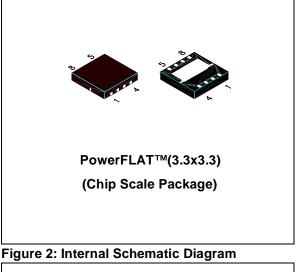


STL8NH3LL N-CHANNEL 30 V - 0.012 Ω - 8 A PowerFLAT™ ULTRA LOW GATE CHARGE STripFET™ MOSFET

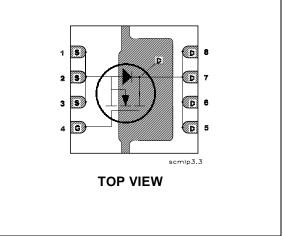
Table 1: General Features

TYPE	V _{DSS}	R _{DS(on)}	I _D (1)
STL8NH3LL	30 V	< 0.015 Ω	8 A

- TYPICAL R_{DS}(on) = 0.012 Ω @ 10V
- IMPROVED DIE-TO-FOOTPRINT RATIO
- VERY LOW PROFILE PACKAGE (1mm MAX)
- VERY LOW THERMAL RESISTANCE
- VERY LOW GATE CHARGE
- LOW THRESHOLD DEVICE


DESCRIPTION

This application specific MOSFET is the lastest generation of STMicroelectronics unique "STripFET™" technology. The resulting transistor is optimized for low on-resistance and minimal gate charge. The Chip-scaled PowerFLAT™ package allows a significant board space saving, still boosting the performance.


APPLICATIONS

CONTROL FET IN BUCK CONVERTER

Figure 1: Package

PRELIMINARY DATA

Table 2: Order Codes

Part Number	Marking	Package	Packaging
STL8NH3LL	L8NH3LL	PowerFLAT™ (3.3x3.3)	TAPE & REEL

Table 3: Absolute Maximum ratings

Symbol	Parameter	Value	Unit	
V _{DS}	Drain-source Voltage (V _{GS} = 0)	30	V	
V _{DGR}	Drain-gate Voltage (R _{GS} = 20 kΩ)	30	V	
V _{GS}	Gate- source Voltage	± 16	V	
I _D (1)	Drain Current (continuous) at T _C = 25°C (Steady State)	8	А	
I _D (2)	Drain Current (continuous) at T _C = 100°C (Steady State)	5	А	
I _{DM} (3)	Drain Current (pulsed)	32	A	
P _{TOT} (1)	Total Dissipation at T _C = 25°C	50	W	
P _{TOT} (2)	Total Dissipation at T_{C} = 25°C (Steady State) 1.56		W	
	Derating Factor (2)	0.4	W/°C	
T _{stg}	Storage Temperature 55 to 150		°C	
Тj	Max. Operating Junction Temperature	– 55 to 150		

Table 4: Thermal Data

Rthj-Case	Thermal Resistance Junction-Case Max	2.5	°C/W
Rthj-a (4)	Thermal Operating Junction-ambient	80	°C/W

ELECTRICAL CHARACTERISTICS ($T_{CASE} = 25^{\circ}C$ UNLESS OTHERWISE SPECIFIED) Table 5: On /Off

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0	30			V
IDSS	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating, T _C = 125°C			1 10	μΑ μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 16 V			± 100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	1			V
R _{DS(on}	Static Drain-source On Resistance	$V_{GS} = 10 \text{ V}, I_D = 4 \text{ A}$ $V_{GS} = 4.5 \text{ V}, I_D = 4 \text{ A}$		0.012 0.0135	0.015 0.017	Ω Ω

Table 6: Dynamic

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (5)	Forward Transconductance	V _{DS} = 15V, I _D = 4A		TBD		S
C _{iss}	Input Capacitance	V_{DS} = 25V, f= 1 MHz, V_{GS} = 0		965		pF
Coss	Output Capacitance			285		pF
C _{rss}	Reverse Transfer Capacitance			38		pF

ELECTRICAL CHARACTERISTICS (CONTINUED)

