www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

STC15F204EA series MCU
STC151L.204EA series MCU
Data Sheet

STC MCU Limited
www.STCMCU.com

Update date: 2010/10/24

STC MCU Limited website: www.STCMCU.com 1

CONTENTS

Chapter 1 IntroduCtioncoccviiiiiiiiiie e 5
L1 FRALUIES oottt e et e e e e ee s 5
1.2 Block dia@ramccocuiiiiiiiieciiie et 6
1.3 PINS Definitionceeiiiiiiiiiiiieeciieee e e 7

1.3.1 STCI15F204EA series Pin Definition.........c.cccvvevriieeieicienienieeie e v 7
1.3.2 STCI15F101E series Pin Definitioncccceevieviiieiiieerieeeieecieeeieeeiee e 8
1.3.3 STC15S204EA series Pin Definition...........cccoeviieiviieciiieciieciiccieeeee e 9
1.4 STCI5F204EA series Minimum Application System.............ccceue.... 10
1.5 STCI15F204EA series Typical Application Circuit (for ISP)................ 11
1.6 PINS Descriptions of STC15F204EA series......cccoveevvieeecieeeeiieeenne, 12
1.7 Package DIawingscccccveeeieerieeiiienieeeie e saeeeae e 14
1.8 STCI15Fxx series MCU naming rulescccoeeevvieeeiiieeeiiieeeieee e, 20
1.8.1 STCI15F204EA series MCU naming rules...........ccccueeeieeriienieenieenieeeiee e 20
1.8.2 STC15F101E series MCU naming rulesccccoveveeienenenienienenieienesieeieens 21

Chapter 2 Clock, Power Management, Resetcccccccvveeeennnen.. 22
2.1 CLOCK ettt e 22
2.2 POWEr Management..........eeevuueeeriiieeiiieeeiieeeeiieeeeieeeetee e ieeeeeeeee e 23

2.2 1 TAIE MOME.....iiieiiiiiiectie ettt ettt et e st esabe e s abaesebeeenaeeenes 23
2.2.2 SIOW DOWN MOEocviiiiiiiieiieeie ettt sttt ettt steestaessaessa e seesaesaesaens 24
2.2.3 Power Down (PD) Mode (Stop Mode).......ccccveeiiieeiiieiiieiiecieesreeeiee e 26
2.3 RESEE ..ttt e e e e e e e e e rraaaeas 32
B B B 2 o 4 USRS 32
2.3.2 Software RESETccooiooiiiiee et e 32
2.3.3 Power-On Reset (POR)occviiiiiiiiecieecteceeee et 32
2.3.4 MAXS810 power-on-reset delayc.cccvevvieiieiienieiieriesieeeese e sreesreesaeens 33
2.3.5 Low Voltage DeteCtionccceeierieiieiieiiesiie sttt 33
2.3.6 WatCh-DOg-TIMETcceeiieiieeieriesierie e seesteestestte e steesieesteestaessaesseessaenseenseens 37

Chapter 3 Memory Organizationccceeevveeeeerveeeeercnveeeeennnenns 42

3.1 Program MEMOTYcooeriiiiiieiiiiiiee ettt eeieeee e e et e e e e eaaeee s 42

Chapter 4 Configurable I/O POrtscccoeeeeiiiieieciiiieeeciieeeeee. 45

4.1 I/O Port Configurationsceeecveeeiueeriieeeiiieeiieeiieesieeeseeeeseeeenieeeneeeens 45
4.1.1 Quasi-bidirectional I/Ococouiiiiiiiii e 45
4.1.2 Push-pull OUtPUL....c..eiuiiiiiiitieeee ettt 46
4.1.3 INPUL-0ONLY MOQEeiiviiiiiiiiicii ettt st taestaesaaessaessaensnas 46
4.1.4 Open-drain OULPUL.........ccccvieiiieiiieeieeeieeeette et eeseeesebeeebeesbeeebeeeseeessseessseessseenns 46

4.2 T/O POIt REZISIETS ..eveeeeiieeiiieeiieeiieeiee et ettt ettt e e e e ens 47

4.3 T/O port application NOLESeeeeerireeiiieeeiieeeriee e e eeireeereveeeeeaee e 49

4.4 T/O port apPlICALION ...ecvuvieeiiieeiieeiie et eieeeee et e tee e eeeeeneeens 49
4.4.1 Typical transistor CONtrol CIrCUIL.........ecuervuirieiieiie e 49
4.4.2 Typical diode CONLIOl CITCUIL......iivirierreeieriieieereeeeereere e streseesraeseaessaeseaenenes 49
4.4.3 3V/5V hybrid SYStEIMcccviiiiiiiiieeiie ettt eeie et eree et e v e eteeestaeeseseeennee e 50
4.4.4 How to make I/O port low after MCU 1€Se€t........ccevuerieriirienienieeieeieeie e 50
4.4.5 T/O drive LED application CIICUIL........cvereverrerrerrereeeresresresereseessnessnessnessnensnes 51
4.4.6 1/0 immediately drive LCD application CIirCUit........c.cccveevveeeirieerieeereeesveeeneenns 52
4.4.7 Using A/D Conversion to scan key application CirCuit...........cocevervevenereeneennns 53

Chapter 5 Instruction SyStem.........ccceecviieeeriiiiieeniiiieeeeieee e 54

5.1 Special Function RegIStErseevviiiiiiiiiiniieeiieeieeeeee e 54

5.2 Notes on Compatibility to Standard 80C51 MCUcccccvevveneennnene 58

5.3 Addressing MOdESoeeeuviiieiiiieiiiee ettt e 59

5.4 Instruction Set SUMMATYccccueieriiieeeiiiieeniieeeeieee e eireeeeaeee e 60

5.5 Instruction Definitions for Standard 8051 MCU...........ccccccvvervrennennee. 65

Chapter 6 INTETTUPLSvvreeeiiiieeeeiiiee et 102

6.1 Interrupt StrUCTUIEccovviiiiiee e e 103

6.2 INterrupt REGISIET......coiviiiiiiiieeiie et 105

6.3 INterrupt PriOTitiescccveeevieiiieeiie ettt 108

6.4 How Interrupts Are Handledc.coooieeiiiiiiiiii e 109

6.5 External INterruptS......cccceciiieiiiiiiiiiee et 111

Chapter 7 Timer/Counter O and 1.........cccccoeiiiiiiiiiiieiieeee. 121

7.1 Timer/Counter 0 Mode of Operation.........ccccueeeveiieeeriieeenieeeeieeenee 124

7.2 Timer/Counter 1 Mode of Operation...........ecceeeeveeeiieerieenieerieeeeenns 131

7.3 Generic Programmable Clock Outputccccoeeiieeviiiieiiiiieeieeenee, 136

7.4 Changes of STC15F204E Timers compared with standard 8051 143

Chapter 8 Simulate Serial Port Program.............cccoooeeeviieennen. 145

8.1 Programs using Timer 0 to realize Simulate Serial Port 145
8.2 Programs using Timer 1 to realize Simulate Serial Port 154
Chapter 9 Analog to Digital Converter...........ccceeeuveeeeeeiveeeennnee. 163
9.1 A/D CONVEIEr StIUCIUIE.......evveriririieiieieeieenieesiee sttt 163
0.2 RegisSter for ADCoooiiiiiiieceee et 165
9.3 Program using interrupts to demostrate ADCcccceeeevviieniieennne. 167
9.4 Program using polling to demostrate ADCccceeviveiieecieennns 177
Chapter 10 TAP/ EEPROMcccoiiiiiiiieeeeeeee e 188
10.1 TAP /ISP Control REZISterccuevieivirieiiiieeiiee et 188
10.2 TAP/EEPROM Assembly Language Program Introduction.............. 191
10.3 EEPROM Demo Programs written in Assembly Language............. 193
10.4 EEPROM Demo Program written in C Languagecccccuen.ee.. 204
Chapter 11 STC15Fxx series programming tools usage............. 215
11.1 In-System-Programming (ISP) principle.........cccccouvieviiieeiiiieencinnns 215
11.2 STCI15F204EA series application circuit for ISP...........ccccceeeeeennn. 216
11.3 PC side application USAZE.........cveerurrerereerireeniieeneeeneeenveesneeseeeeneeas 217
11.4 Compiler / Assembler Programmer and Emulator 219
11.5 Self-Defined ISP download Democcceviiiniiiniiiniiiniiiniceen, 219
Appendix A: Assembly Language Programming 222
Appendix B: 8051 C Programmingccceeeeeeevreeeenneeeeennnnn. 244

Appendix C: STC15F204EA series Electrical Characteristics.... 254
Appendix D: STC15Fxx series to replace standard 8051 Notes..255
Appendix E: STC15F204EA series Selection Table.................... 257

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

Chapter 1 Introduction

STCI15F204EA series is a single-chip microcontroller based on a high performance 1T architecture 80C51
CPU, which is produced by STC MCU Limited. With the enhanced kernel, STC15F204EA series execute
instructions in 1~6 clock cycles (about 6~7 times the rate of a standard 8051 device), and has a fully compatible
instruction set with industrial-standard 80C51 series microcontroller. In-System-Programming (ISP) and In-
Application- Programming (IAP) support the users to upgrade the program and data in system. ISP allows the
user to download new code without removing the microcontroller from the actual end product; IAP means that the
device can write non-valatile data in Flash memory while the application program is running. the STC15F204EA
series has 9 interrupt sources, 10-bit ADC, on-chip high-precision RC oscillator and a one-time enabled Watch-
Dog Timer.

1.1 Features

* Enhanced 80C51 Central Processing Unit, faster 6~7 times than the rate of a standard 8051
* Operating voltage range: 3.8 ~ 5.5V or 2.4V ~ 3.6V (STC15L204EA series)
* Operating frequency range: SMHz ~ 35MHz, is equivalent to standard 8051: 60MHz ~ 420MHz

+ A high-precision internal RC oscillator with temperature drifting £1% (-40°C~+85°C)
 internal RC oscillator with adjustable frequency to 5.5296MHz/11.0592MHz/22.1184MHz/33.1776MHz
* On-chip 256 bytes RAM and 1K~6K bytes code flash with flexible ISP/IAP capability

* EEPROM function
* Code protection for flash memory access

* Two 16-bit timers/counters — Timer 0 / Timer 1 with mode 0 (16-bit auto-reload mode), mode 1 (16-bit
timer mode) and mode 2 (8-bit auto-reload mode)

» simulate UART can be realized by P3.0,P3.1 and Timers

» 8-channel, 10-bit ADC associated interrupt, speed up to 300 thousands times every second
* 9 interrupt sources

* One 15 bits Watch-Dog-Timer with 8-bit pre-scalar (one-time-enabled)

» Three power management modes: idle mode, slow down mode and power-down mode
Power down mode can be woken-up by external INTx pin (INT0/P3.2, INT1/P3.3, INT2, INT3, INT4)

» Excellent noise immunity, very low power consumption

* Support 2-wire serial flash programming interface.(GND/P3.0/P3.1/VCC)
* Programmable clock output Function. TO output the clock on P3.5, T1 output clock on P3.4.
* 26 configurable I/O ports are available and default to quasi-bidirectional after reset. All ports may be

independently configured to one of four modes : quasi-bidirectional, push-pull output, input-only or open-
drain output. The drive capability of each port is up to 20 mA. But recommend the whole chip's should be
less than 90 mA.

» Package type: SOP-28,SKDIP-28

STC MCU Limited website: www.STCMCU.com 5

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

1.2 Block diagram

The CPU kernel of STC15F204EA series is fully compatible to the standard 8051 microcontroller, maintains all
instruction mnemonics and binary compatibility. With some great architecture enhancements, STC15F204EA
series execute the fastest instructions per clock cycle. Improvement of individual programs depends on the actual
instructions used.

RAM
B Register 256 Byte

U

Stack <: FI{_A6]S<H
Pointer l

TM1| |EP1| -“ -

Address
:: Generator

4

ALU
P
ﬁ S coumer
n

RESET—| Control Portl Latch Port0.2.3 1 1
Unit Latch
II /ADC II
X Port 0,2,3
Internal RC oscillator Port 1 Driver Driver
(with temperature drifting +1%) 8 II
] E 7 PLo~PL7 POP2.P3
P1.0~P1.7 T

STC15F204EA series Block Diagram

6 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

1.3 PINS Definition

1.3.1 STC15F204EA series Pin Definition

/
P2.6 1 28 P25
P2.7 2 27 P24
ADCO/P1.0 3 26 P23
ADCI/P1.1 4 25 P22
ADC2P12[]5 24 P21
ADC3/P1.3 6 R 23 P2.0/RSTOUT_LOW
—
ADC4/P1.4 7 = 2 P3.7/INT3
o R
ADC5/PLS[|8 o =2 P3.6/INT2
ADC6/P1.6]9 ,% % 20 []P3.5/T1/CLKOUTO
ADC7/P1.7 0o < 19 P3.4/T0/CLKOUTI
SYScIkO/RST/P0.0 11 18 P3.3/INTI
Vee 12 17 P3.2/INTO
Po.1[]13 16 [__]p3.1
Gnd 14 15 P3.0/INT4

SOP-28/SKDIP-28
STC15F204EA series Selection Table

Fls|T Int | Internal | External | Special | Package of 28-pin
Type |Operating] 1 | R 1| W EER | | ean | waking |_Price (RMBY
1T 8051 MCU VOI:? ge : 13[1;:/[it];R(I;M voltage | voltage wake up powerg (:
% (]l;) ®|r (B) interrupt| canbe |powerdown| down |SOP-28|SKDIP-28
configured mode mode
STCI5F201A | 5.5~3.8 | 1K [256] 2 [10-bit|Y | - Y Y 5 N
STCI5F201EA| 5.5~3.8 | IK [256[2 | 10-bit| Y| 2K Y Y 5 N ¥2.35 ¥2.55
STC15F202A | 5.5~3.8 | 2K [256]2 | 10-bit|Y| - Y Y 5 N
STC15F202EA| 5.5~3.8 | 2K |256| 2 [10-bit| Y| 2K Y Y 5 N ¥2.40 ¥2.60
STCI5F203A | 5.5~3.8 | 3K [256] 2 [10-bit|Y | - Y Y 5 N
STCI15F203EA| 5.5~3.8 | 3K [256[2 | 10-bit| Y| 2K Y Y 5 N ¥2.45 ¥2.65
STCI5F204A | 5.5~3.8 | 4K [256] 2 [10-bit|Y | - Y Y 5 N
STCI5F204EA| 5.5~3.8 | 4K [256[2 | 10-bit| Y| IK Y Y 5 N ¥2.50 ¥2.70
STCI5F205A | 5.5~3.8 | 5K [256] 2 [10-bit|Y | - Y Y 5 N
STC15F205EA| 5.5~3.8 | 5K |256| 2 [10-bit| Y| IK Y Y 5 N ¥2.55 ¥2.75
IAP15F206A | 5.5~3.8 | 6K |256| 2 | 10-bit| Y | IAP Y Y 5 N
STCISL201A | 3.6~2.4 | 1K [256(2 | 10-bit|Y| - Y Y 5 N
STCISL201EA| 3.6~2.4 | 1K [256[2 | 10-bit| Y| 2K Y Y 5 N ¥2.35 ¥2.55
STC15L202A | 3.6~2.4 | 2K |256| 2 | 10-bit|Y | - Y Y 5 N
STCI15L202EA| 3.6~2.4 | 2K |256| 2 [10-bit|Y | 2K Y Y 5 N ¥2.40 ¥2.60
STCI5L203A | 3.6~2.4 | 3K [256(2 | 10-bit|Y| - Y Y 5 N
STCISL203EA| 3.6~2.4 | 3K [256[2 | 10-bit| Y| 2K Y Y 5 N ¥2.45 ¥2.65
STCISL204A | 3.6~2.4 | 4K [256(2 | 10-bit|Y| - Y Y 5 N
STCISL204EA| 3.6~2.4 | 4K [256[2 | 10-bit|Y| IK Y Y 5 N ¥2.50 ¥2.70
STCI5SL205A | 3.6~2.4 | 5K [256(2 | 10-bit|Y| - Y Y 5 N
STCI15L205EA| 3.6~2.4 | 5K |256|2 [10-bit|Y | IK Y Y 5 N ¥2.55 ¥2.75
TAPI15L206A | 3.6~2.4 | 6K |256|2 | 10-bit|Y | IAP Y Y 5 N

