-	0.650	-	-	0.0256	-
F	-	0.450	-	-	0.0177	-
ddd	-	-	0.080	-	-	0.0031

Symbol	millimeters				inches ⁽¹⁾	
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

|--|

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 95. UFBGA(176+25) - Footprint example

Table 139. UFBGA(176+25) - Example of PCB design rules (0.65 mm pitch BGA)

Dimension	Values
Pitch	0.65 mm
Dpad	0.300 mm
Dsm	0.400 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.300 mm
Stencil thickness	Between 0.100 mm and 0.125 mm
Pad trace width	0.100 mm

6.10 Package thermal characteristics

The maximum chip-junction temperature, T_{Jmax} in degrees Celsius, can be calculated using the following equation:

$$T_{Jmax} = T_{Amax} + (P_{Dmax} \times \Theta_{JA})$$

Where:

- T_{Amax} is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_{Dmax} is the sum of P_{INTmax} and P_{I/Omax} (P_{Dmax} = P_{INTmax} + P_{I/Omax}),
- P_{INTmax} is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

P_{I/Omax} represents the maximum power dissipation on output pins:

 $\mathsf{P}_{\mathsf{I}/\mathsf{Omax}} = \Sigma \; (\mathsf{V}_\mathsf{OL} \times \mathsf{I}_\mathsf{OL}) + \Sigma ((\mathsf{V}_\mathsf{DD} - \mathsf{V}_\mathsf{OH}) \times \mathsf{I}_\mathsf{OH}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Definition	Parameter	Value	Unit	
		LQFP64 (10 x 10 mm)	48.1		
		VFQFPN68 (8 x 8 mm)	24.2		
		WLCSP80 (3.50 x 3.27 mm)	47.3		
0	Thermal resistance	LQFP100 (14 x 14 mm)	35.9	°C/M	
OJA	junction-ambient	LQFP144 (20 x 20 mm)	37.5	0/11	
Θ _{JB}		LQFP176 (24 x 24 mm)	38.3		
	UFBGA169 (7 x 7 mm) UFBGA176 (10 x 10 mm)	UFBGA169 (7 x 7 mm)	40.6		
		UFBGA176 (10 x 10 mm)	39.1		
	Lu V Thermal resistance junction-board	LQFP64 (10 x 10 mm)	24.1		
		VFQFPN68 (8 x 8 mm)	9.4	°C/W	
		WLCSP80 (3.50 x 3.27 mm)	23.0		
		LQFP100 (14 x 14 mm)	21.9		
		LQFP144 (20 x 20 mm)	26.3		
		LQFP176 (24 x 24 mm)	28.3		
		UFBGA169 (7 x 7 mm)	26.4		
		UFBGA176 (10 x 10 mm)	27.0		

Table 140. Package thermal characteristics

Symbol	Definition	Parameter	Value	Unit
Θ _{JC} Thermal i junctio		LQFP64 (10 x 10 mm)	10.3	
		VFQFPN68 (8 x 8 mm)	10.8	
		WLCSP80 (3.50 x 3.27 mm)	2.3	
	Thermal resistance	LQFP100 (14 x 14 mm)	8.5	°C M
	junction-case	LQFP144 (20 x 20 mm)	8.6	0/11
		LQFP176 (24 x 24 mm)	9.1	
		UFBGA169 (7 x 7 mm)	11.2	
		UFBGA176 (10 x 10 mm)	10.9	

Table 140. Package thermal characteristics (continued)

6.10.1 Reference documents

- JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions Natural Convection (Still Air). Available from www.jedec.org.
- For information on thermal management, refer to AN5036 "Guidelines for thermal management on STM32 applications", available from www.st.com.

7 Ordering information

Example:	STM32	H 56	3 V	I T 6	Q TR
Device family					
STM32 = Arm based 32-bit microcontroller					
Product type					
H = high performance					
Device subfamily					
562 = STM32H562xx devices without Ethernet 563 = STM32H563xx devices					
Pin count					
R = 64 pins / 68 pins M = 80 pins V = 100 pins Z = 144 pins A = 169 balls I = 176 pins					
Flash memory size					
G = 1 Mbyte I = 2 Mbytes					
Package					
V = VFQFPN T = LQFP I = UFBGA (7 x 7 mm) K = UFBGA (10 x 10) Y = WLCSP					
Temperature range					
6 = Industrial, -40 to 85 °C (130 °C junction), availab 7 = Industrial, -40 to 105 °C (130 °C junction), availa 3 = Industrial, -40 to 125 °C (130 °C junction), availa	le only in LDO opt ble only in LDO op ble only in SMPS	tion otion option			
Dedicated pinout					
Q = Dedicated pinout supporting SMPS step-down of	onverter				
Packing					

TR = tape and reel

xxx = programmed parts

For a list of available options (such as speed or package) or for further information on any aspect of this device, contact the nearest ST sales office.

