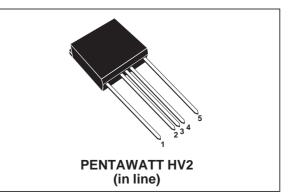


STIL02-P5

A.S.D.™ **Application Specific Discretes**

AC inrush current limiter

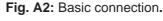
MAIN APPLICATIONS

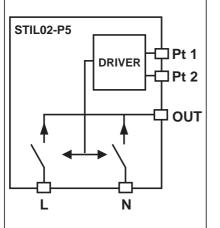

- www.DataSheet4U_CHIGH POWER DENSITY ADAPTER
 - HIGH END TV POWER SUPPLY
 - OPENED FRAME SMPS

FEATURES

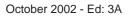
- Inrush current limitation circuit for off-line power supply
- Dual non-sensitive unidirectional switches in a single package
- Suitable when space and efficiency are critical
- Active after short AC line drop out with a boost converter
- High repetitive forward and reverse off-state voltage (700V)

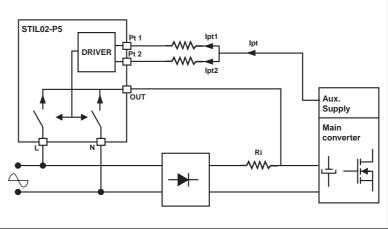
BENEFITS


- Low consumption (Ipt= 20mA)
- High noise immunity: (dV/dt> 500V/µs @ Tj=150°C)
- Low reverse current losses
- Integrated pilot driver of the power switches
- Monolithic ASDTM planar technology for better robustness and reliability



PIN OUT DESCRIPTION


Pin out designation	Description	Position
L	AC Line (switch1)	1
Pt1	Pilot of power switch 1	2
OUT	Output (connected to Tab)	3
Pt2	Pilot of power switch 2	4
N	AC Neutral (switch 2)	5


Fig. A1: Bloc Diagram.

STIL02-P5

Functional Description

The **STIL02** is connected in parallel with the bridge diode and the inrush power resistor Ri (fig. A2). During start up, the two unidirectional **ASD**[™] power switches of the STIL02 are opened. The inrush current flows through the diodes of the bridge and the external inrush power resistor Ri. Since the main converter turns ON, the auxiliary power supply coupled with the main transformer, supplies the energy required to close the two power switches of the STIL02. At the normal state, the two bottom diodes of the bridge rectifier and the two unidirectional switches of the STIL02 rectify the AC line current.

When the STIL02 is used with a PFC boost converter, the inrush current circuit remains active after a short AC line dropout (see fig. A5). In that configuration, since the AC line disappears, the PFC controller and the auxiliary power supply of the STIL turns OFF. The two switches of the STIL are opened. The output bulk capacitor Cb is discharging and it is providing the energy to the main converter. When the AC line recovers, the two switches remain opened and recharging inrush current of the capacitor Cb is deviated and limited through the resistor Ri. When the capacitor is charged, the PFC turns ON again and the two switches of the STIL switch ON.

More details on the design and operation of the driver circuit of figure A5 can be found in the application note "AN1600 - STIL: Inrush Current Limitation Device for Off-Line Power Converter".

Symbol	Parameter	Value	Unit	
V _{Dout} V _{Rout}	Repetitive forward (V_{Dout}) and reverse (V_{Rout}) off-state voltage	Tj _(min) to Tj _(max)	700	V
I _{out(AV)}	Average on state current at the OUT terminal (180° conduction angle for the internal power switches)	Tj = 150°C	2	A
I _{out(RMS)}	RMS on state current at the OUT terminal (180° conduction angle for the internal power switches)	Tj = 150°C	2.2	A
I _{TSM}	Non repetitive surge peak on-state current (Tj initial = 25°C)	tp = 10ms sinusoidal	65	А
l ² t	I ² t value - rating for fusing	tp = 10ms	21	A ² s
dl _{out} /dt	Critical rate of rise of on state current lpt1 + lpt2 = 20mA	Tj = 25°C Tj = 150°C	100 -	A/µs
Tstg	Storage temperature range		-40 to +150	°C
Tj	Junction temperature range		0 to +150	°C

ABSOLUTE MAXIMUM RATINGS (Limiting value)

THERMAL PARAMETERS

Symbol	Parameter	Value	Unit
Rth _(j-c)	Junction to case	2	°C/W
Rth _(j-a)	Junction to ambient (minimum footprint)	60	