STC MCU Limited website: www.STCMCU.com 7

www.STCMCU.com

Mobile:(86)13922805190

Tel:86-755-82948412

Fax:86-755-82944243

1.3.2 STC15F101E series Pin Definition

N\
SYSclkO/INT2/CLKOUT1/TO/RST/P3.4[J1 o . 8 [(1P3.3/INTI/RSTOUT_LOW
Vee[]2 5 2 7[P32INTO
INT3/CLKOUTOTI/P3 S8 § 6[1P3.1
Gnd[J¢ & ™ 5[JPp3.0iNT4
SOP-8/DIP-8
STC15F101EA series Selection Table
S Internal | External | Special |Package of 8-pin
. Internal | Reset | interrupts |timer for| (6 1/O ports)
Type Operatin R W| EEP . . :
1T 8081 MCU \Il)oltageg Flash| s |Timer|a/m| D |ROM| 0% | threshold | which | waking | Price (RMBY
V) (B) M T| ®) voltage | voltage | can wake | power
(B) interrupt| canbe | up power | down [SOP-8 | DIP-8
configured |down mode| mode
STCISF100 | 5.5~3.8 | 512 [128] 2 - 1Yl - Y Y 5 N ¥0.99 | ¥1.19
STCI15F101 | 5.5~3.8 [1K |128] 2 - 1Y - Y Y 5 N ¥1.20 | ¥1.40
STCISFI01E | 5.5~3.8 | 1K |128| 2 - 1Y| 2K Y Y 5 N ¥1.25 | ¥1.45
STCISF102 | 5.5~3.8 | 2K [128] 2 - Y| - Y Y 5 N ¥1.30 | ¥1.50
STCISF102E | 5.5~3.8 | 2K |128| 2 - 1Y| 2K Y Y 5 N ¥1.35 | ¥1.55
STCI5F103 | 5.5~3.8 | 3K [128] 2 - Y| - Y Y 5 N ¥1.40 | ¥1.60
STCISF103E | 5.5~3.8 | 3K [128] 2 - |Y] 2K Y Y 5 N ¥1.45 | ¥1.65
STC15F104 | 5.5~3.8 [4K |128] 2 - 1Y - Y Y 5 N ¥1.50 | ¥1.70
STCISF104E | 5.5~3.8 | 4K |128| 2 - 1Y| IK Y Y 5 N ¥1.55 | ¥1.75
STCISF105 | 5.5~3.8 | 5K [128] 2 - Y| - Y Y 5 N
STCISF105E | 5.5~3.8 | 5K |128| 2 - 1Y| IK Y Y 5 N
IAPI15F106 | 5.5~3.8 | 6K |128| 2 - Y| IAP Y Y 5 N
S Internal | External | Special [Package of 8-pin
. Internal | Reset | interrupts |timer for| (6 1/0 ports)
Type Operatin W| EEP . . :
T 8051 MCU ff)oltagleg Flash| s |Timer|a/m| D |ROM| 0% | threshold | which | waking | Pricc RMBY)
V) (B) M T| ®) voltage | voltage | can wake | power
(B) interrupt| canbe | up power | down [SOP-8 | DIP-8
configured |down mode| mode
STCI5L100 | 3.6~2.4 | 512 |128] 2 - 1Y - Y Y 5 N ¥0.99 | ¥1.19
STCISL101 | 3.6~2.4 | 1K |128| 2 - 1Yl - Y Y 5 N ¥1.20 | ¥1.40
STCISLIOIE| 3.6~24 | 1K |128| 2 - Y| 2K Y Y 5 N ¥1.25 | ¥1.45
STCISL102 | 3.6~2.4 | 2K |128| 2 - Y| - Y Y 5 N ¥1.30 | ¥1.50
STCISLIO2E| 3.6~2.4 | 2K |128| 2 - 1Y| 2K Y Y 5 N ¥1.35 | ¥1.55
STCI5L103 | 3.6~2.4 | 3K |128] 2 - 1Y - Y Y 5 N ¥1.40 | ¥1.60
STCISLI03E| 3.6~2.4 | 3K [128] 2 - Y] 2K Y Y 5 N ¥1.45 | ¥1.65
STCISL104 | 3.6~2.4 | 4K |128| 2 - Y| - Y Y 5 N ¥1.50 | ¥1.70
STCISLIO4E| 3.6~2.4 | 4K |128| 2 - 1Y| IK Y Y 5 N ¥1.55 | ¥1.75
STCISL10S | 3.6~2.4 | 5K |128| 2 - Y| - Y Y 5 N
STCISLIOSE| 3.6~24 | 5K |128| 2 - 1Y| IK Y Y 5 N
IAP15L106 | 3.6~24 | 6K |128| 2 - Y| IAP Y Y 5 N

STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243
1.3.3 STC15S204EA series Pin Definition

N—
Apc2/p12[]1 20] ADCO/P1.0
Apc3p13[]2 19 [_JADCI/PLI
ADC4P1L4[]3 18 []P3.7INT3
apcspisC 4 oo, 17 [IP36INT2
apcepls s = f.’é 16 [P3.5/T1/CLKOUTO
ADCTP1.7[6 g § 15] P3.4/TO/CLKOUTI
SYSclkO/RST/P0.0] 7 % o 14 []P33NTI

ve[Js “ 13 [P3.2/NTO

Po.1[J9 12[]P3.1

Gnd[J10 11 [1p3.0INT4

SOP-20/DIP-20
STC15S204EA series is the special version of STC15F204EA series MCU, but it has no sample provided currently.

STC15S204EA series Selection Table

[
Type Operating R[I W| EEP Internal |§ REset which for él?cz/&lﬁ;t;))
1T 8051 MCU | voltage F('ﬁs)h A M| AD |p|rRom| oW |threshold] ake | waking
voltage | voltage
) M | E T| (B) interrupt| can be up power | power
B)|R down | down [SOP-20 | DIP-20
configured
mode mode
STC15S201A | 5.5~3.8 | IK [256[2 [10-bit| Y| - Y Y 5 N
STCI5S201EA| 5.5~3.8 | 1K [256|2 [10-bit| Y| 2K Y Y 5 N
STC15S202A | 5.5~3.8 | 2K |256[2 |10-bit| Y| - Y Y 5 N
STC15S202EA| 5.5~3.8 | 2K |256[2 |10-bit| Y| 2K Y Y 5 N
STCI15S203A | 5.5~3.8 | 3K [256[2 [10-bit| Y| - Y Y 5 N
STCI5S203EA| 5.5~3.8 | 3K [256| 2 [10-bit| Y| 2K Y Y 5 N
STCI15S204A | 5.5~3.8 | 4K [256[2 [10-bit| Y| - Y Y 5 N
STCI5S204EA| 5.5~3.8 | 4K [256| 2 [10-bit| Y| IK Y Y 5 N
STC15S205A | 5.5~3.8 | SK |256[2 |10-bit| Y| - Y Y 5 N
STC15S205EA| 5.5~3.8 | 5K [256[2 |10-bit|Y | IK Y Y 5 N
IAP15S206A | 5.5~3.8 | 6K |256|2 |10-bit| Y| IAP Y Y 5 N
STCI5V201A | 3.6~24 | IK |256[2 |10-bit|Y| - Y Y 5 N
STCISV201EA| 3.6~2.4 | 1K [256|2 [10-bit|Y| 2K Y Y 5 N
STCI5V202A | 3.6~2.4 | 2K [256]| 2 [10-bit|Y| - Y Y 5 N
STCI5V202EA| 3.6~2.4 | 2K (2562 [10-bit|Y| 2K Y Y 5 N
STC15V203A | 3.6~2.4 | 3K |256[2 | 10-bit|Y| - Y Y 5 N
STCISV203EA| 3.6~2.4 | 3K [256| 2 [10-bit|Y| 2K Y Y 5 N
STCI5V204A | 3.6~2.4 | 4K [256] 2 [10-bit|Y| - Y Y 5 N
STCI5V204EA| 3.6~2.4 | 4K (2562 [10-bit|Y| 1K Y Y 5 N
STCI5V205A | 3.6~2.4 | 5K [256] 2 [10-bit|Y | - Y Y 5 N
STCI5V205EA| 3.6~2.4 | 5K (2562 [10-bit|Y]| 1K Y Y 5 N
IAP15V206A | 3.6~2.4 | 6K |256(2 | 10-bit|Y | IAP Y Y 5 N

STC MCU Limited website: www.STCMCU.com 9

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

1.4 STC15F204EA series Minimum Application System

[r2s6 ~ P2.5

Zr27 P2.4

System_Vcc / USB +5V] proanco P23
[Z]pr.oapct P22

[|p12apc2 P21

Vi []r13/apC3 RSTOUT_LOW/P2.0

" [Jp1.4/apc4 INT3/P3.7

Power Orf>< [E7]p1.5:aDCs INT2/P3.6
W5 [p1.e1aDC6 CLKOUTO/T1/P3.5
o] p1.77apc7 CLKOUTI/TO/P3.4

[T Po.oRsT/SYSCIKO INT1/P3.3

e 12| vee INTO/P3.2

10pF 0.1pF [T3]po.1 P31
‘L—T—q—T—E Gnd INT4/P3.0

On-chip high-reliability Reset, No need external Reset circuit

P0.0/RST/SYSclkO pin defaut to I/O port when leave factory, and it can be configured RESET pin in
STC-ISP Writer/Programmer.

Internal high-precision RC oscillator with temperature drifting +1%(-40°C~+80°C), No need expensive
external cystal oscillator.

10 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

1.5 STC15F204EA series Typical Application Circuit (for ISP)

[]r2s P25
ez p24[27] | This part of the circuit has
System_Vee / USB +5V] proanco P23 nothing to do with the down-
e R P22 load and is only to be observed
[_|r12/apc2 P21 conveniently by oscilloscope
) []r1.3/:aDC3 RSTOUT_LOW/P2.0
Vin —
[]r1.4/aDcC4 INT3/P3.7 Vee
Power On [E]r1.5/aDCs INT2/P3.6
WL o [p1.61aDC6 CLKOUTO/TI/P3.5
[o]r1.77apC7 CLKOUTU/TO/P3.4[19] Xy Vo, —
RS
<|) . [T ro.oRsT/SYSCIkO INTI/P3.3 -
cc 1K
l > ? {12 vee INTO/P3.2[17
10uF —o0.1pF [13]Po.1 p3.1[16}
‘L—Lq—-l-—EGnd INT4/P3.0 15}

USB+5V TIOIUT R|1 INGND

535535

STC3232,STC232,MAX232,SP232 PC COM

>

Cl+ Vee > Vee

V+ Gnd -J-—| [1Gnd
Cl- TIOUT PC_RxD(COM Pin2)

PC_TxD(COM Pin3)

USB1

C2+ RIIN
o RioUT [MCURXD(P3.0)
MCU_TxD(P3.1
I - T [T
T20UT T2IN
Er2N R20UT[D] O+ UI-PLO
O+-Ul-PLL
OfMcCU-vCC
O+ UI-P3.0
O+-Ul-P3.1
O+1Gnd

On-chip high-reliability Reset, No need external Reset circuit

P0.0/RST/SYSclkO pin defaut to I/O port when leave factory, and it can be configured RESET pin in
STC-ISP Writer/Programmer.

Internal high-precision RC oscillator with temperature drifting +1%(-40°C~+80°C), No need expensive
external cystal oscillator.

STC MCU Limited website: www.STCMCU.com 11

www.STCMCU.com

Mobile:(86)13922805190

Tel:86-755-82948412

Fax:86-755-82944243

1.6 PINS Descriptions of STC15F204EA series

Pi
MNEMONIC " DESCRIPTION
number
P0.0 Standard PORTO[0]
P0.0/RST/SYSclkO 11 RST Reset pin;
SYSclkO Internal system clock output;
PO.1 13 Standard PORTO[1]
P1.0 Standard PORT1[0]
P1.0/ADCO 3 -
ADCO ADC input channel-0
Pl1.1 Standard PORT1[1]
P1.1/ADCI 4 -
ADCI1 ADC input channel-1
P1.2 Standard PORT1[2]
P1.2/ADC2 5 -
ADC2 ADC input channel-2
P1.3 Standard PORT1(3]
P1.3/ADC3 6 -
ADC3 ADC input channel-3
P14 Standard PORT1[4]
P1.4/ADC4 7 -
ADC4 ADC input channel-4
P15 Standard PORT1([5]
P1.5/ADCS 8 -
ADC5 ADC input channel-5
Pl.6 Standard PORT1[6]
P1.6/ADC6 9 -
ADC6 ADC input channel-6
P1.7 Standard PORT1([7]
P1.7/ADC7 10 -
ADC7 ADC input channel-7
P20/ P2.0 Standard PORT2[0]
N 23 . . .
RSTOUT LOW RSTOUT LOW Afte}* res‘et., it will output 0. Change the output register to 1 before
- making it iuput
P2.1 24 Standard PORT2[1]
P2.2 25 Standard PORT2[2]
P23 26 Standard PORT2[3]
P24 27 Standard PORT2[4]
P2.5 28 Standard PORT2[5]
P2.6 1 Standard PORT2[6]
P2.7 2 Standard PORT2[7]
P3.0 Standard PORT3[0]
R 15 One of external Interrupt sources.
P3.0/INT4 INT4 The interrupting acts in Negative-Edge only, and with Lease priority, and
it can wake up the STC15F204EA series from power-down mode.
P3.1 16 Standard PORT3([1]

12

STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243
Pin
MNEMONIC DESCRIPTION
number
P32 Standard PORT3[2]
One of external Interrupt sources.
The interrupt acting can be configured to Negative-Edge-Active or On-Change-
P3.2/INTO 17 Active(Negative—Edge—Active ar}d quitiv.e—Edge—Active)A . '
INTO A Negative-Edge from INTO pin will trigger an interrupt if ITO(TCON.0) is
set, and both of Negative-Edge and Positive-Edge will trigger an interrupt if}
ITO(TCON.0) is cleared.
Also INTO can wake up the STC15F204EA series from power-down mode.
P33 Standard PORT3[3]
One of external Interrupt sources.
The interrupt acting can be configured to Negative-Edge-Active or On-Change-
P3.3/INTI 18 Active(Negative-Edge-Active and Positive-Edge-Active).
INT1 A Negative-Edge from INT1 pin will trigger an interrupt if ITI(TCON.2) is
set, and both of Negative-Edge and Positive-Edge will trigger an interrupt if
ITI(TCON.2) is cleared.
Also INT1 can wake up the STC15F204EA series from power-down mode.
P3.4 Standard PORT3[4]
P3.4/T0O/CLKOUTI 19 TO TO input for Timer 0
CLKOUTI Frequency output associated with Timer-1 overflow rate divided by 2
Set INT_CLKO[1](TICLKO)=I to act it.
P3.5 Standard PORT3[5]
P3.5/T1/CLKOUTO 20 Tl T1 input for Timer 1
Frequency output associated with Timer-0 overflow rate divided by 2
CLKOUTO Set INT_CLKO[0](TOCLKO)=I to act it.
P3.6 Standard PORT3[6]
P3.6/INT2 21 One .Of extemal lnte@pt sources. . o .
INT2 The interrupting acts in Negative-Edge only, and with Lease priority, and it can
wake up the STC15F204EA series from power-down mode.
P3.7 Standard PORT3(7]
P3.7/INT3 27 One pf exterqal Inte@pt sources. . o)
INT3 The interrupting acts in Negative-Edge only, and with Lease priority, and it can
wake up the STC15F204EA series from power-down mode.
Vee 12 Power
Gnd 14 Ground
STC MCU Limited website: www.STCMCU.com 13

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

1.7 Package Drawings

28-Pin Small Outline Package (SOP-28)

