

STGIK50CH65T2

Datasheet

SLLIMM high power IPM, 3-phase inverter, 50 A, 650 V short-circuit rugged IGBT

Product status link	
STGIK50CH65T2	

Product summary				
Order code STGIK50CH65T2				
Marking	GIK50CH65T2			
Package	SDIPHP-30L			
Packing	Tube			

Features

- IPM 650 V, 50 A 3-phase inverter bridge including control ICs for gates driving
- 3.3 V, 5 V TTL/CMOS inputs with hysteresis
- Undervoltage lockout of gate drivers
- Built-in bootstrap diodes
- Short-circuit protection
- Shutdown input/fault output
- Separate open emitter outputs
- Comparator for fault protection
- Short-circuit rugged
- Very fast, soft recovery diodes
- Fully isolated package
- Isolation rating of 2500 Vrms/min
- 100 kΩ NTC for temperature monitoring
- UL recognition: UL 1557, file E81734

Application

- HVAC
- GPI
- Servo motor
- Pumps and compressors

Description

This new IPM (intelligent power module) is part of the high power SLLIMM (small low-loss intelligent molded module) family and provides a compact, high-performance AC motor drive in a simple, rugged design. It combines driver control with improved short-circuit rugged 650 V trench gate field-stop IGBTs, resulting ideal for 3-phase inverters motor drives.

1

Internal schematic and pin description

Figure 1. Internal schematic diagram and pin configuration

Table 1. Pin description

Pin	Symbol	Description
1	OUTu	High-side reference output for U phase
2	VBOOTu	Bootstrap voltage for U phase
3	VCCHu	High-side voltage power supply for U phase
4	HINu	High-side logic input for U phase
5	OUTv	High-side reference output for V phase
6	VBOOTv	Bootstrap voltage for V phase
7	VCCHv	High-side voltage power supply for V phase
8	HINv	High-side logic input for V phase
9	OUTw	High-side voltage power supply for
10	VBOOTw	Bootstrap voltage for W phase
11	VCCHw	High-side voltage power supply for W phase
12	HINw	High-side logic input for W phase
13	NC	Not connected (cut pin)
14	Т	NTC thermistor output
15	LINu	Low-side logic input for U phase
16	LINv	Low-side logic input for V phase
17	LINw	Low-side logic input for W phase
18	FO	Shutdown/fault output
19	CFO	Capacitor for fault output setting
20	CIN	Comparator input
21	GND	Ground
22	VCCL	Low-side voltage power supply
23	NW	Negative DC input for W phase
24	NV	Negative DC input for V phase
25	NU	Negative DC input for U phase
26	W	W phase output
27	V	V phase output
28	U	U phase output
29	Р	Positive DC input
30	NC	Not connected

2 Absolute maximum ratings

T_J = 25 °C unless otherwise noted.

Symbol	Parameter	Value	Unit
V _{PN}	Supply voltage between P -N _U , -N _V , -N _W	500	V
V _{PN(surge)}	Supply voltage (surge) between P -N _U , -N _V , -N _W	550	V
V _{CES}	Collector-emitter voltage each IGBT	650	V
Ι _C	Continuous collector current each IGBT	50	А
I _{CP}	Peak collector current each IGBT (less than 1 ms)	100	А
P _{TOT}	Total power dissipation at T_C = 25 °C each IGBT	150	W
V _{PN(SP)}	Self-protection supply voltage limit, V_{CC} = 13.5 - 16.5 V, T_J = 150 °C, non-repetitive, less than 2 μs	400	V