ELECTRICAL CHARACTERISTICS

Symbol	Parameter Test conditions			Min.	Тур.	Max.	Unit
lpt1	Driver trigger current	$V_{Dout} = 12V (DC)$ R _L = 30 Ω	Tj = 0°C		12	20	mA
+ Ipt2		$tp = 380\mu s$	Tj = 25°C		10		
V _D (pt1)	Direct pilot trigger voltage	$V_{Dout} = 12V (DC)$ R _L = 30Ω	Tj = 0°C	0.6	0.85	1	V
V _D (pt2)			Tj = 25°C		0.8	0.95	
			Tj = 150°C	0.2	0.45		
[.] ℃V _R (pt1) V _R (pt2)	Peak reverse driver voltage	everse driver voltage		8			V
dV _{Dout} /dt	Dynamic voltage rising	Linear slope up to V _{Dout} = 470V	Tj = 150°C	500			V/µs
I _{Rout} (off)	Max reverse current without driver current	V _{Rout} = 700V Ipt1 = Ipt2 = open	Tj = 25°C			5	μA
			Tj = 150°C			300	μA
I _{Rout} (on)	Max reverse current with driver current	V _{Rout} = 400V Ipt1 = Ipt2 = 10mA	Tj = 150°C			300	μA
Vt0	Threshold direct voltage for one power switch	$I_{out(AV)} = 2A$	Tj = 150°C		0.7	0.8	V
Rd	Dynamic direct resistance for one power switch	$I_{out(AV)} = 2A$	Tj = 150°C		70	100	mΩ
VF	Maximum instantaneous di- rect forward voltage drop for one power switch	$I_{out(AV)} = 2A$	Tj = 150°C		0.9	1.1	V

Power losses calculations

When the input current is sinusoidal, the conducted power losses can be calculated by using the following formula: $(1 - 1)^2$

$$P = V_{\tau_0} I_{out(av)} + R_d \frac{\left(I_{out(av)} \times \pi\right)^2}{8}$$

If the output average current is 2Amps, V_{T0} and Rd of the electrical characteristics table can be used. For different output current please refer to the application note **AN1600** that provides guidelines to estimate the correct values of V_{T0} and Rd.

LIGHTNING SURGE IMMUNITY (IEC61000-4-5)

During lightning surge transient voltage across the AC line, over current and over voltage stress are applied on all the components of the power supply. The STIL02 can sustain a maximum peak surge current of **500A as defined by the combine waveform generator (8/20µs waveform as shown in fig. A3 and A4)**.

Special recommendations for the lightning surge immunity:

- 1 Check that the **maximum peak surge current** in the STIL stays below the limit specified above.
- 2 Check that no over voltages are applied on the STIL and the bridge diode.
- 3 In order to reduce the dynamic current stress (dl_{out}/dt) through the structure of the STIL02, it is recommended to connect a differential mode choke coil in front of the STIL and the bridge diode.

More details and design guidelines are provided in the application note "AN1600 - STIL: Inrush Current Limitation Device for Off-Line Power Converter".

3/7

Fig. A3: Surge test condition.

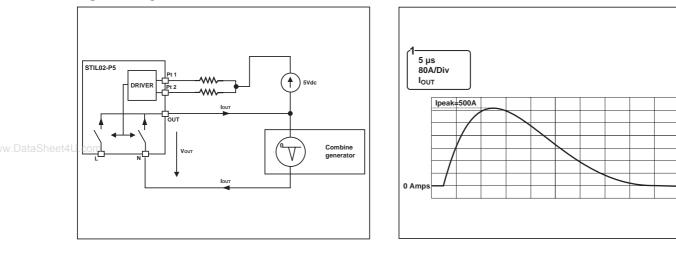
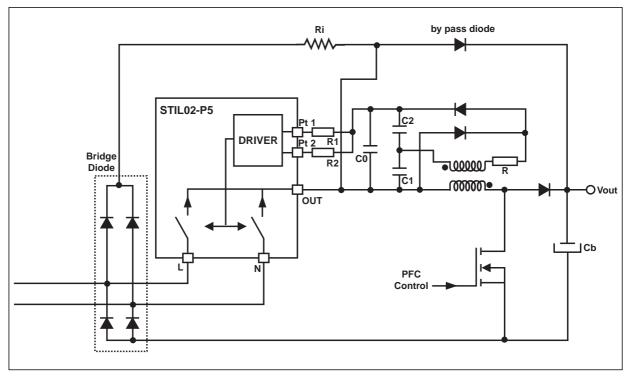
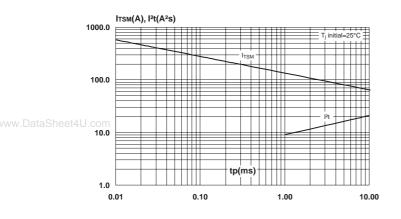



Fig. A5: Basic connection with a PFC Boost preregulator.