Dimensions in Millimeters

>

EHHHHHQ@HHHHHg =

HoooogdhbHEEEE =
FUEE

1.27mm

COMMON DIMENSIONS
(UNITS OF MEASURE = MILLMETER / mm)
SYMBOL MIN NOM MAX
A 2.465 2.515 2.565
Al 0.100 0.150 0.200
< bl > A2 2.100 2.300 2.500
b b 0.356 0.406 0.456
NN N NN\ \ bl 0.366 0.426 0.486
\ // WITH PLATING c - 0.254 -
¢ \ é/ D 17.750 | 17.950 18.150
E 10.100 | 10.300 10.500
\ ANANANANAN \\\\ El 7.424 7.500 7.624
BASE METAL e 1.27
L 0.764 0.864 0.964
R % L1 1.303 1.403 1.503
R1 L2 - 0.274 -
* r R - 0.200 -
o4 R -~ [0300 :
" ® 0’ - 10°
e z - 0.745 -

14 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

28-Pin Plastic Dual-In-line Package (SKDIP-28)
Dimensions in Inches and Millmeters

D

; i 0 ke e e e e B s e O e B e ke {‘ 'y
A
El) O O m 3
/ y
LT L LR LT L LR v

N A2 COMMON DIMENSIONS

¥y (UNITS OF MEASURE = INCH)
SYMBOL | MIN | NOM | MAX
A - - 0.210

100 mil bl Al 0.015 - -
A2 0.125 0.13 0.135

b - 0.018 -

bl - 0.060 -
D 1.385 | 1.390 1.40

E - 0.310 -
El 0283 | 0.288 | 0.293

e - 0.100 -
L 0.115 | 0.130 | 0.150

0’ 0 7 15
eA 0.330 | 0.350 | 0.370

UNIT: INCH, 1 inch = 1000 mil

STC MCU Limited website: www.STCMCU.com 15

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

8-PIN SMALL OUTLINE PACKAGE (SOP-8)

Dimensions in Inches

< D | .
HHAH =~
A
........... |
Y
— v
COMMON DIMENSIONS
p\ (UNITS OF MEASURE = INCH)
“V SYMBOL | MIN | NOM | MAX
Al A 0.053 - 0.069
|2 [0.004 max. < Al 0.004 - 0.010
b - 0.016 -
D 0.189 - 0.196
v E 0.228 - 0.244
_f El 0.150 - 0.157
L1 >l e e 0.050
L 0016 | -] 0.050
L1 0.008
D o | -] &

UNIT: INCH, 1 inch = 1000 mil

16 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

8-Pin Plastic Dual Inline Package (DIP-8)

Dimensions in Inches

<« D > o
byl /'y
i 4 i
a| D @ B
\ y
T Y

18 mil

T % COMMON DIMENSIONS
[Ay s (UNITS OF MEASURE = INCH)
v SYMBOL | MIN | NOM | MAX
i [TAI A - - 0.210
c 100 mil Al 0.015 - -
b — A2 0.125 | 0.130 | 0.135
b - 0.018 -
bl - 0.060 -
D 0355 | 0365 | 0.400
E - 0.300 -
El 0.245 | 0.250 | 0.255
e - 0.100 -
0.115 | 0.130 | 0.150
0’ 0 7 15
eA 0335 | 0355 | 0375

UNIT: INCH, 1 inch = 1000 mil

STC MCU Limited website: www.STCMCU.com 17

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243
20-Pin Small Outline Package (SOP-20) (for STC15S/V204EA series)

Dimensions in Inches and (Millimeters)

i D »
AHAQAAAARE = 1
: A
... 5| e
o : Y
HHH EleIj ﬁ HH v
> 7 [¢ |
1.27mm
COMMON DIMENSIONS
(UNITS OF MEASURE = MILLMETER)
SYMBOL MIN NOM MAX
A 2.465 2.515 2.565
Al 0.100 0.150 0.200
- bl > A2 2.100 2.300 2.500
|<+>| bl 0.366 0.426 0.486
A NN SNANANNN \ b 0.356 0.406 0.456
\7// WITH PLATING C 0.234 - 0.274
TN /éé/ cl - 0.254 -
Vi D 12.500 | 12.700 | 12.900
NN E 10206 | 10306 | 10.406
BASE METAL El 7.450 7.500 7.550
e 1.27
R1 L 0.800 0.864 0.900
R r;} L1 1.303 1.403 1.503
* L2 - 0.274 -
B R - 0.300 -
o R1 - 0.200 -
—»| Ll | D 00 _ 100
z - 0.660 -

18 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

20-Pin Plastic Dual Inline Package (DIP-20) (for STC15S/V204EA series)
Dimensions in Inches

D »
D = C @
mnm e T T
A
El) @ @ 5
A A AT e ‘ v
—> LT:S— —L:I [B
120 mil
COMMON DIMENSIONS

(UNITS OF MEASURE = INCH)
SYMBOL | MIN NOM | MAX

A - - 0.175
o Al 0.015 - -
A2 0.125 0.13 0.135

b 0.016 0.018 0.020
bl 0.058 0.060 0.064
C 0.008 0.010 0.11
D
E

1.012 1.026 1.040
0.290 0.300 0.310

El 0.245 | 0250 | 0.255
e 0.090 | 0.100 | 0.110
0.120 | 0.130 | 0.140
0’ 0 - 15
eA 0.355 | 0355 | 0.375
S - - 0.075

UNIT: INCH, 1 inch= 1000 mil

STC MCU Limited website: www.STCMCU.com 19

www.STCMCU.com

Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

1.8 STC15Fxx series MCU naming rules

1.8.1 STC15F204EA series MCU naming rules

STCLY x - 2xx

XX

- 35 X - XXXX XX
| Pin Number
e.g. 28
Package type

e.g. SOP, SKDIP

Temperature range
I : Industrial, -40°C-80°C
C : Commercial, 0°C-70°C

Operating frequency
35: Up to 35MHz

EA : Have internal EEPROM and A/D Converter

A : Have A/D Converter

Program space

01:1KB 02:2KB 03:3KB 04:4KB 05:5KB 06:6KB ectc.

Operating Voltage

F:55V~3.8V
L:24V~3.6V

STC 1T Series 8051 MCU

Speed is 8~12 times the traditional 8051

20

STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

1.8.2 STC15F101E series MCU naming rules

STC15 x 1xx xx -- 35 X - XXXX XX
| Pin Number
e.g. 8
Package type
e.g. SOP, DIP

Temperature range
I : Industrial, -40°C-80°C
C : Commercial, 0°C-70°C

Operating frequency
35: Up to 35MHz

E : Have internal EEPROM
Otherwise : No internal EEPROM

Program space
00:0.5KB 01:1KB 02:2KB 03:3KB 04:4KB 05:5KB 06:6KB ectc.

Operating Voltage
F:5.5~3.8V
L:2.4V~3.6V

STC 1T Series 8051 MCU
Speed is 8~12 times the traditional 8051

STC MCU Limited website: www.STCMCU.com 21

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

Chapter 2 Clock, Power Management, Reset
2.1 Clock

There is only one clock source—Internal RC oscillator available for STC15F204EA series.
After picking out clocking source, there is another slow-down mechanism available for power-saving purpose.

User can slow down the MCU by means of writing a non-zero value to the CLKS[2:0] bits in the CLK DIV
register. This feature is especially useful to save power consumption in idle mode as long as the user changes the
CLKS[2:0] to a non-zero value before entering the idle mode.

CLK_DIV register (Clock Divider)

LSB
SFR Name | SFR Address | bit B7 B6 B5 B4 | B3 B2 B1 BO
CLK DIV 97H name - - - - - CLKS2 | CLKS1 | CLKSO
{CLKS2,CLKS1,CLKS0}
000 := The internal RC oscillator is set as the clock-in not divided (default state)
001 := The internal RC oscillator is set as the clock-in divided by 2
010 := The internal RC oscillator is set as the clock-in divided by 4
011 := The internal RC oscillator is set as the clock-in divided by 8
100 := The internal RC oscillator is set as the clock-in divided by16
101 := The internal RC oscillator is set as the clock-in divided by 32
110 := The internal RC oscillator is set as the clock-in divided by 64
111 := The internal RC oscillator is set as the clock-in divided by 128
r—— == - - il
: Not-divided : 000
| |
| |
I +4 ; 010
| |
! =8 L—o11 System clock (SYSclk)
Internal RC oscillator —>: : (To CPU and peripherals)
(5 MHz — 35 MHz) | +16 I 100
(temperature drifting +1%) | |
| +32 f 101
| |
' +64 —110
| |
| |
| +128 | 111
L - - - e = = o
y4
7
CLKS2,CLKS1,CLKS0

Clock Structure

22 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

2.2 Power Management

PCON register (Power Control Register)

LSB
SFR name | Address bit B7 B6 BS B4 B3 B2 B1 BO
PCON 87H name - - LVDF | POF GF1 | GFO PD IDL

LVDF : Low-Voltage Flag. Once low voltage condition is detected (VCC power is lower than LVD
voltage), it is set by hardware (and should be cleared by software).

POF : Power-On flag. It is set by power-off-on action and can only cleared by software.

GF1 : General-purposed flag 1

GFO : General-purposed flag 0

PD : Power-Down bit.

IDL : Idle mode bit.

POF=0, No

In initializtion program, judge whether
POF/PCON .4 has been set or not ?

cold boot

Yes | Power-On Reset external manual reset,
or WDT reset,
or software reset,
Clear POF/PCON.4 or others

} :

2.2.1 Idle Mode

An instruction that sets IDL/PCON.0 causes that to be the last instruction executed before going into the idle
mode, the internal clock is gated off to the CPU but not to the interrupt, timer, ADC and WDT functions. The
CPU status is preserved in its entirety: the RAM, Stack Pointer, Program Counter, Program Status Word, Ac-
cumulator, and all other registers maintain their data during Idle. The port pins hold the logical states they had at
the time Idle was activated. Idle mode leaves the peripherals running in order to allow them to wake up the CPU
when an interrupt is generated. Timer 0, Timer 1 and so on will continue to function during Idle mode.

There are two ways to terminate the idle. Activation of any enabled interrupt will cause IDL/PCON.0 to be
cleared by hardware, terminating the idle mode. The interrupt will be serviced, and following RETI, the next
instruction to be executed will be the one following the instruction that put the device into idle.

The other way to wake-up from idle is to pull RESET high to generate internal hardware reset. Since the clock
oscillator is still running, the hardware reset neeeds to be held active for only two machine cycles (24 oscillator
periods) to complete the reset.

STC MCU Limited website: www.STCMCU.com 23

www.STCMCU.com

Mobile:(86)13922805190

Tel:86-755-82948412

Fax:86-755-82944243

2.2.2 Slow Down Mode

A divider is designed to slow down the clock source prior to route to all logic circuit. The operating frequency of
internal logic circuit can therefore be slowed down dynamically , and then save the power.

CLK_DIV register (Clock Divider)

LSB
SFR Name | SFR Address | bit B7 B6 B5 B4 | B3 B2 B1 B0
CLK DIV 97H name - - - - - CLKS2 | CLKSI1 | CLKSO
{CLKS2,CLKS1,CLKS0}
000 := The internal RC oscillator is set as the clock-in not divided (default state)
001 := The internal RC oscillator is set as the clock-in divided by 2
010 := The internal RC oscillator is set as the clock-in divided by 4
011 := The internal RC oscillator is set as the clock-in divided by 8
100 := The internal RC oscillator is set as the clock-in divided by16
101 := The internal RC oscillator is set as the clock-in divided by 32
110 := The internal RC oscillator is set as the clock-in divided by 64
111 := The internal RC oscillator is set as the clock-in divided by 128
r— = Wi A
| Not-divided [——]000
| |
| +2 T 001
| |
I +4 f 010
| |
! +8 L—o11 System clock (SYSclk)
. | |
Internal RC oscillator —>I I (To CPU and peripherals)
(5 MHz — 35 MHz) | =16 : 100
(temperature drifting +1%) | |
I +32 f 101
| |
! +64 —1110
| |
| |
| +128 I 111
L — — — — — — 4
ya
7

CLKS2,CLKS1,CLKSO0

Clock Structure

24

STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

Sk STC-ISP Webnwanw.STCMCU.com Support(86)13922¢

MCUType |STC1SF204A | Open CodeFile ¢

COM Port [coM7 R
Open EEPROM File

Min Baud |24UU

=
LI Clean Buffer

Max Baud |Auto Baud

~H/W Optio Select Internal R/C
oscillator Frequency

Frequency selector |
BGTrim |4 vI F‘.GTrimID vI /

[Enable longer power-on—eset latency
[P0.0 play the part of RESET pin
[Enable Low-Voltage reset
Low-Voltage detect level |4. 1V vI

™ Inhibit IAP operation under Low-Voltage
[Hardware enable WOT after power-on-reset

Watch-Dog-Timer prescaler IlZB vI
¥ WOT stop count while MCU in idle mode
[~ watch-Dog-Timer{WDT) SFR write protect
[™ Erase all EEPROM data next time
[Mext time can program only when P3.2 & P3.3 are LOW

Program Stop Re-Program | r

STC MCU Limited website: www.STCMCU.com 25

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

2.2.3 Power Down (PD) Mode (Stop Mode)

An instruction that sets PD/PCON.1 cause that to be the last instruction executed before going into the Power-
Down mode. In the Power-Down mode, the on-chip oscillator and the Flash memory are stopped in order to
minimize power consumption. Only the power-on circuitry will continue to draw power during Power-Down.
The contents of on-chip RAM and SFRs are maintained. The power-down mode can be woken-up by RESET pin,
external interrupts INTO,INT1, INT2,INT3 and INT4. When it is woken-up by RESET, the program will execute
from the address 0x0000. Be carefully to keep RESET pin active for at least 10ms in order for a stable clock. If it
is woken-up from external interrupts, the CPU will rework through jumping to related interrupt service routine.
Before the CPU rework, the clock is blocked and counted until 64 in order for denouncing the unstable clock. To
use external interrupts wake-up, interrupt-related registers have to be enabled and programmed accurately before
power-down is entered. Pay attention to have at least one “NOP” instruction subsequent to the power-down
instruction if external interrupts wake-up is used. When terminating Power-down by an interrupt, the wake up
period is internally timed. At the negative edge (for INTO,INT1, INT2,INT3 and INT4) or positive edge (for INTO
and INT1) on the interrupt pin, Power-Down is exited, the oscillator is restarted, and an internal timer begins
counting. The internal clock will be allowed to propagate and the CPU will not resume execution until after the
timer has reached internal counter full. After the -timeout period, the interrupt service routine will begin. To
prevent the interrupt from re-triggering, the interrupt service routine should disable the interrupt before returning.
The interrupt pin should be held low until the device has timed out and begun executing. The user should not
attempt to enter (or re-enter) the power-down mode for a minimum of 4 us until after one of the following
conditions has occured: Start of code execution(after any type of reset), or Exit from power-down mode.

The following circuit can timing wake up MCU from power down mode when external interrupt sources do not

exist
vo XI——— DA
300Q _LI I
0.1uF

Cl 5MQ

Operation step:
1. I/O ports are first configured to push-pull output(strong pull-up) mode
. Writen 1s into ports I/O ports
. the above circuit will charge the capacitor C1
. Writen Os into ports I/O ports, MCU will go into power-down mode

WD A W

. The above circuit will discharge. When the electricity of capacitor C1 has been discharged less than
0.8V, external interrupt INTx pin will generate a falling edge and wake up MCU from power-down
mode automatically.

26 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

The following example C program demostrates that power-down mode be woken-up by external interrupt.