Table 2. Inverter parts

Table 3. Control parts

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Supply voltage applied between V _{CCHx} -GND, V _{CCL} -GND	- 0.5	25	V
V _{BOOT}	Bootstrap voltage	- 0.5	25	V
V _{OUT}	Output voltage applied between OUTx and GND	- 0.5	650	V
V _{CIN}	Comparator input voltage	- 0.5	V _{CCL} +0.3	V
V _{INH}	Logic input voltage applied between $\mathrm{H}_{\mathrm{INx}}$ and GND	- 0.5	V _{CCHx} +0.3	V
V _{INL}	Logic input voltage applied between LINx and GND	- 0.5	V _{CCL} +0.3	V
V _{FO}	Fault output voltage	- 0.5	V _{CCL} +0.3	V
I _{FO}	Fault output sink current		1	mA
$\Delta V_{CC} / \Delta t$	Change rate of V_{CC} supply voltage time	-1	1	V/µs

Table 4. Bootstrap diode

Symbol	Parameter	Min.	Max.	Unit
V _{R-BS}	Bootstrap diode reverse voltage	-	650	V

Table 5. Total system

Symbol	Parameter	Value	Unit
V _{ISO}	Isolation withstand voltage applied between each pin and heat sink plate (AC voltage, t = 60 s)	2500	Vrms
т.	IGBT and FRD operating junction temperature range	-40 to 175	°C
TJ	Driver IC and bootstrap diode operating junction temperature range	-40 to 150	C
T _C	Module case operating temperature range	-40 to 125	°C

Absolute maximum ratings

Table 6. Thermal data

Symbol	Parameter	Value	Unit
Ruise	Thermal resistance, junction-to-case single IGBT	1	°C/W
R _{thJC}	Thermal resistance, junction-to-case single diode	2	C/W

3 Electrical characteristics

 T_J = 25 °C unless otherwise specified.

3.1 Inverter parts

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{CES}	Collector cut-off current	V_{CE} = 650 V, V_{CC} = V_{boot} = 15 V	-	25		μA
V _{CE(sat)}	Collector-emitter saturation voltage	$V_{CC} = V_{boot} = 15 \text{ V}, V_{IN}^{(1)} = 5 \text{ V},$ $I_{C} = 50 \text{ A}$	-	1.7	2.2	V
VCE(sat)		$V_{CC} = V_{boot} = 15 \text{ V}, V_{IN}^{(1)} = 5 \text{ V},$ $I_C = 50 \text{ A}, T_J = 175 \text{ °C}$	-	2.2		V
V _F	Diada fanward voltage	V _{IN} ⁽¹⁾ = 0 V, I _C = 50 A	-	2.0	2.4	V
۷F	Diode forward voltage	$V_{IN}^{(1)} = 0 V, I_C = 50 A, T_J = 175 \text{°C}$	-	2.15		V

Table 7. Inverter parts

1. Applied between HINx, LINx and GND for x = U, V, W.

Table 8. Inductive load switching time and energy

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
		High-side				
t _{on} ⁽¹⁾	Turn-on time		-	684	-	ns
t _{c(on)} ⁽¹⁾	Crossover time on		-	162	-	ns
t _{off} ⁽¹⁾	Turn-off time		-	1378	-	ns
t _{c(off)} ⁽¹⁾	Crossover time off	V_{DD} = 300 V, V_{CC} = V_{boot} = 15 V,	-	126	-	ns
t _{rr} ⁽¹⁾	Reverse recovery time	V _{IN} ⁽²⁾ = 0 to 5 V, I _C = 50 A	-	320	-	ns
E _{on}	Turn-on switching energy		-	1.20	-	mJ
E _{off}	Turn-off switching energy		-	1.05	-	mJ
Err	Reverse recovery energy		-	0.235	-	mJ
		Low-side				
t _{on} ⁽¹⁾	Turn-on time		-	500	-	ns
t _{c(on)} ⁽¹⁾	Crossover time on		-	177	-	ns
t _{off} ⁽¹⁾	Turn-off time		-	922	-	ns
t _{c(off)} ⁽¹⁾	Crossover time off	V _{DD} = 300 V, V _{CC} = V _{boot} = 15 V,	-	113	-	ns
t _{rr} ⁽¹⁾	Reverse recovery time	$V_{IN}^{(2)} = 0$ to 5 V, I _C = 50 A	-	345	-	ns
Eon	Turn-on switching energy		-	1.45	-	mJ
E _{off}	Turn-off switching energy		-	0.90	-	mJ
Err	Reverse recovery energy		-	0.250	-	mJ

1. t_{on} and t_{off} include the propagation delay time of the internal drive. t_{c(on)} and t_{c(off)} are the switching times of the IGBT itself under the internally given gate driving conditions.