8 Important security notice

The STMicroelectronics group of companies (ST) places a high value on product security, which is why the ST product(s) identified in this documentation may be certified by various security certification bodies and/or may implement our own security measures as set forth herein. However, no level of security certification and/or built-in security measures can guarantee that ST products are resistant to all forms of attacks. As such, it is the responsibility of each of ST's customers to determine if the level of security provided in an ST product meets the customer needs both in relation to the ST product alone, as well as when combined with other components and/or software for the customer end product or application. In particular, take note that:

- ST products may have been certified by one or more security certification bodies, such as Platform Security Architecture (www.psacertified.org) and/or Security Evaluation standard for IoT Platforms (www.trustcb.com). For details concerning whether the ST product(s) referenced herein have received security certification along with the level and current status of such certification, either visit the relevant certification standards website or go to the relevant product page on www.st.com for the most up to date information. As the status and/or level of security certification for an ST product can change from time to time, customers should re-check security certification status/level as needed. If an ST product is not shown to be certified under a particular security standard, customers should not assume it is certified.
- Certification bodies have the right to evaluate, grant and revoke security certification in relation to ST products. These certification bodies are therefore independently responsible for granting or revoking security certification for an ST product, and ST does not take any responsibility for mistakes, evaluations, assessments, testing, or other activity carried out by the certification body with respect to any ST product.
- Industry-based cryptographic algorithms (such as AES, DES, or MD5) and other open standard technologies which may be used in conjunction with an ST product are based on standards which were not developed by ST. ST does not take responsibility for any flaws in such cryptographic algorithms or open technologies or for any methods which have been or may be developed to bypass, decrypt or crack such algorithms or technologies.
- While robust security testing may be done, no level of certification can absolutely guarantee protections against all attacks, including, for example, against advanced attacks which have not been tested for, against new or unidentified forms of attack, or against any form of attack when using an ST product outside of its specification or intended use, or in conjunction with other components or software which are used by customer to create their end product or application. ST is not responsible for resistance against such attacks. As such, regardless of the incorporated security features and/or any information or support that may be provided by ST, each customer is solely responsible for determining if the level of attacks tested for meets their needs, both in relation to the ST product alone and when incorporated into a customer end product or application.
- All security features of ST products (inclusive of any hardware, software, documentation, and the like), including but not limited to any enhanced security features added by ST, are provided on an "AS IS" BASIS. AS SUCH, TO THE EXTENT PERMITTED BY APPLICABLE LAW, ST DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, unless the applicable written and signed contract terms specifically provide otherwise.

9 Revision history

Date	Revision	Changes
06-Mar-2023	1	Initial release.
20-Oct-2023	2	Updated Features and Section 3.10.1: Power supply schemes. Updated Table 2: STM32H56xxx features and peripheral counts, Table 18: Current characteristics, Table 20: General operating conditions, tables 30 to 32, tables 34 to 35, Table 58: I/O static characteristics, and Table 64: Output timing characteristics (HSLV ON). Updated Figure 7: WLCSP80 SMPS ballout, Figure 41: NAND controller waveforms for read access, Figure 42: NAND controller waveforms for write access, Figure 63: SPI timing diagram - Master mode, Figure 65: SPI timing diagram - Slave mode and CPHA = 1, Figure 69: SAI master timing waveforms, and Figure 70: SAI slave timing waveforms. Added Section 3.32: Public key accelerator (PKA), Section 6.1: Device marking, and Example of device marking for WLCSP80. Minor text edits across the whole document.
28-May-2024	3	Updated Figure 1: STM32H562xx and STM32H563xx block diagram, Figure 6: VFQFPN68 pinout, Figure 17: UFBGA176+25 SMPS ballout, Figure 31: VIL/VIH for all I/Os except BOOT0, and Figure 63: SPI timing diagram - Master mode. Updated Table 14: STM32H562xx and STM32H563xx pin/ball definition, Table 15: Alternate functions AF0 to AF7, Table 21: Maximum allowed clock frequencies, Table 23: Characteristics of SMPS step-down converter external components, Table 30: Typical and maximum current consumption in Run mode, code with data processing running from SRAM with cache 1-way, Table 45: HSI oscillator characteristics, tables 53 to 55, Table 122: Dynamic characteristics: SD/MMC, VDD = 2.7 to 3.6 V, and Table 123: Dynamic characteristics: eMMC, VDD = 1.71 to 1.9 V. Updated Section 3.24.1: Analog temperature sensor. Added Section 3.25: Digital temperature sensor (DTS), Section 5.3.14: I/O current injection characteristics, and USB full speed (FS) characteristics. Added Table 60: Output voltage characteristics for FT_c I/Os and Table 67: Output timing characteristics for FT_c I/Os (PB13/PB14). Added Figure 36: Asynchronous multiplexed PSRAM/NOR write waveforms. Minor text edits across the whole document.

Table 141	. Document	revision	history
-----------	------------	----------	---------

STM32H562xx and STM32H563xx

Date	Revision	Changes	
13-Dec-2024	4	Updated Features, Section 3.28: Digital camera interface (DCMI), Wake-up time from low-power modes, and Section 7: Ordering information. Updated Table 2: STM32H56xxx features and peripheral counts, Table 10: SPI features, Table 20: General operating conditions, Table 21: Maximum allowed clock frequencies, Table 36: Typical and maximum current consumption in Standby mode, Table 37: Typical and maximum current consumption in VBAT mode, Table 40: High-speed external user clock characteristics, Table 51: Flash memory programming, Table 89: OCTOSPI characteristics in DTR mode (with DQS) / HyperBus, Table 95: 12-bit ADC characteristics, Table 110: LPTIMx observatoristics and Table 135: UEBC 4160.	
		Updated Figure 5: LQFP64 pinout and Figure 90: UFBGA169 - Outline.	
		Minor text edits across the whole document.	
02-Jan-2025	5	Updated Table 36: Typical and maximum current consumption in Standby mode.	

Table 14	1. Docume	ent revisio	n history

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2025 STMicroelectronics – All rights reserved

DS14258 Rev 5