/* */
/* --- STC MCU International Limited */
/* --- STC 1T Series MCU wake up Power-Down mode Demo -----------=-=--------- */
/* --- Mobile: (86)13922805190 */
/* --- Fax: 86-755-82944243 */
/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */
/* If you want to use the program or the program referenced in the */

/* article, please specify in which data and procedures from STC */

/* */

#include <reg51.h>
#include <intrins.h>

sbit Begin LED =P172;

unsigned char Is Power Down = 0;
sbit Is Power Down LED INTO

sbit Not Power Down LED INTO
sbit Is Power Down LED INT1

sbit Not Power Down LED INT1
sbit Power Down_Wakeup Pin INTO
sbit Power Down_Wakeup Pin INT1
sbit Normal Work Flashing LED

void Normal Work Flashing (void);
void INT System init (void);

void INTO Routine (void);

void INT1 Routine (void);

void main (void)

//Begin-LED indicator indicates system start-up
//Set this bit before go into Power-down mode
=PI177; //Power-Down wake-up LED indicator on INTO
=PI176; //Not Power-Down wake-up LED indicator on INTO
=PI1"5; //Power-Down wake-up LED indicator on INT1
=P174; //Not Power-Down wake-up LED indicator on INT1
=P3"2; //Power-Down wake-up pin on INTO
=P3"3; //Power-Down wake-up pin on INT1
=P173; //Normal work LED indicator

{
unsigned char j=0;
unsigned char wakeup counter = 0;
//clear interrupt wakeup counter variable wakeup counter
Begin LED =0; //system start-up LED
INT_System _init (); //Interrupt system initialization
while(1)
STC MCU Limited website: www.STCMCU.com 27

www.STCMCU.com

Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

P2 = wakeup_counter;
wakeup_counter++;
for(j=0; j<2; j++)

{
Normal Work Flashing(); //System normal work
}
Is Power Down = 1; //Set this bit before go into Power-down mode
PCON =0x02; //after this instruction, MCU will be in power-down mode
//external clock stop
nop();
nop();
nop();
nop();
}
}
void INT_ System_init (void)
{
1TO =0; /* External interrupt 0, low electrical level triggered */
/1 ITO =1; /* External interrupt 0, negative edge triggered */
EXO0 =1; /* Enable external interrupt 0
IT1 =0; /* External interrupt 1, low electrical level triggered */
/1 IT1 =l /* External interrupt 1, negative edge triggered */
EX1 =V, /* Enable external interrupt 1
EA =1; /* Set Global Enable bit
}
void INTO_ Routine (void) interrupt 0
{
if (Is_Power Down)
{
//1s_Power Down ==1; /* Power-Down wakeup on INTO */
Is Power Down = 0;
Is Power Down LED INTO = 0;
/*open external interrupt 0 Power-Down wake-up LED indicator */
while (Power Down_Wakeup Pin INTO == 0)
{
/* wait higher */
}
Is Power Down LED INTO=1;
/* close external interrupt 0 Power-Down wake-up LED indicator */
}

28

STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

else
{
Not Power Down LED INTO=0; /* open external interrupt O normal work LED */
while (Power Down_Wakeup Pin INTO ==0)
{
/* wait higher */
}
Not Power Down LED INTO=1; /* close external interrupt 0 normal work LED */
H
H
void INT1 Routine (void) interrupt 2
{
if (Is_Power Down)
{
//1s_Power Down ==1; /* Power-Down wakeup on INT1 */
Is Power Down = 0;
Is Power Down LED INTI1=0;
/*open external interrupt 1 Power-Down wake-up LED indicator */
while (Power_Down_Wakeup_Pin INT1 == 0)
{
/* wait higher */
i
Is Power Down LED INTI1 =1;
/* close external interrupt 1 Power-Down wake-up LED indicator */
H
else
{
Not Power Down LED INT1=0; /* open external interrupt 1 normal work LED */
while (Power Down_Wakeup Pin INT1 ==0)
{
/* wait higher */
}
Not Power Down LED INT1=1; /* close external interrupt 1 normal work LED */
H
H
void delay (void)
{
unsigned int j=0x00;
unsigned int k = 0x00;
for (k=0; k<2; ++k)
{
for (j=0; j<=30000; ++j)
{
nop();
nop();
nop();
nop();

STC MCU Limited website: www.STCMCU.com 29

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

nop();
nop();
nop();
nop();
H
H
H
void Normal Work Flashing (void)
{
Normal Work Flashing LED = 0;
delay ();
Normal Work Flashing LED = 1;
delay ();
H

The following program also demostrates that power-down mode or idle mode be woken-up by external
interrupt, but is written in assembly language rather than C languge.

« 3 e sfe e sfe e st i sie ke sk ke sfe ke sk ke sie ke stk sk sk stk sieske skl skt skt skt skl skl skoloskokoskoloskokoskolokokokolokokoskolkokokskokskok

2

;Wake Up Idle and Wake Up Power Down

sk s ok ook o o o ok sk kR R R R ok ok s s o kR R R KRR SR R R R R R R R R SR SR R R R R R R R R Rk ok
b

ORG 0000H
AJMP MAIN
ORG 0003H
int0_interrupt:
CLR P1.7 ;open P1.7 LED indicator
ACALL delay ;delay in order to observe
CLR EA ;clear global enable bit, stop all interrupts
RETI
ORG 0013H
intl_interrupt:
CLR P1.6 ;open P1.6 LED indicator
ACALL delay ;;delay in order to observe
CLR EA ;clear global enable bit, stop all interrupts
RETI
ORG 0100H
delay:
CLR A
MOV RO, A
MOV RI, A
MOV R2, #02
delay loop:
DINZ RO, delay loop
DINZ RI, delay loop
DINZ R2, delay loop
RET

30 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922805190

Tel:86-755-82948412 Fax:86-755-82944243

main:
MOV R3, #0
main_loop:
MOV A, R3
CPL A
MOV PI, A
ACALL delay
INC R3
MOV A, R3
SUBB A, #18H
JC main_loop
MOV PI, #0FFH
CLR ITO
; SETB ITO
SETB EXO0
CLR IT1
; SETB IT1
SETB EXI
SETB EA

;P1 LED increment mode changed
;start to run program

;close all LED, MCU go into power-down mode
;low electrical level trigger external interrupt 0
;negative edge trigger external interrupt 0

;enable external interrupt 0

;low electrical level trigger external interrupt 1
;negative edge trigger external interrupt 1

;enable external interrupt 1

;set the global enable

;if don't so, power-down mode cannot be wake up

;MCU will go into idle mode or power-down mode after the following instructions

MOV PCON, #00000010B ;Set PD bit, power-down mode (PD = PCON.1)
R NOP
R NOP
R NOP
; MOV PCON, #00000001B ;Set IDL bit, idle mode (IDL = PCON.0)
MOV PlI, #0DFH ;1101,1111
NOP
NOP
NOP
WAITI:
SIMP WAIT1 ;dynamically stop
END
STC MCU Limited website: www.STCMCU.com 31

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

2.3 Reset

In STC15F204EA series, there are 6 sources to generate internal reset. They are RESET (P0.0) pin, software
reset, On-chip power-on-reset, Watch-Dog-Timer,On-chip MAX810 POR timing delay and low-voltage detection.

Those following conditions will induce reset.
e (User-Invoked) Reset pin acting
e (User-Invoked) Software Reset via SWRST (IAP_CONTR.5)
* (System-Invoked) MAX810-like Power-Up latency (~45mS)
* (System-Invoked) Low-Voltage detector acting
* (System-Invoked) Watch-Dog-Timer overflow

2.3.1 Reset pin

P0.0/RST/SYSclkO pin defaut to I/O port when leave factory, and it can be configured RESET pin in
STC ISP Writer/Programmer. The P0.0 pin, if configured as RESET pin function, which is the input
to Schmitt Trigger, is input pin for chip reset. A level change of RESET pin have to keep at least 24
cycles plus 10us in order for CPU internal sampling use.

2.3.2 Software RESET
Writing an “1” to SWRST bit in [AP_ CONTR register will generate a internal reset.
IAP_CONTR: ISP/IAP Control Register

SFR Name SFR Address | bit B7 B6 B5 B4 B3 B2 Bl BO
IAP_CONTR C7H name | IAPEN | SWBS [SWRST|CMD_FAIL - WT2 WT1 WTO

SWABS : software boot selection control bit
0 : Boot from user-code after reset
1 : Boot from ISP monitor code after reset
SWRST : software reset trigger control.
0 : No operation
1 : Generate software system reset. It will be cleared by hardware automatically

System will reset to AP address 0000H and begin running user application program code if
MOV IAP_CONTR, #00100000B

System will reset to ISP address 0000H and begin running system ISP monitor code if
MOV IAP_CONTR, #01100000B

2.3.3 Power-On Reset (POR)

When VCC drops below the detection threshold of POR circuit, all of the logic circuits are reset.

When VCC goes back up again, an internal reset is released automatically after a delay of 8192 clocks.

32 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

2.3.4 MAXS810 power-on-reset delay

There is another on-chip POR delay circuit is integrated on STC15F204EA series. This circuit is MAX810—
sepcial reset circuit and is controlled by configuring flash Option Register. Very long POR delay time — around
45ms will be generated by this circuit once it is enabled.

2.3.5 Low Voltage Detection

Besides the POR voltage, there is a higher threshold voltage: the Low Voltage Detection (LVD) voltage for
STC15F204EA series. When the VCC power drops down to the LVD voltage, the Low voltage Flag, LVDF bit
(PCON.5), will be set by hardware. (Note that during power-up, this flag will also be set, and the user should
clear it by software for the following Low Voltage detecting.) This flag can also generate an interrupt if bit ELVD
(IE.6) is set to 1.

The following tables list all the low voltage detection threshold voltages under different degrees for
STC15F204EA series .

5V device low voltage detection threshold voltages:

-40°C 25°C 85°C
4.74 4.64 4.60
4.41 432 4.27
4.14 4.05 4.00
3.90 3.82 3.77
3.69 3.61 3.56
3.51 3.43 3.38
3.36 3.28 3.23
3.21 3.14 3.09

User can select those voltages listed in above table as reset threshold voltages by STC-ISP Writer/Programmer

3V device low voltage detection threshold voltages:

-40°C 25°C 85°C
3.11 3.08 3.09
2.85 2.82 2.83
2.63 2.61 2.61
2.44 2.42 2.43
2.29 2.26 2.26
2.14 2.12 2.12
2.01 2.00 2.00
1.90 1.89 1.89

User can select those voltages listed in above table as reset threshold voltages by STC-ISP Writer/Programmer

STC MCU Limited website: www.STCMCU.com 33

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

Sik STC-ISP Webmwww.STCMCU.com Support:(86)13922

MCUType |[STC1SF204EA ~| Open CodeFile
COM Port |com7

=]
Min Baud |24UU ;I
-]

Max Baud I#.uto Baud Clean Buffer
—H/W Option

v Trim

Frequency selector |22. 1184 ;I MHz

Open EEPROM File

BGTrim |4 - I RGTrim ||:| - I

[v Enable longer power-on-reset latency
[P0.0 play the part of RESET pin

able Low-Voltage reset
Low-Voltage detect level
hibit IAP operation under Low-Vo

[Hardware enable WOT after power-on-reset
Watch-Dog-Timer prescaler IlZB vI

W WOT stop count while MCU in idle mode

[~ wWatch-Dog-Timer(WDOT) SFR write protect

[Erase all EEPROM data next time

[Mext time can program only when P3.2 & P3.3 are LOW

Program Stop Re-Program | |7

Select Reset threshold Voltage
of STC15F204E series 5V MCU

34

STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

Sk STC-ISP Webmwww.STCMCU.com Support:(86)13922

MCUType [STC15L204A ~| Open Code Fie

COM Port ICDM?
Open EEPROM File

E
Min Baud |24{]|:| j
=l

Max Baud I'ﬁ'“t" Baud Clean Buffer
—H/W Option

¥ Trim

Freguency selector |22. 1184 ;I MHz

BGTrim |4 - I RGTrim ID i I

[¥ Enable longer power-on-reset latency

I™ P0.0 play the part of RESET pin Select Reset threshold Voltage
£ Low-Voltage reset — | of STC15L204E series 3V MCU

< Low-Voltage detect level
ibit IAP operation under Low-Val

[Hardware enable WOT after power-on-reset
Watch-Dog-Timer prescaler IlZS vI

¥ WOT stop count while MCU in idle mode

[~ watch-Dog-Timer(WOT) SFR write protect

[Erase all EEPROM data next time

[~ Mext time can program only when P3.2 &P3.3 are LOW

Program Skop Re-Program | [

STC MCU Limited website: www.STCMCU.com 35

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

Some SFRs related to Low voltage detection as shown below.

PCON register (Power Control Register)

LSB
SFR name | Address bit B7 B6 B5 B4 B3 B2 Bl BO
PCON 87H name - - LVDF | POF GF1 | GFO PD IDL

LVDF : Low-Voltage Flag. Once low voltage condition is detected (VCC power is lower than LVD
voltage), it is set by hardware (and should be cleared by software).

POF : Power-On flag. It is set by power-off-on action and can only cleared by software.

GF1 : General-purposed flag 1

GFO0 : General-purposed flag 0

PD : Power-Down bit.

IDL : Idle mode bit.

IE: Interrupt Enable Rsgister (Address: 0A8H)

(MSB) (LSB)
| EA |ELVD|EADC| - | ETI | EX1 | ETO | EX0 |

Enable Bit = 1 enables the interrupt .
Enable Bit = 0 disables it .

EA (IE.7): disables all interrupts. if EA = 0,no interrupt will be acknowledged. if
EA = 1, each interrupt source is individually enabled or disabled by

setting or clearing its enable bit.
ELVD (IE.6): Low volatge detection interrupt enable bit.

IP: Interrupt Priority Register (Address: 0BSH)

(MSB) (LSB)
| - [pvpleapc| — | pri | exi | P10 | Px0 |
Priority bit = 1 assigns high priority .
Priority bit =0 assigns low priority.
PLVD (IP.6): Low voltage detection interrupt priority.
STC MCU Limited. website: www.STCMCU.com

36

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

2.3.6 Watch-Dog-Timer

The watch dog timer in STC15F204EA series consists of an 8-bit pre-scaler timer and an 15-bit timer. The
timer is one-time enabled by setting EN. WDT(WDT_CONTR.5). Clearing EN_WDT can stop WDT counting.
When the WDT is enabled, software should always reset the timer by writing 1 to CLR_WDT bit before the
WDT overflows. If STC15F204EA series out of control by any disturbance, that means the CPU can not run the
software normally, then WDT may miss the "writting 1 to CLR_WDT" and overflow will come. An overflow of
Watch-Dog-Timer will generate a internal reset.

1256 ——0

1/128 —o
1/64 ——o
132 —o 15-bit

/16 —o Watch-dog Timer
118 —o
1/4 —o
12 —o

» WDT Reset

8-bit prescalar

SYSclk/12

IDL/PCON.0 T 1T 1

[
[wDT FLAG] - [EN_WDT[CLR WDT|[IDLE WDT[Ps2]Ps1]Pso]
WDT_CONTR

‘WDT Structure

WDT_ CONTR: Watch-Dog-Timer Control Register
LSB

SFR name |Address| bit B7 B6 B5 B4 B3 B2 | Bl | BO
WDT_CONTR| OCIH | name |WDT FLAG| - | EN_WDT |CLR_WDT|IDLE WDT| PS2 | PS1 | PSO

WDT FLAG : WDT reset flag.
0 : This bit should be cleared by software.
1 : When WDT overflows, this bit is set by hardware to indicate a WDT reset happened.
EN_WDT : Enable WDT bit. When set, WDT is started.
CLR_WDT : WDT clear bit. When set, WDT will recount. Hardware will automatically clear this bit.
IDLE WDT : WDT IDLE mode bit. When set, WDT is enabled in IDLE mode. When clear, WDT is disabled in
IDLE.