2. Applied between HINx, LINx and GND for x = U, V, W.

Figure 2. Switching time test circuit

GADG150720221057GT

AM09223V1

3.2 Control/protection parts

Unless specifically noted, $T_C = -40$ °C to 125 °C, $V_{PN} = 300$ V, $V_{VCCxH} = V_{VCCL} = 15$ V, $R_{FF} = 10$ k Ω , $C_{FF} = 0$ μ F, and $V_{FO} = 5$ V. The shipping test is performed at $T_A = 25$ °C and 125 °C for the electrical characteristics shown below (except for the parameters specified by design and not tested in production).

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _{VCCHx_H}	VCCHx pin operating voltage		9.2	10.2	11.3	V
V _{VCCHx_L}	VCCHx pin operating stop voltage		8.7	9.7	10.8	V
V _{VCCHx_HYS}	VCCHx pin hysteresis			0.5		V
V _{VCCL_H}	VCCL pin operating voltage		11.2	12.6	13.3	V
V _{VCCL_L}	VCCL pin operating stop voltage		10.7	12.1	12.8	V
V _{VCCL_HYS}	VCCL pin hysteresis			0.5		V
V _{VBOOTx-OUTx_H}	VBOOTx-OUTx operating voltage		11.0	12.1	12.8	V
V _{VBOOTx-OUTx_L}	VBOOTx-OUTx operating stop voltage		10.5	11.6	12.3	V
V _{VBOOTx} -OUTx_HYS	VBOOTx-OUTx hysteresis			0.5		V
h	VCCHy pip input ourrapt	V _{HINx} = 0 V, each pin		1.1	2.0	mA
IVCCHx	VCCHx pin input current	V _{HINx} = 5 V, each pin		1.1	2.0	mA
h va av	VCCI nin input ourrent	V _{LINx} = 0 V		1.9	3.2	mA
IVCCL	VCCL pin input current	V _{LINx} = 5 V		1.9	3.2	mA
Ivbootx-outx	VBOOTx-OUTx input current	$V_{VBOOTx-OUTx} = 15 V,$ $V_{INxH} = 0 V,$ in 1-phase operation $V_{VBOOTx-OUTx} = 15 V,$ $V_{INxH} = 5 V,$		0.09	0.30	mA mA
		in 1-phase operation				
	Input s	ignal		1		
V _{HINx_H}	HINx pin high-level input threshold voltage			2.0	2.5	V
V _{HINx_L}	HINx pin low-level input threshold voltage		1.0	1.5		V
V _{HINx_HYS}	HINx pin hysteresis			0.5		V
V _{LINx_H}	LINx high-level input threshold voltage			2.0	2.5	v
V _{LINx_L}	LINx pin low-level input threshold voltage		1.0	1.5		v
V _{LINx_HYS}	LINx pin hysteresis			0.5		V
I _{HINx}	HINx pin input Current	V _{HINx} = 5 V, each pin		0.25	0.50	mA
I _{LINx}	LINx pin input Current	V _{LINx} = 5 V, each pin		0.25	0.50	mA
t _{HINx_MIN(ON)} ⁽¹⁾	HINx pin minimum response pulse width (On)			0.34	0.50	μs
t _{HINx_MIN(OFF)} ⁽²⁾	HINx pin minimum response pulse width (Off)			0.36	0.50	μs

