

PowerFLAT[™] 5x6 HV

Figure 1: Internal schematic diagram

8

7 6 5

2

1

3 4

AM15540v1

Top View

D(5, 6, 7, 8)

S(1, 2, 3)

N-channel 650 V, 0.85 Ω typ., 4.5 A MDmesh M2 Power MOSFET in a PowerFLAT™ 5x6 HV package

Datasheet - production data

Features

Order code	VDS	R _{DS(on)} max.	ID
STL10N65M2	650 V	1.00 Ω	4.5 A

- Extremely low gate charge
- Lower R_{DS(on)} x area vs previous generation
- Low gate input resistance •
- 100% avalanche tested
- Zener-protected

Applications

Switching applications

Description

This device is an N-channel Power MOSFET developed using MDmesh[™] M2 technology. Thanks to its strip layout and an improved vertical structure, the device exhibits low on-resistance and optimized switching characteristics, rendering it suitable for the most demanding high efficiency converters.

Table 1: Device summary

Order code	Marking	Package	Packing
STL10N65M2	10N65M2	PowerFLAT™ 5x6 HV	Tape and reel

G(4)

DocID030432 Rev 1

www.st.com

This is information on a product in full production.

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	PowerFLAT™ 5x6 HV package information	10
	4.2	PowerFLAT™ 5x6 packing information	12
5	Revisio	n history	14

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	±25	V
ID ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	4.5	А
ID.	Drain current (continuous) at T _C = 100 °C	2.8	А
I _{DM} ⁽²⁾	Drain current pulsed	18	Α
P _{TOT}	Total dissipation at $T_C = 25 \text{ °C}$	48	W
I _{AR}	Avalanche current, repetitive or non-repetitive (pulse width limited by T_j max)	0.9	А
Eas	Single pulse avalanche energy (starting $T_j = 25 \text{ °C}$, $I_D = I_{AR}$, $V_{DD} = 50 \text{ V}$)		mJ
dv/dt ⁽³⁾	r/dt ⁽³⁾ Peak diode recovery voltage slope		
dv/dt (4)	MOSFET dv/dt ruggedness	50	V/ns
Tj	Operating junction temperature range		°C
T _{stg}	Storage temperature range	-55 to 150	

Notes:

⁽¹⁾The value is limited by package.

 $\ensuremath{^{(2)}}\ensuremath{\mathsf{Pulse}}$ width is limited by safe operating area.

 $^{(3)}I_{SD} \leq 4.5$ A, di/dt ≤ 400 A/µs, V_DS(peak) $\leq V_{(BR)}$ DSS, V_DD = 80 % V(BR)DSS

 $^{(4)}V_{DS} \le 520 \text{ V}$

Table 3: Thermal da

Symbol	Parameter		Unit
R _{thj} -case	Thermal resistance junction-case		°C/W
Rthj-pcb ⁽¹⁾	Thermal resistance junction-pcb	50	°C/W

Notes:

 $^{(1)}\!When$ mounted on 1 inch² FR-4 board, 2 oz Cu

2 Electrical characteristics

 $T_C = 25$ °C unless otherwise specified

Table 4: On/off-state							
Symbol	nbol Parameter Test conditions Min.					Unit	
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 V$, $I_D = 1 mA$	650			V	
	7	$V_{GS} = 0 V, V_{DS} = 650 V$			1	μA	
I _{DSS} Zero gate voltage drain current		$V_{GS} = 0 V, V_{DS} = 650 V$ $T_{C} = 125 \ ^{\circ}C^{(1)}$			100	μA	
Igss	Gate-body leakage current	$V_{DS} = 0 V$, $V_{GS} = \pm 25 V$			±10	μA	
VGS(th)	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	2	3	4	V	
R _{DS(on)}	Static drain-source on-resistance	V_{GS} = 10 V, I _D = 2.5 A		0.85	1.00	Ω	

Notes:

⁽¹⁾Defined by design, not subject to production test.