STC MCU Limited website: www.STCMCU.com 37

www.STCMCU.com

Mobile:(86)13922805190

Tel:86-755-82948412

Fax:86-755-82944243

PS2, PS1, PSO : WDT Pre-scale value set bit.
Pre-scale value of Watchdog timer is shown as the bellowed table :

PS2 | PS1 | PSO Pre-scale WDT overflow Time @20MHz

0 0 0 2 39.3 mS

0 0 1 4 78.6 mS

0 1 0 8 157.3 mS

0 1 1 16 314.6 mS

1 0 0 32 629.1 mS

1 0 1 64 1.258

1 1 0 128 258

1 1 1 256 58S

The WDT overflow time is determined by the following equation:
WDT overflow time = (12 % Pre-scale x 32768) / SYSclk

The SYSclk is 20MHz in the table above.
If SYSclk is 12MHz, The WDT overflow time is :

WDT overflow time = (12 % Pre-scale x 32768) / 12000000 = Pre-scalex 393216 / 12000000

WDT overflow time is shown as the bellowed table when SYSclk is 12MHz:

PS2 | PS1 | PSO Pre-scale WDT overflow Time @12MHz
0 0 0 2 65.5 mS
0 0 1 4 131.0 mS
0 1 0 8 262.1 mS
0 1 1 16 524.2 mS
1 0 0 32 1.0485 S
1 0 1 64 2.0971 8
1 1 0 128 4.1943 S
1 1 1 256 8.3886 S

WDT overflow time is shown as the bellowed table when SYSclk is 11.0592MHz:

PS2 | PS1 | PSO Pre-scale | WDT overflow Time @11.0592MHz
0 0 0 2 71.1 mS
0 0 1 4 142.2 mS
0 1 0 8 284.4 mS
0 1 1 16 568.8 mS
1 0 0 32 1.1377 S
1 0 1 64 2.2755 S
1 1 0 128 4.5511 S
1 1 1 256 9.1022 S

38

STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

=i STC-ISP Webnwwnw.STCMCU.com Support(86)13922

MCUType |STC15F204EA | Open codeFie

COM Port ICDM?
Open EEPROM File

=l
Min Baud |7_4un LI
=l

Max Baud IAuto Baud Clean Buffer
—H/\W Option

v Trim

Frequency selector IZZ 1184 ;I MHz

BGTrim |4 - I R.GTrim ||:| - I

[Enable longer power-onreset latency
[P0.0 play the part of RESET pin
[Enable Low-Voltage reset
Low-Voltage detect level |4. 11V vI
[Inhibit IAP operation under Low-Voltage

ware enable WDT after power-on-

/l Select Watch-Dog-Timer prescaler

N\

Watch-Dog-Timer prescaler
¥ WOT stop count while MCU in idle mode
-Dog-Timer(WDOT) SFR write pro
[~ Erase all EEPROM data next time
[Mext time can program only when P3.2 &P3.3 are LOW

Program Stop Re-Program | [

STC MCU Limited website: www.STCMCU.com 39

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

The following example is a assembly language program that demostrates STC 1T Series MCU WDT.

e */
;/* --- STC MCU International Limited */
/¥ -—- STC 1T Series MCU WDT Demo */
;/* --- Mobile: (86)13922805190 */
;/* --- Fax: 86-755-82944243 */
;/* --- Tel: 86-755-82948412 */
/% -—- Web: www.STCMCU.com */

;/* If you want to use the program or the program referenced in the */
;/* article, please specify in which data and procedures from STC */

: WDT overflow time = (12 x Pre-scale x 32768) / SYSclk
WDT _CONTR EQU 0C1H ;WDT address
WDT TIME LED EQU PL.5 ;WDT overflow time LED on P1.5
;The WDT overflow time may be measured by the LED light time
WDT FLAG _LED EQU P1.7

;WDT overflow reset flag LED indicator on P1.7
Last WDT Time LED Status EQU 00H

;bit variable used to save the last stauts of WDT overflow time LED indicator

;WDT reset time , the SYSclk is 18.432MHz

;Pre_scale Word EQU 00111100B ;open WDT, Pre-scale value is 32, WDT overflow time=0.68S
;Pre_scale Word EQU 00111101B ;open WDT, Pre-scale value is 64, WDT overflow time=1.36S
;Pre_scale Word EQU 00111110B ;open WDT, Pre-scale value is 128, WDT overflow time=2.72S
;Pre_scale Word EQU 00111111 B ;open WDT, Pre-scale value is 256, WDT overflow time=5.44S

ORG 0000H

AJMP MAIN

ORG 0100H
MAIN:

MOV A, WDT _CONTR ;detection if WDT reset

ANL A, #10000000B

INZ WDT_Reset
;WDT _CONTR.7=1, WDT reset, jump WDT reset subroutine
;WDT_CONTR.7=0, Power-On reset, cold start-up, the content of RAM is random

SETB Last WDT Time LED_ Status ;Power-On reset
CLR WDT TIME LED ;Power-On reset,open WDT overflow time LED
MOV WDT CONTR, #Pre scale Word ;open WDT

40 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

WAITI:
SIMP WAITI ;wait WDT overflow reset
;WDT CONTR.7=1, WDT reset, hot strart-up, the content of RAM is constant and just like before reset
WDT_Reset:
CLR WDT FLAG LED
;WDT reset,open WDT overflow reset flag LED indicator

JB Last WDT Time LED Status, Power Off WDT TIME LED
;when set Last WDT Time LED Status, close the corresponding LED indicator
;clear, open the corresponding LED indicator
;set WDT _TIME LED according to the last status of WDT overflow time LED indicator
CLR WDT TIME LED ;close the WDT overflow time LED indicator
CPL Last WDT Time LED Statu

;reverse the last status of WDT overflow time LED indicator

WAIT2:

SIMP WAIT2 ;wait WDT overflow reset
Power Off WDT TIME LED:

SETB WDT TIME LED ;close the WDT overflow time LED indicator

CPL Last WDT Time LED Status

;reverse the last status of WDT overflow time LED indicator

WAIT3:

SIMP WAIT3 ;wait WDT overflow reset

END

STC MCU Limited website: www.STCMCU.com 41

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

Chapter 3 Memory Organization

The STC15F204EA series MCU has separate address space for Program Memory and Data Memory. The logical
separation of program and data memory allows the data memory to be accessed by 8-bit addresses, which can be
quickly stored and manipulated by the CPU.

Program memory (ROM) can only be read, not written to. In the STC15F204EA series, all the program memory
are on-chip Flash memory, and without the capability of accessing external program memory because of no Ex-
ternal Access Enable (/EA) and Program Store Enable (/PSEN) signals designed.

Data memory occupies a separate address space from program memory. In the STC15F204EA series, there are
256 bytes of internal scratch-pad RAM(SRAM).

3.1 Program Memory

Program memory is the memory which stores the program codes for the CPU to execute. There is 1~6Kbytes
of flash memory embedded for program and data storage in STC15F204EA series. The design allows users to
configure it as like there are three individual partition banks inside. They are called AP(application program)
region, IAP (In-Application-Program) region and ISP (In-System-Program) boot region. AP region is the space
that user program is resided. IAP(In-Application-Program) region is the nonvolatile data storage space that may
be used to save important parameters by AP program. IAP region is used to realize EEPROM function. In other
words, the IAP capability of STC15F204EA series provides the user to read/write the user-defined on-chip data
flash region to save the needing in use of external EEPROM device. ISP boot region is the space that allows a
specific program we calls “ISP program” is resided. Inside the ISP region, the user can also enable read/write
access to a small memory space to store parameters for specific purposes. Generally, the purpose of ISP program
is to fulfill AP program upgrade without the need to remove the device from system. STC15F204EA series MCU
hardware catches the configuration information since power-up duration and performs out-of-space hardware-
protection depending on pre-determined criteria. The criteria is AP region can be accessed by ISP program
only, IAP region can be accessed by ISP program and AP program, and ISP region is prohibited access from AP
program and ISP program itself. But if the “ISP data flash is enabled”, ISP program can read/write this space.
When wrong settings on ISP-IAP SFRs are done, The “out-of-space” happens and STC15F204EA series follows
the criteria above, ignore the trigger command.

After reset, the CPU begins execution from the location 0000H of Program Memory, where should be the starting
of the user’s application code. To service the interrupts, the interrupt service locations (called interrupt vectors)
should be located in the program memory. Each interrupt is assigned a fixed location in the program memory. The
interrupt causes the CPU to jump to that location, where it commences execution of the service routine. External
Interrupt 0, for example, is assigned to location 0003H. If External Interrupt O is going to be used, its service
routine must begin at location 0003H. If the interrupt is not going to be used, its service location is available as
general purpose program memory.

The interrupt service locations are spaced at an interval of 8 bytes: 0003H for External Interrupt 0, 000BH for
Timer 0, 0013H for External Interrupt 1, 001BH for Timer 1, etc. If an interrupt service routine is short enough (as
is often the case in control applications), it can reside entirely within that 8-byte interval. Longer service routines
can use a jump instruction to skip over subsequent interrupt locations, if other interrupts are in use.

42 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922805190

Tel:86-755-82948412

Fax:86-755-82944243

17FFH Type Program Memory
STCI15F/L201A/EA | 0000H~03FFH (1K)
6K STC15F/L202A/EA | 0000H~07FFH (2K)
Program Flash STCI15F/L203A/EA | 0000H~OBFFH (3K)
Memory STC15F/L204A/EA | 0000H~OFFFH (4K)
(1~6K) STCISF/L205A/EA | 0000H~13FFH (5K)
IAP15F/L206A 0000H~17FFH (6K)

0000H

STC15F204EA series Program Memory

3.2 SRAM

Just the same as the conventional 8051 micro-controller, there are 256 bytes of SRAM data memory plus
128 bytes of SFR space available on the STC15F204EA series. The lower 128 bytes of data memory may be
accessed through both direct and indirect addressing. The upper 128 bytes of data memory and the 128 bytes
of SFR space share the same address space. The upper 128 bytes of data memory may only be accessed using
indirect addressing. The 128 bytes of SFR can only be accessed through direct addressing. The lowest 32 bytes
of data memory are grouped into 4 banks of 8 registers each. Program instructions call out these registers as R0
through R7. The RS0 and RS1 bits in PSW register select which register bank is in use. Instructions using register
addressing will only access the currently specified bank. This allows more efficient use of code space, since
register instructions are shorter than instructions that use direct addressing. The next 16 bytes (20H~2FH) above
the register banks form a block of bit-addressable memory space. The 80C51 instruction set includes a wide
selection of single-bit instructions, and the 128 bits in this area can be directly addressed by these instructions.
The bit addresses in this area are 00H through 7FH.

All of the bytes in the Lower 128 can be accessed by either direct or indirect addressing while the Upper 128
can only be accessed by indirect addressing. SFRs include the Port latches, timers, peripheral controls, etc.
These registers can only be accessed by direct addressing. Sixteen addresses in SFR space are both byte- and bit-
addressable. The bit-addressable SFRs are those whose address ends in OH or 8H.

FF 7FH
. Special Function
High 128 Bytes Registers (SFRs) 30H
Internal RAM SFH
80 bit Addressable
7F 20H
Low 128 Bytes Bank 3 1FH
Internal RAM 18H
17H
10H Bank 2
00 OFH
. Bank 1
On-chip Scratch-Pad RAM 08H 07H
00H Bank 0
Lower 128 Bytes of internal SRAM
STC MCU Limited website: www.STCMCU.com 43

Fax:86-755-82944243

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412
PSW register
LSB
SFR name | Address | bit B7 B6 BS B4 B3 B2 B1 BO
PSW DOH | name | CY AC FO RS1 RSO ov - P
CY : Carry flag.

AC : Auxilliary Carry Flag.(For BCD operations)

FO : Flag 0.(Available to the user for general purposes)
RS1: Register bank select control bit 1.

RSO0: Register bank select control bit 0.

OV : Overflow flag.
B1 : Reserved
P : Parity flag.

44

STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

Chapter 4. Configurable I/O Ports

4.1 I/0 Port Configurations

STC15F204EA series have 26 configurable 1/O ports: P0.0~P0.1, P1.0~P1.7, P2.0~P2.7, P3.0~P3.7. Port 0 is an
2-bit bi-directional I/O port with pull-up resistance. Portl is general-purposed I/O with weak pull-up resistance
inside. When 1s are written into Portl, the strong output driving CMOS only turn-on two period and then the
weak pull-up resistance keep the port high. Port2 is an 8-bit bi-directional I/O port with pull-up resistance. Port3
is general-purposed 1/O with weak pull-up resistance inside. When 1s are written into Port3, the strong output
driving CMOS only turn-on two period and then the weak pull-up resistance keep the port high. Port3 also serves
the functions of various special features.

All ports on STC15F204EA series may be independently configured to one of four modes : quasi-bidirectional
(standard 8051 port output), push-pull output, input-only or open-drain output .All ports default to quasi-
bidirectional after reset. Each one has a Schmitt-triggered input for improved input noise rejection. The drive
capability of each port is up to 20 mA. But recommend the whole chip's should be less than 90 mA.

4.1.1 Quasi-bidirectional I/O

Port pins in quasi-bidirectional output mode function similar to the standard 8051 port pins. A quasi-bidirectional
port can be used as an input and output without the need to reconfigure the port. This is possible because when
the port outputs a logic high, it is weakly driven, allowing an external device to pull the pin low. When the pin
outputs low, it is driven strongly and able to sink a large current. There are three pull-up transistors in the quasi-
bidirectional output that serve different purposes.

One of these pull-ups, called the “very weak” pull-up, is turned on whenever the port register for the pin contains
a logic “1”. This very weak pull-up sources a very small current that will pull the pin high if it is left floating.

A second pull-up, called the “weak” pull-up, is turned on when the port register for the pin contains a logic
“1” and the pin itself is also at a logic “1” level. This pull-up provides the primary source current for a quasi-
bidirectional pin that is outputting a 1. If this pin is pulled low by the external device, this weak pull-up turns off,
and only the very weak pull-up remains on. In order to pull the pin low under these conditions, the external device
has to sink enough current to over-power the weak pull-up and pull the port pin below its input threshold voltage.

The third pull-up is referred to as the “strong” pull-up. This pull-up is used to speed up low-to-high transitions on
a quasi-bidirectional port pin when the port register changes from a logic “0” to a logic “1”. When this occurs, the
strong pull-up turns on for two CPU clocks, quickly pulling the port pin high.

2 clock
delay

PORT)|
LATCH DATA °

INPUT
DATA

Quasi-bidirectional output
STC MCU Limited website: www.STCMCU.com 45

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

4.1.2 Push-pull Output

The push-pull output configuration has the same pull-down structure as both the open-drain and the quasi-
bidirectional output modes, but provides a continuous strong pull-up when the port register conatins a logic “1”.
The push-pull mode may be used when more source current is needed from a port output. In addition, input path
of the port pin in this configuration is also the same as quasi-bidirectional mode.

Vce

—d

PORT
LATCH DATA PORT

PIN
Ii
INPUT ¢
DATA

Push-pull output

4.1.3 Input-only Mode

The input-only configuration is a Schmitt-triggered input without any pull-up resistors on the pin.

INPUT ¢ PORT
DATA PIN

Input-only Mode

4.1.4 Open-drain Output

The open-drain output configuration turns off all pull-ups and only drives the pull-down transistor
of the port pin when the port register contains a logic “0”. To use this configuration in application, a
port pin must have an external pull-up, typically tied to VCC. The input path of the port pin in this
configuration is the same as quasi-bidirection mode.

PORT
PORT {>c | PIN

LATCH DATA
INPUT
DATA

Open-drain output

y

46 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

4.2 1/0 Port Registers

All port pins on STC15F204EA series may be independently configured by software to one of four types on a
bit-by-bit basis,as shown in next Table.Two mode registers for each port select the output mode for each port pin.

Table: Configuration of I/O port mode.

PxMl.n PxM0.n Port Mode
0 0 Quasi-bidirectional
0 1 Push-Pull output
1 0 Input Only (High-impedance)
1 1 Open-Drain Output

where x =0 ~ 3 (port number), and n = 0 ~7 (port pin).

PO register
SFR name | Address bit B7 B6 B5 B4 B3 B2 Bl BO
PO 8O0H name - - - - - - PO.1 P0.0

PO register could be bit-addressable. And P0.1~P0.0 coulde be set/cleared by CPU.

POM1 register

SFR name | Address | bit B7 B6 B5 B4 B3 B2 Bl BO
POM1 93H name - - - - - - POMI.1 | POM1.0
POMO register
SFR name |Address| bit | B7 | B6 | B5 | B4 | B3 | B2 Bl BO
POMO 94H |name| - - - - - - | POMO.1 | POMO.0

P1 register

SFR name | Address bit B7 B6 B5 B4 B3 B2 Bl BO
P1 90H name | P1.7 | P1.6 | P1.5 | P14 | P1.3 | P1.2 | P1.1 | PI1.0

P1 register could be bit-addressable and set/cleared by CPU. And P1.7~P1.0 coulde be set/cleared by CPU.