Table 9. Control/protection parts

Contro	/protection	parts
--------	-------------	-------

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
t _{linx_min(on)} ⁽²⁾	LINx pin minimum response pulse width (On)		-	0.26	0.50	μs
t _{LINx_MIN(OFF)} ⁽²⁾	LINx pin minimum response pulse width (Off)		-	0.27	0.50	μs
	Fault signal output and	shutdown signal input				
V _{FO_H}	FO pin shutdown release voltage			2.0	2.5	V
V _{FO_L}	FO pin shutdown threshold voltage		1.0	1.5		V
V _{FO_HYS}	FO pin shutdown hysteresis			0.5		V
V _{FO_H}	FO pin output voltage in normal operation	V_{FO} = 5 V, R_{FF} = 10 k Ω , V_{CIN} = 0 V	4.8	5.0		V
V _{FO_L}	VFO pin error signal output voltage	V_{FO} = 5 V, R_{FF} = 10 k Ω , V_{CIN} = 1 V	-	0.05	0.50	v
		C _{CFO} = 0 μF	0.012	0.030	0.060	ms
		C _{CFO} = 0.001 μF	0.20	0.32	0.44	ms
t _{FO} ⁽¹⁾⁽²⁾	FO pin CIN hold time	C _{CFO} = 0.01 μF	2.0	3.2	4.4	ms
		C _{CFO} = 0.1 μF	20	32	44	ms
		C _{CFO} = 1 µF	200	320	440	ms
	Prote	ction				
V _{CIN _H}	CIN pin overcurrent detection voltage		0.46	0.50	0.54	V
V _{CIN _L}	CIN pin overcurrent release voltage		0.32	0.38	0.44	V
V _{CIN_HYS}	CIN pin overcurrent hysteresis			0.12		V
t _{CIN} _DELAY	CIN pin detection delay time			0.3	0.5	μs
I _{CIN}	CIN pin input current	V _{CIN} = 0.5 V		2.5		μA

1. Specified by design, not tested in production.

2. For a relation between t_{FO} and C_{CFO} , see Figure 5. The shipping test is performed with the condition at C_{CFO} = 0.01 μ F only.

Figure 6. CIN test circuit and time definition

GADG200920211621GT

4 Bootstrap diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{F_{BS}}$	Bootstrap diode forward voltage	I _{F_BS} = 10 mA	0.4	0.9	1.4	V
$R_{S_{BS}}$	Bootstrap diode series resistor		12	20	28	Ω

Table 10. Bootstrap diode

5 NTC thermistor

Table 11. NTC thermistor								
Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit		
R ₂₅	Resistance	T _A = 25 °C		100		kΩ		
B _{25/85}	B-constant (25-85 °C)			4395		К		
Т	Operating temperature range		-40		175	°C		

57

Figure 10. Application circuit example

Application designers are free to use a different scheme according to the device specifications.