I able 5: Dynamic						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	315	-	pF
Coss	Output capacitance	V _{DS} = 100 V, f = 1 MHz,	-	18	-	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0 V$	-	0.86	-	рF
Coss eq. ⁽¹⁾	Equivalent capacitance energy related	$V_{\text{DS}}=0 \text{ to } 520 \text{ V}, \text{ V}_{\text{GS}}=0 \text{ V}$	-	109	-	pF
Rg	Intrinsic gate resistance	f = 1 MHz open drain	-	6.6	-	Ω
Qg	Total gate charge	$V_{DD} = 520 \text{ V}, \text{ I}_{D} = 5 \text{ A}$	-	10.3	-	nC
Qgs	Gate-source charge	V _{GS} = 0 to 10 V	-	2.4	-	nC
Q _{gd}	Gate-drain charge	(see Figure 15: "Test circuit for gate charge behavior")	-	4.8	-	nC

Table 5: Dynamic

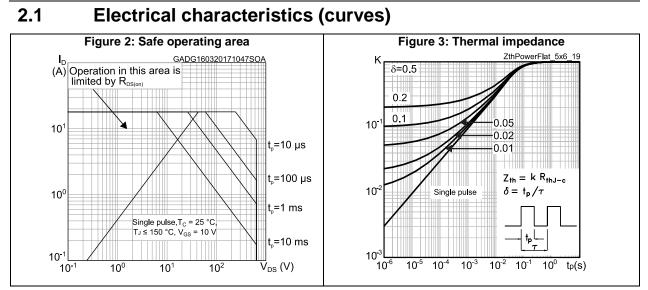
Notes:

 $^{(1)}C_{\text{oss eq.}}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% $V_{\text{DS}}.$

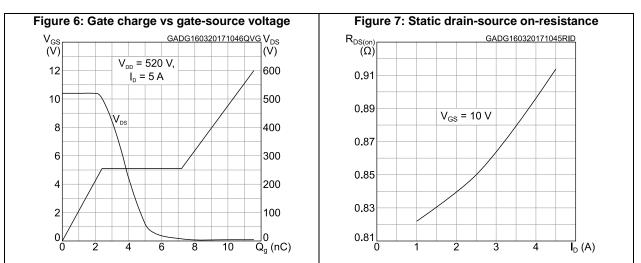
Electrical characteristics

	Table 6: Switching times						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
t _{d(on)}	Turn-on delay time	$V_{DD} = 325 V, I_D = 2.5 A,$	-	7.5	-	ns	
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$	-	6.6	-	ns	
t _{d(off)}	Turn-off delay time	(see Figure 14: "Test circuit for resistive load switching times"	-	22.5	-	ns	
tr	Fall time	and Figure 19: "Switching times" waveform")	-	18	-	ns	