Table 7: Switching On

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Delay Time	V _{DD} = 15 V, I _D = 4 A		15		ns
tr	Rise Time	$R_G = 4.7\Omega$, $V_{GS} = 4.5V$ (see Figure 3)		32		ns
Qg Qgs Qgd	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V_{DD} = 15V, I_D = 8 A, V_{GS} = 4.5 V (see Figure 5)		9 3.7 3	12	nC nC nC

Table 8: Switching

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(off)} t _f	Turn-off-Delay Time Fall Time	$V_{DD}=15 \text{ V}, \text{ I}_{D}=4 \text{ A},$ R _G = 4.7 Ω , V _{GS} = 4.5 V (see Figure 3)		18 8.5		ns ns

Table 9: Source Drain Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (3)	Source-drain Current Source-drain Current (pulsed)				8 32	A A
V _{SD} (5)	Forward On Voltage	$I_{SD} = 8 \text{ A}, V_{GS} = 0$			1.3	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_{SD} = 8 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ $V_{DD} = 20\text{V}, \text{ T}_{\text{j}} = 150^{\circ}\text{C}$ (see Figure 4)		24 17.4 1.45		ns nC A

(1) The value is rated according Rthj-c

(2) The value is rated according R_{thj-a}
(3) Pulse width limited by safe operating area.

(4) When mounted on minimum footprint
(5) Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %

Figure 3: Switching Times Test Circuit For Resistive Load

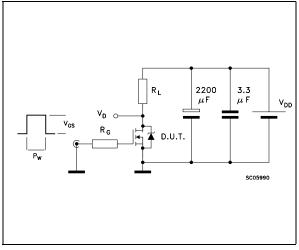
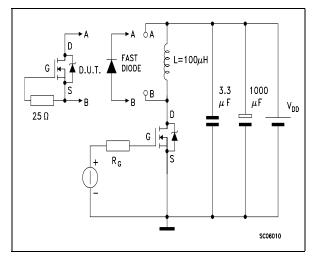
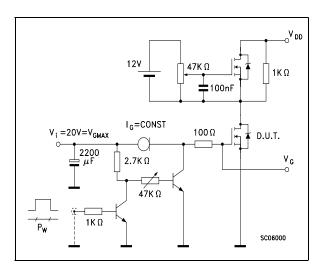




Figure 4: Test Circuit For Diode Recovery Times

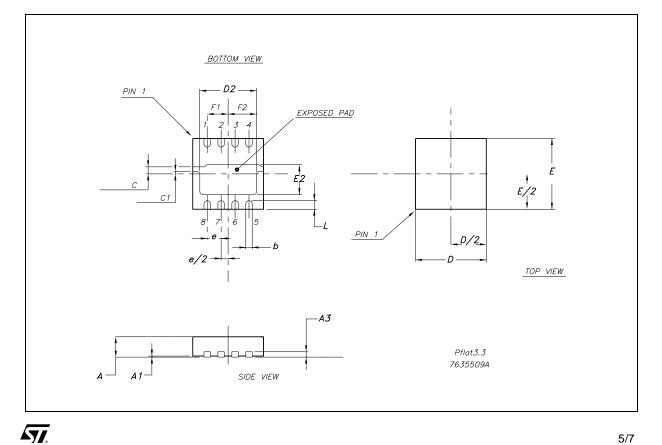


Figure 5: Gate Charge Test Circuit

PowerFLAT[™] (3.3x3.3) MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А	0.80	0.90	1.00	0.031	0.035	0.039
A1		0.02	0.05		0.0007	0.0019
A3		0.20			0.007	
b	0.23	0.30	0.38	0.009	0.011	0.015
С		0.328			0.012	
C1		0.12			0.004	
D		3.30			0.13	
D2	2.50	2.65	2.75	0.098	0.104	0.108
E		3.30			0.13	
E2	1.25	1.40	1.50	0.049	0.055	0.059
F		1.325			0.052	
F1		0.975			0.038	
е		0.65			0.025	
L	0.30		0.50	0.011		0.019

Table 10: Revision History

Date	Revision	Description of Changes
21-July-2004	1	First Release.
05-Oct-2004	2	Values changed

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America