Fig. A4: Surge current waveform.

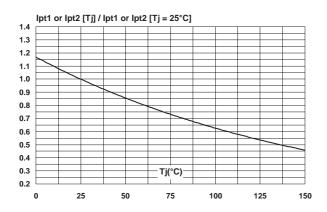
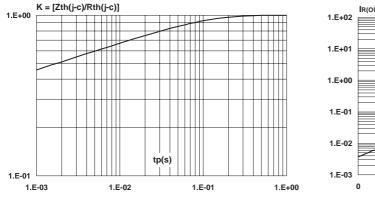

1

Fig. 1-1: Non repetitive surge peak on-state current (sinusoidal pulse) and corresponding value of l^2t .

Fig. 1-2: Non repetitive surge peak on-state current (sinusoidal pulse) and corresponding value of l^2t .



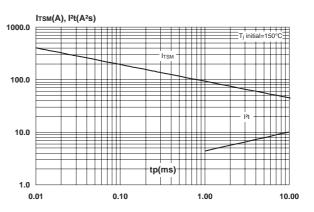
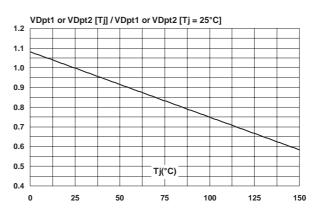
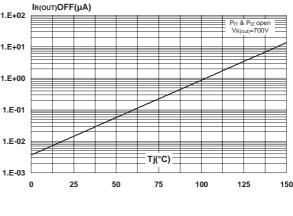
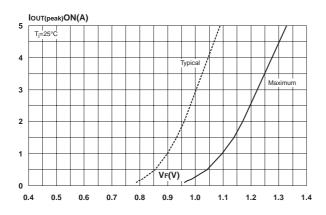

Fig. 2: Relative variation of driver trigger current versus junction temperature (typical values).

Fig. 4: Relative variation of thermal impedance junction to case versus pulse duration.

57

Fig. 3: Relative variation of direct pilot voltage versus junction temperature (typical values).


Fig. 5-1: Reverse current versus junction temperature without driver current (typical values).

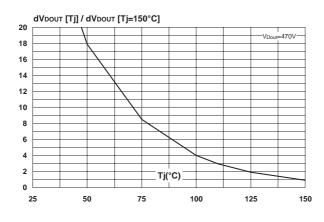
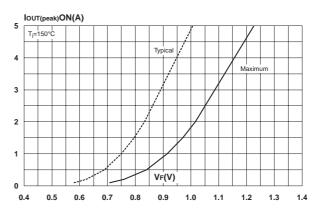

DataSheet4U.com1.00 25 50 75 100 125 150

Fig. 5-2: Reverse current versus junction temperature with driver current (typical values).

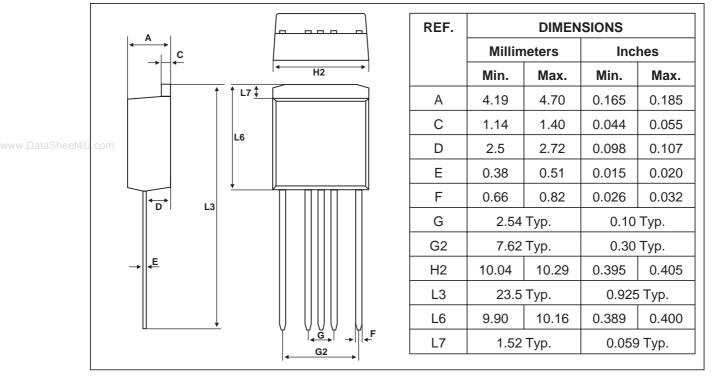
Fig. 7-1: Peak forward voltage drop versus peak forward output current for one power switch at Tj=25°C (typical and maximal values).

Fig. 8: Relative variation of dV/dt immunity versus junction temperature (typical values).



erature with driver current (typical v

Fig. 6: Forward voltage drop for one power switch versus junction temperature at the peak forward current(typical values).


Fig. 7-2: Peak forward voltage drop versus peak forward output current for one power switch at Tj=150°C (typical and maximum values).

57

PACKAGE MECHANICAL DATA

PENTAWATT HV2 (in line)

Order code	Marking	Package	Weight	Delivery mode	Base qty
STIL02-P5	STIL02	PENTAWATT HV2 (in line)	1.9 g.	Tube	50

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