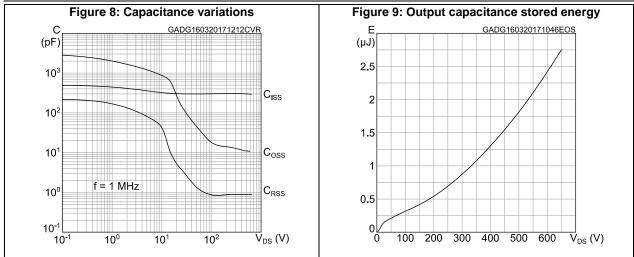
Table 7: Source-drain diode

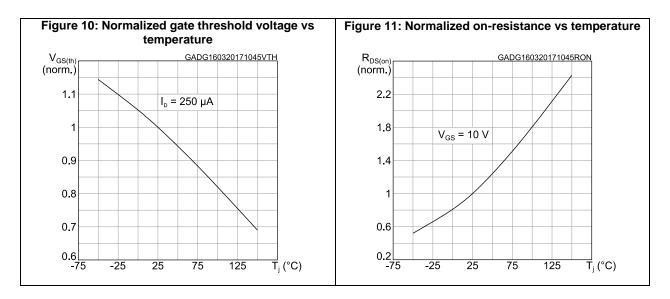

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Isd	Source-drain current		-		4.5	А
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		18	А
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 4.5 A, V _{GS} = 0 V	-		1.6	V
trr	Reverse recovery time	$I_{SD} = 5 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	276		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V (see Figure 16: "Test circuit for	-	1.7		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	12.5		А
t _{rr}	Reverse recovery time	I _{SD} = 5 A, di/dt = 100 A/μs,	-	312		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}, \text{ T}_{j} = 150 \text{ °C}$	-	1.9		μC
Irrm	Reverse recovery current	(see Figure 16: "Test circuit for inductive load switching and diode recovery times")	-	12.4		A

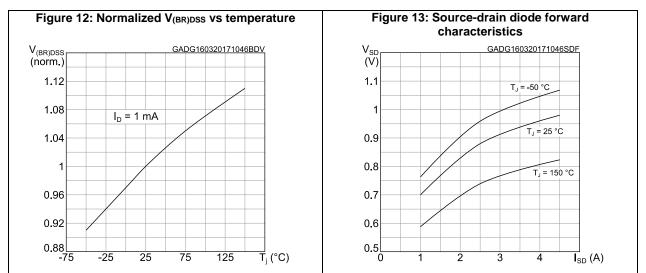
Notes:


 $\ensuremath{^{(1)}}\ensuremath{\mathsf{Pulse}}$ width is limited by safe operating area.

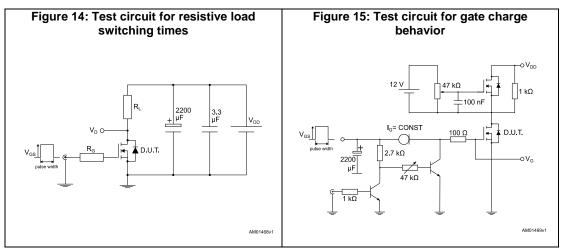
 $^{(2)}\text{Pulsed:}$ pulse duration = 300 $\mu\text{s},$ duty cycle 1.5%