P1M1 register
SFR name | Address| bit B7 B6 B5 B4 B3 B2 B1 BO
PIM1 91H |[name |[P1M1.7|PIM1.6|PIMI1.5|P1M1.4|P1M1.3|PIM1.2(P1MI1.1|{P1M1.0

PIMO register
SFR name | Address | bit B7 B6 B5 B4 B3 B2 B1 BO
PIMO 92H ([name|P1MO0.7 |[P1MO0.6|P1MO0.5|P1MO0.4|P1MO0.3 |P1MO0.2 |P1MO0.1|PIMO0.0

P2 register

SFR name | Address bit B7 B6 B5 B4 B3 B2 Bl BO
P2 AOH name | P2.7 P2.6 P2.5 P2.4 P2.3 P2.2 P2.1 P2.0

P1 register could be bit-addressable and set/cleared by CPU. And P1.7~P1.0 coulde be set/cleared by CPU.

STC MCU Limited website: www.STCMCU.com 47

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

P2M1 register
SFR name | Address | bit B7 B6 B5 B4 B3 B2 Bl BO
P2M1 95H |name|P2M1.7|P2M1.6|P2M1.5|P2M1.4|P2M1.3 |P2M1.2|P2M1.1|P2M1.0

P2MO register
SFR name | Address | bit B7 B6 B5 B4 B3 B2 Bl BO
P2MO 96H |name [P2MO0.7 |P2M0.6|P2M0.5|P2M0.4|P2M0.3 |P2MO0.2 |P2MO0.1 | P2M0.0

P3 register
SFR name| Address bit B7 B6 B5 B4 B3 B2 Bl BO
P3 BOH name | P3.7 P3.6 P3.5 P34 P3.3 P3.2 P3.1 P3.0

P3 register could be bit-addressable and set/cleared by CPU. And P3.7~P3.0 coulde be set/cleared by CPU.

P3M1 register
SFR name | Address | bit B7 B6 B5 B4 B3 B2 B1 BO
P3MI B1H |name |P3M1.7|P3M1.6|P3M1.5(P3M1.4|P3M1.3(P3M1.2|P3M1.1|P3M1.0

P3MO register
SFR name | Address | Dbit B7 B6 BS B4 B3 B2 Bl BO
P3MO B2H | name |P3MO0.7 |P3MO0.6|P3MO0.5|P3M0.4|P3M0.3|P3MO0.2|P3MO0.1 |P3MO0.0

48 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

4.3 1/0 port application notes

Traditional 8051 access I/O (signal transition or read status) timing is 12 clocks, STC15F204EA series MCU is 4
clocks. When you need to read an external signal, if internal output a rising edge signal, for the traditional 8051,
this process is 12 clocks, you can read at once, but for STC15F204EA series MCU, this process is 4 clocks, when
internal instructions is complete but external signal is not ready, so you must delay 1~2 nop operation.

Some 1/0 port connected to a PNP transistor, but no pul-up resistor. The correct access method is I/O port pull-up
resistor and transistor base resistor should be consistent, or I/O port is set to a strongly push-pull output mode.

Using /0 port drive LED directly or matrix key scan, needs add a 470Q) to 1K resistor to limit current.

4.4 1/0 port application

4.4.1 Typical transistor control circuit

Vcee

R1
10K (3.3K~10K)

15K(3. 3K~15K)

common /O port &

If /O is configed as “weak” pull-up, you should add a external pull-up (3.3K~10K ohm). If no pull-up resistor
R1, proposal to add a 15K ohm series resistor at least or config 1/O as “push-pull” mode.

4.4.2 Typical diode control circuit
1K

/O —|z—/\/\/\/—DVcc

For weak pull-up / quasi-bidirectional I/O, use sink current drive LED, current limiting resistor as greater than 1K
ohm, minimum not less than 470 ohm.

1K

10 S—AM, m

For push-pull / strong pull-up I/O, use drive current drive LED.

STC MCU Limited website: www.STCMCU.com 49

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

4.4.3 3V/5V hybrid system

When STCI15F204EA series 5V MCU connect to 3V peripherals. To prevent the device can not afford to
5V voltage, the corresponding I/O is set to open drain mode, disconnect the internal pull-up resistor, the
corresponding I/O port add 10K ohm external pull-up resistor to the 3V device VCC, so high To 3V, low to 0V,
which can proper functioning

When STC15F204EA series 3V MCU connect to SV peripherals. To prevent the MCU can not afford to 5V
voltage, if the corresponding I/O port as input port, the port may be in an isolation diode in series, isolated high-
voltage part, the external signal is higher than MCU operating voltage, the diode cut-off, I/O I have been pulled
high by the internal pull-up resistor; when the external signal is low, the diode conduction, I/O port voltage is
limited to 0.7V, it’s low signal to MCU.

MCU I/O H external signal

4.4.4 How to make 1/0 port low after MCU reset

Traditional 8051 MCU power-on reset, the general I/O port are weak pull-high output, while many practical
applications require I/O port remain low level after power-on reset, otherwise the system malfunction would
be generated. For STC15F204EA series MCU, 1/O port can add a pull-down resistor (1K/2K/3K), so that when
power-on reset, although a weak internal pull-up to make MCU output high, but because of the limited capacity of
the internal pull-up, it can not pull-high the pad, so this I/O port is low level after power-on reset. If the I/O port
need to drive high, you can set the I/O model as the push-pull output mode, while the push-pull mode the drive
current can be up to 20mA, so it can drive this I/O high.

More than 470Q
1/0

1K/2K/3K

50 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922805190

Tel:86-755-82948412 Fax:86-755-82944243

4.4.5 1/O drive LED application circuit

[XS P25[28] 10
=]r27 P2.4 Vo
10
[Japcorio P23 1o
[E]pcipio P22 1o
10
[G]apcri2 P21 Vo
[apcsri3 P2.0/RSTOUT LOW[23] /o
[Japcapia P3.7/INT3 Ri[[R2f (R3] |R4f [RS| [Re| |R7] [RS] | 47008
[apcseis P3.6/INT2 J o] o o]] o an
[Japceris P3.5/T1/CLKOUTO[20]
[ojapcpey P3.4/T0/CLKOUT!I H H H H
[T rsT/P0.0/SYSCIKO P3.3/INTI . o o Lle
12 P3.2/INTO[17]
[z vee (7] comi] comz| comz comy
3] rou P3.1 Rl R2[) R3[| R4
=] Gna P3.0/NT4 AT AT 4TI AT
o VO VO 10
N . .
P26[1 28 [JP2s I/O dynamic scan driver 4 groups of
P72 27 [p24 digital tube Cathode circuit
ADCOPLO |3 26 [1p23
ADCI/PLI |4 w2 P22
ADC2/P12[]5 % 24 [Jr2.1
ADC3/PL3I[6 g 23 []JP2.0/RSTOUT LOW
ADC4/PLA[]7 o 2Nt
ADC5/P1.5 8 @ 21 P3.6/INT2
ADC6/P1.6 9 = 20 [__]P3.5/T1/CLKOUTO
ADCT7/P1.7 10 '\ 19 P3.4/TO/CLKOUTI VCC
SYSclkO/RST/P0.0 11 o 18 P3.3/INT1
Vee 12 17 P3.2/INTO
PO.1 13 16 P3.1
Gnd [14 15 [1P3.0/INT4
LED1 /1
1/0 LED2 A COM2|COM3| COM4|
1;8 Lo H H H
LED4 /1
1/0 ° . ° .
N\ al bf c¢| df e] f| g| dp]
Vo RS a N]
/0 R6 b ;
/O R7 < ;
o —=& - N
/O dynamic scan driver 4 groups of /o —=R2 e N\
digital tube anode circuit 10 —=10 L R
RIl N\
/0
1o —R12 d
R5~R12=1KQ N\

STC MCU Limited

website: www.STCMCU.com 51

www.STCMCU.com

Mobile:(86)13922805190

Tel:86-755-82948412

Fax:86-755-82944243

4.4.6 1/0 immediately drive LCD application circuit

VTC
[T]m ﬁRZ ﬁRS R4
100KQ 100KQ 100KQ 100KQ
N__COMI]
N com2
N com3
N\ COM4
RS [R6 [R7 [RS8
’JIOOKQ [JIOOKQ ulOOKQ 100KQ
L

d N
SEG2 SEG2
SEG3 SEG3
[] _/
[T | secs —=== seGi A
SEG5 _/ /o
Dj SEGS5 10 SEG2 /
SEG6 SEG6 1o SEG3
Dj SEG7_ /0 SEG4
N SEG7 1o SEGS5 _/
L] | seos —SESE vo — 3£
—/
COM1 COM1 /0 SEGS
10 ——220
| COM2 /]
COM2 10 COM1
Ccom3 |—COM3 1/0 ——COM2
COM4 Vo Lo
COM4 |—COM2 y coma A
0
LCD4X8
How to light on the LCD pixels:

When the pixels corresponding COM-side and SEG-side voltage difference is greater than 1/2VCC, this
pixel is lit, otherwise off

Contrl SEG-side (Segment) :
1/0O direct drive Segment lines, control Segment output high-level (VCC) or low-level (0V).
Contrl COM-side (Common) :
I/O port and two 100K dividing resistors jointly controlled Common line, when the 10 output "0", the
Common-line is low level (0V), when the IO push-pull output "1", the Common line is high level (VCC),
when IO as high-impedance input, the Common line is 1/2VCC.

VCC

R1
100KQ
N\, COMI
ComM2

ﬁ]u
100KQ

COM3

R4

ﬁRS
100KQ L]100KQ

4

COM4

RS
l1]100K9

R6
[1] 100KQ

R8

R7
Il]IOOKQ 100KQ

X

v N
SEGI SEGI1
SEG SEG2
SEGA SEG3
[] _/
[| seos —2-2 Jo—_SEGIA
Dj SEGS /] o SEG2_]
SEG6 SEG6 /O — SEG3 /]
i SEGT vo —SEG4
SEG7 o SEG5]
[]
L] | secs —SES8~ 1o —/gggj
__ SEG7 /]
coMi —COM1L/ 1o SEGs A
1/0
CcCOM2 Com2 10 COM1
COM3 | COM3 1o COM?2
COM4 110 ——COM3
com4f— OV A COM4
1/0
LCD4X8

1/0 control

Before MCU enter Power Down
mode, the I/O output high level,
then Common side will have no
leakage current

52

STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

4.4.7 Using A/D Conversion to scan key application circuit

N
P26[_]1 28[r2s
P27]2 27 [pr2.4
ADCOP1.O[]3 26 P23
ADCIPLI[4 72} 25,22
ADC2/P12[]5 % 24 [Jr2.1
ADC3P13[6 g 23 [_]P2.0/RSTOUT_LOW
ADC4/P14A[]7 A 22 [_]P3.7/INT3
ADC5/P1.5[3 @ 21 [_]Pp3.6/NT2
ADC6/P1.6[]9 =] 20 []P3.5/T1/CLKOUTO
ADC7/PL7[] 10) 19] P3.4/TO/CLKOUT1 = 0 005 051 1'1.5 1520 2025
SYSclkO/RST/P0.0 [11 *° 18 [_1P3.3/INT1 -
vee[]12 17] P3.2/INTO
Po.1I[]13 16 [—r3.1
G4 15 fJps.0iNTd This circuit can achieve a signle key
or combin key scan, resistance need to
configure the actual needs
This circuit use 10 keys spaced partial pressure, for each key, range
of allowed error is +/-0.25V, it can effectively avoid failure of key
detection because of resistance or temperature drift. If the requested
+5V

key detection more stable and reliable, can reduce the number of
buttons, to relax the voltage range of each key

STC MCU Limited website: www.STCMCU.com 53

www.STCMCU.com

Mobile:(86)13922805190

Tel:86-755-82948412

Fax:86-755-82944243

Chapter S Instruction System

5.1 Special Function Registers

0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F
0F8H
OFOH B
0000,0000
0E8H
OEOH| ACC
0000,0000
0D8H
ODOH| PSW
0000,00x0
0C8H
0COH WDT CONR|IAP DATA[IAP ADDRH|IAP_ADDRL |IAP CMD |IAP TRIG | IAP_ CONTR
0x00,0000 | 1111,1111 | 0000,0000 0000,0000 | xxxx,xx00 | XXXX,XXXX 0000,0000
0B8H 1P IRC _CLKO |ADC_CONTR|ADC_RES | ADC_RESL
x0x0,0000 0xxX,0XxXXX 0000,0000 | 0000,0000 | 0000,0000
0BOH P3 P3M1 P3MO
1111,1111 | 0000,0000 | 0000,0000
0A8H 1E
000x,0000
OAOH P2 Don't use
1111,1111
098H Og(}(ﬁ)s()l(s)o Don'tuse | Don't use
090H P1 PIM1 P1IMO POM1 POMO P2M1 P2MO CLK DIV
1111,1111 | 0000,0000 | 0000,0000 [0000,0000 0000,0000 | 0000,0000 | 0000,0000 | xxxx,x000
088H | TCON TMOD TLO TL1 THO THI1 AUXR | INT CLKO
0000,0000 | 0000,0000 |0000,0000| 0000,0000 0000,0000 | 0000,0000 | 00xx,xxxx | x000,xx00
080H PO SP DPL DPH PCON
1111,1111 | 0000,0111 | 0000,0000 [0000,0000 xx11,0000
0/8 1/9 2/A 3/B 4/C 5/D 6/E 7/F
T Non Bit Addressable
Bit Addressable

OFFH

O0F7H

OEFH

0E7H

ODFH
0D7H

0CFH
0C7H

0BFH

0B7H

0AFH

0A7H

09FH

097H

08FH

087H

54

STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

Value after
Symbol Description Address Bit Address and Symbol Power-on or
MSB LSB Reset
PO Port 0 80H | Po.7 | Po.6 | Po.s | Po4 | P03 | P02 | Po.l | P00 | 1111 1111B
SP Stack Pointer 81H 0000 0111B
DPL | Data Pointer Low | 82H 0000 0000B
DPTR DPH | Data Pointer High | 83H 0000 0000B
PCON Power Control | 87H | - | |LvDF | PoF | GF1 | GFo | PD | IDL | xx11 0000B
TCON Timer Control 88H TF1 TRI TFO | TRO IE1 IT1 1EO IT0 | 0000 0000B
TMOD Timer Mode 89H |GATE| C/T | MI | MO |GATE| ¢/T | M1 | Mo | 0000 0000B
TLO Timer Low 0 8AH 0000 0000B
TL1 Timer Low 1 8BH 0000 0000B
THO Timer High 0 8CH 0000 0000B
THI Timer High 1 8DH 0000 0000B
AUXR Auxiliary register | 8EH TOx12 | Tix12 | - | - | - | - | - | - | 00xx xxxxB
External interrupt - [exa [Exs [ex2 | - |- [riciko [rocLko
INT CLKO | Enable and Clock | 8FH x000 xx00B
Output register
Pl Port 1 90H | P17 | Pi6 | P15 | Pra | P3| P2 | i1 | Pro | 1111 1111B
PIM1 P1 configuration 1| 91H 0000 0000B
PIMO P1 configuration 0| 92H 0000 0000B
POM1 PO configuration 1| 93H 0000 0000B
POMO PO configuration 0| 94H 0000 0000B
P2M1 P2 configuration 1| 95H 0000 0000B
P2MO P2 configuration 0| 96H 0000 0000B
CLK DIV | Clock Divder 97h | - | | - | - |ciksz2|cLksi| cLkso | xxxx x000B
P1 Analog
P1ASF Function ODH [P17ASF|P16ASF[P15ASF[P14ASF[P13ASF[P12ASF[P11ASF[P10ASF| 0000 0000B
Configure register
P2 Port 2 AOH | P27 | P26 | P25 | P24 | P23 | P22 | P21 | P20 | 1111 1111B
1IE Interrupt Enable A8H EA |ELVD |EADC ETI [EXI | ETO | EX0 | 000x 0000B
P3 Port 3 BOH P37 | P36 | P35 | P34 | P33 | P32 | P31 | P30 | 1111 1111B
P3M1 P3 configuration 1| BIH 0000 0000B
P3MO P3 configuration 0| B2H 0000 0000B
P Interrulit)‘liriority Bsg |- [pvb[Papc| - [pTi|Px1 | PTO [PX0 | 00k 0000B
IRC cLKo | ntemal RE clock | -y X Reo [[- [- [Divirco [- [- [- | 0xxx0xaB
output
STC MCU Limited website: www.STCMCU.com 55

www.STCMCU.com

Mobile:(86)13922805190

Tel:86-755-82948412

Fax:86-755-82944243

Value after
Symbol Description Address Bit Address and Symbol Power-on or
MSB LSB Reset
ADC CONTR ADC Contr01 BCH ADCiPOWER|SPEED1|SPEEDO|ADC7FLAG|ADC_START|CHSZ|CHS] |CHSO 0000 0000B
Register
ADC_RES | ADC Result high | BDH 0000 0000B
ADC RESL | ADC Result low BEH 0000 0000B
WDT CONTR Watch-Dog-Timer ClH WDT_FLAGl - |EN_WDT| CLR_WDTl[DLE_WDTl PS2 | PS1 | PS0 | 0x00 0000B
Control Register
TAP DATA | [SP/IAP Flash Data | -)y 1111 1111B
- Register
ISP/IAP Flash
IAP_ADDRH Address High C3H 0000 0000B
1ap ADDRL| [SPAAPFlash 0000 0000B
Address Low
1ap cmp | ISPAAPFlash 4ol - [-] - [-] o 1 - [wsifwso] o ooom
- Command Register
IAP TRIG | [SPAAPFlash oy XXXX XXXXB
- Command Trigger
IAP_CONTR ISP/IAP_Control C7H IAPEN| SWBS [SWRST[CMD FAIL| - JwT2] wT1 | WT0 0000 x000B
Register
PSW Program Status Dol =S¥ [Ac | Fo [rRsi [Rso Jov] - [P 0000 00x0B
Word
ACC Accumulator EOH 0000 0000B
B B Register FOH 0000 0000B
Accumulator

ACC is the Accumulator register. The mnemonics for accumulator-specific instructions, however, refer to the
accumulator simply as A.