6.1 Guidelines

- Input signals HIN, LIN are active-high logic. A 20 kΩ (typ.) pull-down resistor is built-in for each input pin. To
 prevent input signal oscillation, the wiring of each input should be as short as possible and the use of RC
 filters (R₁, C₁) on each input signal is suggested. The filters should be done with a time constant of about
 100 ns and placed as close as possible to the IPM input pins.
- 2. The use of a bypass capacitor C_{VCC} (aluminum or tantalum) can help reduce the transient circuit demand on the power supply. Also, to reduce high frequency switching noise distributed on the power lines, it is suggested to place a decoupling capacitor C₃ (100 to 220 nF, with low ESR and low ESL), as close as possible to each V_{CC} pin and in parallel with the bypass capacitor.
- 3. The use of RC filter (R_{CF} , C_{CF}) for preventing protection circuit malfunction is suggested. The time constant ($R_{CF} \times C_{CF}$) should be set to 1 µs and the filter must be placed as close as possible to the CIN pin.
- 4. The FO is an input/output pin. It should be pulled up to a power supply (i.e., MCU bias at 3.3 5 V) by a resistor value able to match the V_{FO_L} and V_{FO_H} threshold voltages mainly. In case of 3.3 or 5 V pull up voltage, the suggested resistor value is from 5.6 kΩ to 68 kΩ. The RC filter on FO could have also impact on the re-starting time after a fault event so it must be placed as close as possible to the FO pin.
- 5. A decoupling capacitor C₂ between 1 nF and 10 nF can be used to increase the noise immunity of the signal on the NTC thermistor. Its effectiveness is improved if the capacitor is placed close to the MCU.
- The decoupling capacitor C₄ (100 to 220 nF with low ESR and low ESL) in parallel with each C_{BOOT} is useful to filter high frequency disturbances. Both C_{BOOT} and C₄ (if present) should be placed as close as possible to each U, V, W and respective V_{BOOT} pins.
- 7. To prevent overvoltage on the V_{CC} pins, a Zener diode (D_{Z1}) can be used. Similarly, on the V_{BOOT} pins, a Zener diode (D_{Z2}) can be placed in parallel with each C_{BOOT}.
- The use of the decoupling capacitor C₅ (100 to 220 nF, with low ESR and low ESL) in parallel with the electrolytic capacitor C_{Bus} is useful to prevent surge destruction. Both capacitors C₅ and C_{Bus} should be placed as close as possible to the IPM (C₅ has priority over C_{Bus}).
- 9. When the application requires a galvanic isolation between low and high voltage, use of high speed (high CMR) opto-coupler is recommended.
- 10. Low inductance shunt resistors should be used for phase leg current sensing.
- 11. In order to avoid malfunction, the wiring between N pins, the shunt resistor and PWR_GND should be as short as possible.
- 12. The connection of SGN_GND to PWR_GND at only one point (close to the shunt resistor terminal) can help to reduce the impact of power ground fluctuation.
- 13. Parallel connection of switches or legs on the same or multiple IPMs is not suggested.

These guidelines ensure the device specifications for application designs. For further details, please refer to the relevant application note.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{PN}	Supply voltage	Applied between P-Nu, N_V , N_w		300	400	V
V _{CCHx}	Control supply voltage	Applied between V _{CCHx} -GND	13.5	15	16.5	V
V _{CCL}	Control supply voltage	Applied between V _{CCL} -GND	13.5	15	16.5	V
V _{BS}	High-side bias voltage	Applied between V_{BOOTi} -OUT _i for i = U, V, W	13	15	18.5	V
t _{dead}	Blanking time to prevent arm-short	For each input signal	1.5			μs
f _{PWM}	PWM input signal	-40 °C < T _C < 100 °C -40 °C < T _J < 125 °C			20	kHz
T _C	Case operation temperature				125	°C

Table 12. Recommended operating conditions

Figure 14. Diode V_F vs forward current

Figure 16. Eoff switching energy vs collector current

8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

8.1 SDIPHP-30L package information

Figure 20. SDIPHP-30L package outline and mechanical data (dimensions are in mm)

DM00727478_1

Revision history

Table 13. Document revision history

Date	Revision	Changes
03-Apr-2023	1	First release.
		Updated Features and Description on cover page.
01-Jun-2023	2	Updated Table 7. Inverter parts.
		Updated Figure 12. V _{CE(sat)} vs collector current.

Contents

1	Internal schematic and pin description						
2	Absolute maximum ratings						
3	Electrical characteristics						
	3.1	Inverter parts	6				
	3.2	Control/protection parts	8				
4	Boot	strap diode	.11				
5	NTC thermistor						
6 Application circuit example							
	6.1	Guidelines	. 14				
7	Elect	rical characteristics (curves)	.15				
8	Package information						
	8.1	SDIPHP-30L package information	. 17				
Revi	ision I	nistory	.18				

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics – All rights reserved