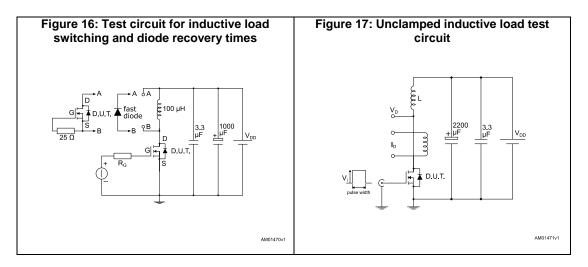


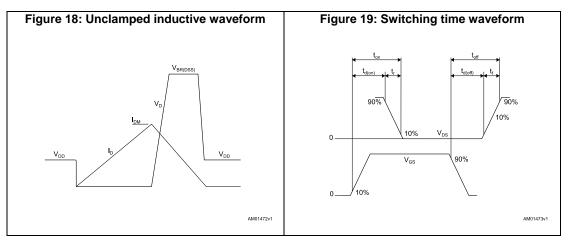




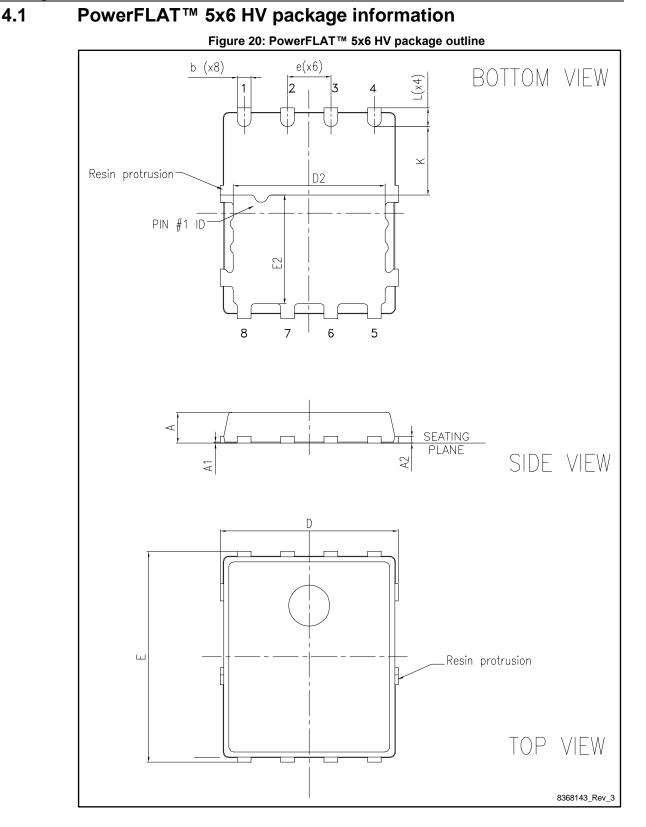
57


Electrical characteristics





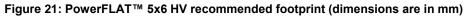
3 Test circuits

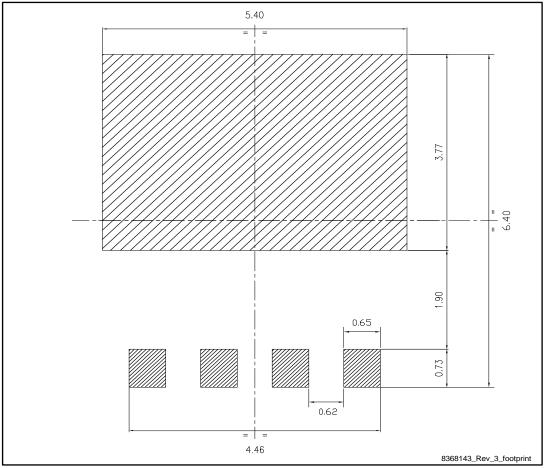

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Package information

STL10N65M2





57

Package information

Table 8: PowerFLAT™ 5x6 HV mechanical data							
Dim		mm					
Dim.	Min.	Тур.	Max.				
A	0.80		1.00				
A1	0.02		0.05				
A2		0.25					
b	0.30		0.50				
D	5.10	5.20	5.30				
E	6.05	6.15	6.25				
E2	3.10	3.20	3.30				
D2	4.30	4.40	4.50				
е		1.27					
L	0.50	0.55	0.60				
К	1.90	2.00	2.10				

4.2 PowerFLAT[™] 5x6 packing information

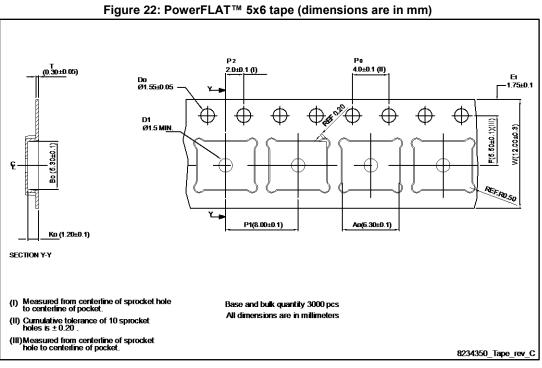
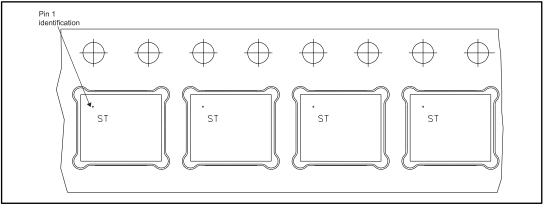




Figure 23: PowerFLAT™ 5x6 package orientation in carrier tape

Package information

Revision history 5

Date	Revision	Changes
16-Mar-2017	1	First release

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