B-Register

The B register is used during multiply and divide operations. For other instructions it can be treated as another
scratch pad register.

Stack Pointer

The Stack Pointer register is 8 bits wide. It is incrementde before data is stored during PUSH and CALL
executions. While the stack may reside anywhee in on-chip RAM, the Stack Pointer is initialized to 07H after a
reset. This causes the stack to begin at location 08H.

Data Pointer

The Data Pointer (DPTR) consists of a high byte (DPH) and a low byte (DPL). Its intended function is to hold a
16-bit address. It may be manipulated as a 16-bit register or as two independent 8-bit registers.

STC MCU Limited. website: www.STCMCU.com

56

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

Program Status Word(PSW)

The program status word(PSW) contains several status bits that reflect the current state of the CPU. The PSW,
shown below, resides in the SFR space. It contains the Carry bit, the Auxiliary Carry(for BCD operation), the two
register bank select bits, the Overflow flag, a Parity bit and two user-definable status flags.

The Carry bit, other than serving the function of a Carry bit in arithmetic operations, also serves as the
“Accumulator” for a number of Boolean operations.

The bits RSO and RS1 are used to select one of the four register banks shown in the previous page. A number of
instructions refer to these RAM locations as RO through R7.

The Parity bit reflects the number of 1s in the Accumulator. P=1 if the Accumulator contains an odd number of 1s
and otherwise P=0.

PSW register
SFR name | Address bit B7 B6 B5 B4 B3 B2 B1 BO
PSW DOH name CY AC FO RS1 RSO ov - P
CY : Carry flag.

AC : Auxilliary Carry Flag.(For BCD operations)

FO : Flag 0.(Available to the user for general purposes)
RS1: Register bank select control bit 1.

RSO: Register bank select control bit 0.

OV : Overflow flag.

B1 : Reserved.

P : Parity flag.

STC MCU Limited website: www.STCMCU.com 57

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

5.2 Notes on Compatibility to Standard 80C51 MCU

SFR Name | SFR Address bit B7 B6 B5 B4 B3 B2 Bl BO
AUXR 8EH name TOx12 Ti1x12 - - - - - -
TOx12

0 : The clock source of Timer 0 is Fosc/12.
1 : The clock source of Timer 0 is Fosc.

Tix12
0 : The clock source of Timer 1 is Fosc/12.
1 : The clock source of Timer 1 is Fosc.

SFR Name | SFR Address bit B7 B6 BS B4 B3 B2 B1 BO
INT_CLKO 8FH name - EX4 EX3 EX2 - - T1CLKO|TOCLKO
EX4

0 := Disable INT4 interrupt function.
1 := Enable INT4 interrupt function.

EX3
0 := Disable INT3 interrupt function.
1 := Enable INT3 interrupt function.

EX2
0 := Disable INT2 interrupt function.
1 := Enable INT2 interrupt function.

TICLKO
0 := Disable Timerl overflow toggle P3.4.
1 := Enable Timerl overflow toggle P3.4.

TOCLKO
0 := Disable Timer0 overflow toggle P3.5.
1 := Enable Timer(overflow toggle P3.5.

58 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

5.3 Addressing Modes

Addressing modes are an integral part of each computer's instruction set. They allow specifyng the source or
destination of data in different ways, depending on the programming situation. There six modes available:

* Direct

* Indirect

* Register

» Register-Specific

* Immediate Constant

* Indexed

Direct Addressing(DIR)
In direct addressing the operand is specified by an 8-bit address field in the instruction. Only internal data RAM
and SFRs can be direct addressed.

Indirect Addressing(IND)
In indirect addressing the instruction specified a register which contains the address of the operand. Both internal
and external RAM can be indirectly addressed.

The address register for 8-bit addresses can be RO or R1 of the selected bank, or the Stack Pointer.
The address register for 16-bit addresses can only be the 16-bit data pointer register —- DPTR.

Register Instruction(REG)

The register banks, containing registers RO through R7, can be accessed by certain instructions which carry a 3-bit
register specification within the opcode of the instruction. Instructions that access the registers this way are code
efficient because this mode eliminates the need of an extra address byte. When such instruction is executed, one
of the eight registers in the selected bank is accessed.

Register-Specific Instruction
Some instructions are specific to a certain register. For example, some instructions always operate on the
accumulator or data pointer,etc. No address byte is needed for such instructions. The opcode itself does it.

Immediate Constant(IMM)
The value of a constant can follow the opcode in the program memory.

Index Addressing

Only program memory can be accessed with indexed addressing and it can only be read. This addressing mode is
intended for reading look-up tables in program memory. A 16-bit base register(either DPTR or PC) points to the
base of the table, and the accumulator is set up with the table entry number. Another type of indexed
addressing is used in the conditional jump instruction.

In conditional jump, the destination address is computed as the sum of the base pointer and the
accumulator.

STC MCU Limited website: www.STCMCU.com 59

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

5.4 Instruction Set Summary

The STC MCU instructions are fully compatible with the standard 8051's,which are divided among five functional
groups:

* Arithmetic

* Logical

+ Data transfer

* Boolean variable

* Program branching
The following tables provides a quick reference chart showing all the 8051 instructions. Once you are familiar
with the instruction set, this chart should prove a handy and quick source of reference.

. .. Execution clocks of | Execution clocks of
Mnemonic Description Byte conventional 8051 | STCI15F204EA series

ARITHMETIC OPERATIONS

ADD A, Rn Add register to Accumulator 1 12 2
ADD A, direct Add ditect byte to Accumulator 2 12 3
ADD A, @Ri Add indirect RAM to Accumulator 1 12 3
ADD A, #data Add immediate data to Accumulator 2 12 2
ADDC A,Rn Add register to Accumulator with Carry 1 12 2
ADDC A, direct Add direct byte to Accumulator with Carry 2 12 3
ADDC A, @Ri Add indirect RAM to Accumulator with Carry 1 12 3
ADDC A, #data Add immediate data to Acc with Carry 2 12 2
SUBB A, Rn Subtract Register from Acc wih borrow 1 12 2
SUBB A, direct Subtract direct byte from Acc with borrow 2 12 3
SUBB A, @Ri Subtract indirect RAM from ACC with borrow 1 12 3
SUBB A, #data Substract immediate data from ACC with borrow | 2 12 2
INC A Increment Accumulator 1 12 2
INC Rn Increment register 1 12 3
INC direct Increment direct byte 2 12 4
INC @Ri Increment direct RAM 1 12 4
DEC A Decrement Accumulator 1 12 2
DEC Rn Decrement Register 1 12 3
DEC direct Decrement direct byte 2 12 4
DEC @Ri Decrement indirect RAM 1 12 4
INC DPTR Increment Data Pointer 1 24 1
MUL AB Multiply A & B 1 48 4
DIV AB Divde Aby B 1 48 5
DA A Decimal Adjust Accumulator 1 12 4

60 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

. s Execution clocks of| Execution clocks of
Mnemonic Description Byte conventional 8051 | STC15F204EA series
LOGICAL OPERATIONS
ANL A, Rn AND Register to Accumulator 1 12 2
ANL A, direct AND direct btye to Accumulator 2 12 3
ANL A, @Ri AND indirect RAM to Accumulator 1 12 3
ANL A, #data AND immediate data to Accumulator 2 12 2
ANL direct, A AND Accumulator to direct byte 2 12 4
ANL direct,#data AND immediate data to direct byte 3 24 4
ORL A, Rn OR register to Accumulator 1 12 2
ORL A, direct OR direct byte to Accumulator 2 12 3
ORL A,@Ri OR indirect RAM to Accumulator 1 12 3
ORL A, #data OR immediate data to Accumulator 2 12 2
ORL direct, A OR Accumulator to direct byte 2 12 4
ORL direct,#data OR immediate data to direct byte 3 24 4
XRL A, Rn Exclusive-OR register to Accumulator 1 12 2
XRL A, direct Exclusive-OR direct byte to Accumulator| 2 12 3
XRL A, @Ri Exclusive-OR indirect RAM to 1 12 3
Accumulator
XRL A, #data Exclusive-OR immediate data to 2 12 2
Accumulator
XRL direct, A Exclusive-OR Accumulator to direct byte| 2 12 4
XRL direct,#data Exclusive-OR immediate data to direct 3 24 4
byte
CLR A Clear Accumulator 1 12 1
CPL A Complement Accumulator 1 12 2
RL A Rotate Accumulator Left 1 12 1
RLC A Rotate Accumulator Left through the 1 12 1
Carry
RR A Rotate Accumulator Right 1 12 1
RRC A Rotate Accumulator Right through the 1 12 1
Carry
SWAP A Swap nibbles within the Accumulator 1 12 1

STC MCU Limited website: www.STCMCU.com 61

www.STCMCU.com

Mobile:(86)13922805190

Tel:86-755-82948412

Fax:86-755-82944243

. L Execution clocks of | Execution clocks of
Mnemonic Description Byte conventional 8051 | STC15F204EA series

DATA TRANSFER

MOV A, Rn Move register to Accumulator 1 12 1
MOV A, direct Move direct byte to Accumulator 2 12 2
MOV A,@Ri Move indirect RAM to 1 12 2
MOV A, #data Move immediate data to Accumulator 2 12 2
MOV Rn, A Move Accumulator to register 1 12 2
MOV Rn, direct Move direct byte to register 2 24 4
MOV Rn, #data Move immediate data to register 2 12 2
MOV direct, A Move Accumulator to direct byte 2 12 3
MOV direct, Rn Move register to direct byte 2 24 3
MOV direct,direct Move direct byte to direct 3 24 4
MOV direct, @R Move indirect RAM to direct byte 2 24 4
MOV direct,#data Move immediate data to direct byte 3 24 3
MOV @Ri, A Move Accumulator to indirect RAM 1 12 3
MOV (@R, direct Move direct byte to indirect RAM 2 24 4
MOV (@R, #data Move immediate data to indirect RAM 2 12 3
MOV DPTR,#datal6 |Move immdiate data to indirect RAM 2 12 3
MOVC A,@A+DPTR |Move Code byte relative to DPTR to Acc 1 24 4
MOVC A, @A+PC Move Code byte relative to PC to Acc 1 24 4
MOVX A,@Ri Move External RAM(16-bit addr) to Acc 1 24 4
MOVX A,@DPTR Move External RAM(16-bit addr) to Acc 1 24 3
MOVX @Ri, A Move Acc to External RAM(8-bit addr) 1 24 3
MOVX @DPTR,A Move Acc to External RAM (16-bit addr) 1 24 3
PUSH direct Push direct byte onto stack 2 24 4
POP direct POP direct byte from stack 2 24 3
XCH A,Rn Exchange register with Accumulator 1 12 3
XCH A, direct Exchange direct byte with Accumulator 2 12 4
XCH A, @Ri Exchange indirect RAM with Accumulator| 1 12 4
XCHD A, @Ri Exchange low-order Digit indirect RAM| 1 12 4

with Acc

62

STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922805190

Tel:86-755-82948412

Fax:86-755-82944243

Execution clocks of

Execution clocks of

Mnemonic Description Byte conventional 8051 | STC15F204EA series
BOOLEAN VARIABLE MANIPULATION
CLR C Clear Carry 1 12 1
CLR bit Clear direct bit 2 12 4
SETB C Set Carry 1 12 1
SETB bit Set direct bit 2 12 4
CPL C Complement Carry 1 12 1
CPL bit Complement direct bit 2 12 4
ANL C, bit AND direct bit to Carry 2 24 3
ANL C, /bit AND complement of direct bit to Carry 2 24 3
ORL C, bit OR direct bit to Carry 2 24 3
ORL C, /bit OR complement of direct bit to Carry 2 24 3
MOV C, bit Move direct bit to Carry 2 12 3
MOV bit, C Move Carry to direct bit 2 24 4
JC rel Jump if Carry is set 2 24 3
INC rel Jump if Carry not set 2 24 3
JB bit, rel Jump if direct bit is set 3 24 4
INB bit,rel Jump if direct bit is not set 3 24 4
JBC bit, rel Jump if direct bit is set & clear bit 3 24 5
PROGRAM BRANCHING
ACALL addrll Absolute Subroutine Call 2 24 6
LCALL addrl6 Long Subroutine Call 3 24 6
RET Return from Subroutine 1 24 4
RETI Return from interrupt 1 24 4
AJMP addrll Absolute Jump 2 24 3
LIMP addrl6 Long Jump 3 24 4
SIMP rel Short Jump (relative addr) 2 24 3
JMP @A+DPTR Jump indirect relative to the DPTR 1 24 3
4 rel Jump if Accumulator is Zero 2 24 3
INZ rel Jump if Accumulator is not Zero 2 24 3
CINE A direct,rel Compare direct byte to Acc and jump if|] 3 24 5
not equal
CINE A #data,rel Compare immediate to Acc and Jump if[3 24 4
not equal
CINE Rn,#data,rel Compare immediate to register and Jump| 3 24 4
if not equal
CINE @Ri,#data,rel [Compare immediate to indirect and jump| 3 24 5
if not equal
DINZ Rn, rel Decrement register and jump if not Zero | 2 24 4
DINZ direct, rel Decrement direct byte and Jump if not| 3 24 5
Zero
NOP No Operation 1 12 1
STC MCU Limited website: www.STCMCU.com 63

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

Instruction execution speed boost summary:

24 times faster execution speed 1
12 times faster execution speed 12
9.6 times faster execution speed 1
8 times faster execution speed 20
6 times faster execution speed 39
4.8 times faster execution speed 4
4 times faster execution speed 20
3 times faster execution speed 14
24 times faster execution speed 1

Based on the analysis of frequency of use order statistics, STC 1T series MCU instruction execution speed is
faster than the traditional 8051 MCU 8 ~ 12 times in the same working environment.

Instruction execution clock count:
1 clock instruction 12

2 clock instruction 20

3 clock instruction 38

4 clock instruction 34

5 clock instruction 5

6 clock instruction 2

64 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

5.5 Instruction Definitions for Standard 8051 MCU

ACALL addr 11

Function:
Description:

Example:

Bytes:
Cycles:
Encoding:

Operation:

Absolute Call

ACALL unconditionally calls a subroutine located at the indicated address.The instruction
increments the PC twice to obtain the address of the following instruction, then pushes the
16-bit result onto the stack (low-order byte first) and increments the Stack Pointer twice.
The destination address is obtained by suceesively concatenating the five high-order bits of
the incremented PC opcode bits 7-5,and the second byte of the instruction. The subroutine
called must therefore start within the same 2K block of the program memory as the first
byte of the instruction following ACALL. No flags are affected.

Initially SP equals 07H. The label “SUBRTN” is at program memory location 0345H. After
executingthe instruction,

ACALL SUBRTN

at location 0123H, SP will contain 09H, internal RAM locations 08H and 09H will contain
25H and 01H, respectively, and the PC will contain 0345H.

2

2

[a10a9 a8 1] 0 0 1 0| [a7 a6 a5 a4 | a3 a2 al a0

ACALL

(PC)«— (PC)+2
(SP)«—(SP) + 1

((SP)) « (PCy)
(SP)«(SP) + 1
((SP)—(PCis5)
(PC,g.)< page address

ADD A,<src-byte>

Function:
Description:

Example:

Add

ADD adds the byte variable indicated to the Accumulator, leaving the result in the
Accumulator. The carry and auxiliary-carry flags are set, respectively, if there is a carry-
out from bit 7 or bit 3, and cleared otherwise. When adding unsigned integers, the carry flag
indicates an overflow occured.

OV is set if there is a carry-out of bit 6 but not out of bit 7, or a carry-out of bit 7 but not bit
6; otherwise OV is cleared. When adding signed integers, OV indicates a negative number
produced as the sum of two positive operands, or a positive sum from two negative operands.

Four source operand addressing modes are allowed: register,direct register-indirect, or
immediate.

The Accumulator holds 0C3H(11000011B) and register 0 holds 0AAH (10101010B). The
instruction,

ADD A,RO

will leave 6DH (01101101B) in the Accumulator with the AC flag cleared and both the carry
flag and OV set to 1.

STC MCU Limited

website: www.STCMCU.com 65

www.STCMCU.com

Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

ADD A,Rn
Bytes:
Cycles:
Encoding:

Operation:

ADD A,direct
Bytes:
Cycles:
Encoding:

Operation:

ADD A,@Ri
Bytes:
Cycles:
Encoding:

Operation:

ADD A #data
Bytes:

Cycles:
Encoding:

Operation:

1

1

[00 1 0] 1rrrx

ADD

(A)—(A) + (Rn)

2

1

[0010 Jo1 o 1] [directaddress
ADD

(A)«—(A) + (direct)

1

1

[0o0 1 0 Jo1 1

ADD

(A)y—(A) + ((Ri))

2

1

[0010 Jo1o0o0] [immediat data
ADD

(A)—(A) + #data

ADDC A,<src-byte>

Function:
Description:

Example:

Add with Carry

ADDC simultaneously adds the byte variable indicated, the Carry flag and the Accumulator,
leaving the result in the Accumulator. The carry and auxiliary-carry flags are set, respectively,
if there is a carry-out from bit 7 or bit 3, and cleared otherwise. When adding unsigned
integers, the carry flag indicates an overflow occured.

OV is set if there is a carry-out of bit 6 but not out of bit 7, or a carry-out of bit 7 but not

out of bit 6; otherwise OV is cleared. When adding signed integers, OV indicates a negative
number produced as the sum of two positive operands or a positive sum from two negative
operands.

Four source operand addressing modes are allowed: register, direct, register-indirect, or
immediate.

The Accumulator holds 0C3H(11000011B) and register 0 holds 0AAH (10101010B) with the
Carry. The instruction,

ADDC A,R0O

will leave 6EH (01101101B) in the Accumulator with the AC flag cleared and both the carry
flag and OV set to 1.

66

STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922805190 Tel:86-755-82948412

Fax:86-755-82944243

ADDC A,Rn
Bytes:
Cycles:
Encoding:

Operation:

ADDC A,direct
Bytes:
Cycles:
Encoding:

Operation:

ADDC A,@Ri
Bytes:

Cycles:
Encoding:

Operation:

ADDC A, #data
Bytes:

Cycles:
Encoding:

Operation:

AJMP addr 11

1
1

[00 1 1 J1rrr]

ADDC

(A)—=(A) +(C) + (Rn)

2

1

| 0011 |0101| |directaddress|
ADDC

(A)—(A) + (C) + (direct)

1

1

[oo0 1 1 Jo1 1]

ADDC

(A)=(A) +(O) + ((RD)

2

[0011 Jo1o0o0] [immediatedata
ADDC

(A)—(A) + (C) + #data

Function: Absolute Jump
Description: AJMP transfers program execution to the indicated address, which is formed at run-time by
concatenating the high-order five bits of the PC (after incrementing the PC twice), opcode
bits 7-5, and the second byte of the instruction. The destination must therefore be within the
same 2K block of program memory as the first byte of the instruction following AJMP.
Example: The label “JMPADR?” is at program memory location 0123H. The instruction,
AJMP JMPADR
is at location 0345H and will load the PC with 0123H.
Bytes: 2
Cycles: 2
Encoding: |[al029 a8 0] 0 0 0 1 | [a7 a6 a5 a4 | a3 a2 al a0
Operation: AJMP
(PC)— (PO)+2
(PC,y)«< page address
STC MCU Limited website: www.STCMCU.com 67

www.STCMCU.com

Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

ANL <dest-byte>, <src-byte>

Function:
Description:

Example:

ANL A,Rn
Bytes:
Cycles:
Encoding:

Operation:

ANL A.direct
Bytes:
Cycles:
Encoding:

Operation:

ANL A,@Ri
Bytes:
Cycles:
Encoding:

Operation:

Logical-AND for byte variables

ANL performs the bitwise logical-AND operation between the variables indicated and stores
the results in the destination variable. No flags are affected.

The two operands allow six addressing mode combinations. When the destination is the
Accumulator, the source can use register, direct, register-indirect, or immediate addressing;
when the destination is a direct address, the source can be the Accumulator or immediate
data.

Note: When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch not the input pins.

If the Accumulator holds 0C3H(11000011B) and register 0 holds 55H (01010101B) then the
instruction,

ANL A,RO
will leave 41H (01000001B) in the Accumulator.

When the destination is a directly addressed byte, this instruction will clear combinations of
bits in any RAM location or hardware register. The mask byte determining the pattern of bits
to be cleared would either be a constant contained in the instruction or a value computed in
the Accumulator at run-time. The instruction,

ANL P1,#01110011B
will clear bits 7, 3, and 2 of output port 1.

1
1
[o1T 01 J1irrr

ANL
(Ay—(A) /\ (Rn)

2
1

[0101 Jo1 o 1] [directaddress

ANL
(A)<—(A) N (direct)

1
1
[01 01

ANL
(Ay—(A) /\ ((Ri))

[0 1 1

68

STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

ANL A #data
Bytes:
Cycles:
Encoding:

Operation:

ANL direct,A
Bytes:
Cycles:
Encoding:

Operation:

ANL direct,#data

Bytes:
Cycles:

Encoding:

Operation:

2
1
[0101

ANL
(A)—(A) A #data

| 0100 | | immediate data

2
1

| 0101 |0010| |directaddress|

ANL
(direct)«—(direct) A (A)

3
2

| 0101 | 0011 | | direct address | | immediate data

ANL
(direct)«—(direct) /\ #data

ANL C, <src-bit>

Function: Logical-AND for bit variables
Description: If the Boolean value of the source bit is a logical 0 then clear the carry flag; otherwise
leave the carry flag in its current state. A slash (“/) preceding the operand in the assembly
language indicates that the logical complement of the addressed bit is used as the source
value, but the source bit itself is not affceted. No other flsgs are affected.
Only direct addressing is allowed for the source operand.
Example: Set the carry flag if, and only if, P1.0 =1, ACC. 7= 1, and OV =0:
MOV C,Pl1.0 ;LOAD CARRY WITH INPUT PIN STATE
ANL C,ACC.7 ;AND CARRY WITH ACCUM. BIT.7
ANL C,/OV ;AND WITH INVERSE OF OVERFLOW FLAG
ANL C,bit
Bytes: 2
Cycles:
Encoding: | 1000 [0 0 1 0] | bitaddress
Operation: ANL
(C) < (C) A (bit)
STC MCU Limited website: www.STCMCU.com 69

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

ANL C, /bit

Bytes:
Cycles:
Encoding:

Operation:

[1011 Joooo] [bitaddress
ADD L
(C)—(C) /A (bit)

CJNE <dest-byte>, <src-byte>, rel

Function:

Description:

Example:

Compare and Jump if Not Equal

CJINE compares the magnitudes of the first two operands, and branches if their values are not
equal. The branch destination is computed by adding the signed relative-displacement in the
last instruction byte to the PC, after incrementing the PC to the start of the next instruction.
The carry flag is set if the unsigned integer value of <dest-byte> is less than the unsigned
integer value of <src-byte>; otherwise, the carry is cleared. Neither operand is affected.

The first two operands allow four addressing mode combinations: the Accumulator may
be compared with any directly addressed byte or immediate data, and any indirect RAM
location or working register can be compared with an immediate constant.

The Accumulator contains 34H. Register 7 contains S6H. The first instruction in the sequence
CINE R7#60H, NOT-EQ

R A \ WA I\ ¥4 ; R7 = 60H.

NOT_EQ: JC REQ LOW ; IF R7 < 60H.

Y o BT :R7 > 60H.

sets the carry flag and branches to the instruction at label NOT-EQ. By testing the carry flag,
this instruction determines whether R7 is greater or less than 60H.

N .

If the data being presented to Port 1 is also 34H, then the instruction,

WAIT: CINE A,P1,WAIT

clears the carry flag and continues with the next instruction in sequence, since the
Accumulator does equal the data read from P1. (If some other value was being input on Pl,
the program will loop at this point until the P1 data changes to 34H.)

CJNE A.direct,rel

Bytes: 3
Cycles: 2
Encoding: | 1011 | 0101 | | direct address | | rel. address |
Operation: (PC) — (PC)+3
IF (A) <> (direct)
THEN
(PC) « (PC) + relative offset
IF (A) < (direct)
THEN
(€)1
ELSE
©) <0
70 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

CJNE A #data,rel

Bytes: 3
Cycles: 2
Encoding: [1 0 1 1 [0 10 1] [immediata data | [rel address

Operation: (PC) — (PC)+3
IF (A) <> (data)

THEN
(PC) « (PC) + relative offset
IF (A) < (data)
THEN
€)1
ELSE
(C)«0
CJNE Rn,##data,rel
Bytes: 3
Cycles: 2
Encoding: | 1011 | Il rrr | | immediata data | | rel. address |

Operation: (PC)«— (PC)+3
IF (Rn) <> (data)
THEN
(PC) « (PC) + relative offset
IF (Rn) < (data)

THEN
(C)«1
ELSE
(C)«0
CINE @Ri,#data,rel
Bytes: 3
Cycles: 2
Encoding: | 1 0 1 1 [0 1 1i]| [immediatedata | [rel address

Operation: (PC) «— (PC)+3
IF ((Ri)) <> (data)
THEN
(PC) «— (PC) + relative offset
IF ((Ri)) < (data)
THEN
(€)1
ELSE
(C)«—0

STC MCU Limited website: www.STCMCU.com 71

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243
CLR A
Function: Clear Accumulator
Description: The Aecunmlator is cleared (all bits set on zero). No flags are affected.
Example: The Accumulator contains SCH (01011100B). The instruction,
CLR A
will leave the Accumulator set to 00H (00000000B).
Bytes: 1
Cycles: 1
Encoding: | 1 110 [0100
Operation: CLR
(A)=0
CLR Dbit
Function: Clear bit
Description: The indicated bit is cleared (reset to zero). No other flags are affected. CLR can operate on

Example:

CLR C
Bytes:
Cycles:
Encoding:

Operation:

CLR bit
Bytes:
Cycles:
Encoding:

Operation:

the carry flag or any directly addressable bit.

Port 1 has previously been written with SDH (01011101B). The instruction,
CLR P12

will leave the port set to S9H (01011001B).

[1 1 000011

CLR
©)«0

2
1

[[(1100

CLR
(bit) «— 0

| 001 0] | bit address |

72

STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243
CPL A
Function: Complement Accumulator
Description: Each bit of the Accumulator is logically complemented (one’s complement). Bits which
previously contained a one are changed to a zero and vice-versa. No flags are affected.
Example: The Accumulator contains SCH(01011100B). The instruction,
CPL A
will leave the Accumulator set to 0A3H (101000011B).
Bytes: 1
Cycles: 1
Encoding: [1111 [o100
Operation: CPL
(A)—=(A)
CPL bit
Function: Complement bit
Description: The bit variable specified is complemented. A bit which had been a one is changed to zero
and vice-versa. No other flags are affected. CLR can operate on the carry or any directly
addressable bit.
Note:When this instruction is used to modify an output pin, the value used as the original
data will be read from the output data latch, not the input pin.
Example: Port 1 has previously been written with SDH (01011101B). The instruction,
CLR PI.1
CLR P12
will leave the port set to S9H (01011001B).
CPL C
Bytes: 1
Cycles: 1
Encoding: [10 1 1]Jo0o0 11
Operation: CPL o
(©) <= (©)
CPL bit
Bytes: 2
Cycles: 1
Encoding: | 10 11 [0 0 1 0] [_bitaddress
Operation: CPL
(bit) « (bit)
STC MCU Limited website: www.STCMCU.com 73

www.STCMCU.com

Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

DA A

Function:
Description:

Example:

Decimal-adjust Accumulator for Addition

DA A adjusts the eight-bit value in the Accumulator resulting from the earlier addition of
two variables (each in packed-BCD format), producing two four-bit digits.Any ADD or
ADDC instruction may have been used to perform the addition.

If Accumulator bits 3-0 are greater than nine (xxxx1010-xxxx1111), or if the AC flag is one,
six is added to the Accumulator producing the proper BCD digit in the low-order nibble.
This internal addition would set the carry flag if a carry-out of the low-order four-bit field
propagated through all high-order bits, but it would not clear the carry flag otherwise.

If the carry flag is now set or if the four high-order bits now exceed nine(1010xxxx-
111xxxx), these high-order bits are incremented by six, producing the proper BCD digit
in the high-order nibble. Again, this would set the carry flag if there was a carry-out of the
high-order bits, but wouldn’t clear the carry. The carry flag thus indicates if the sum of
the original two BCD variables is greater than 100, allowing multiple precision decimal
addition. OV is not affected.

All of this occurs during the one instruction cycle. Essentially, this instruction performs the
decimal conversion by adding 00H, 06H, 60H, or 66H to the Accumulator, depending on
initial Accumulator and PSW conditions.

Note: DA A cannot simply convert a hexadecimal number in the Accumulator to BCD
notation, nor does DA A apply to decimal subtraction.

The Accumulator holds the value 56H(01010110B) representing the packed BCD digits of
the decimal number 56. Register 3 contains the value 67H (01100111B) representing the
packed BCD digits of the decimal number 67.The carry flag is set. The instruction sequence.

ADDC A,R3
DA A

will first perform a standard twos-complement binary addition, resulting in the value 0BEH
(10111110) in the Accumulator. The carry and auxiliary carry flags will be cleared.

The Decimal Adjust instruction will then alter the Accumulator to the value 24H
(00100100B), indicating the packed BCD digits of the decimal number 24, the low-order
two digits of the decimal sum of 56,67, and the carry-in. The carry flag will be set by the
Decimal Adjust instruction, indicating that a decimal overflow occurred. The true sum 56,
67, and 1 is 124.

BCD variables can be incremented or decremented by adding 01H or 99H. If the Accumula-
tor initially holds 30H (representing the digits of 30 decimal), then the instruction sequence,

ADD A#99H
DA A

will leave the carry set and 29H in the Accumulator, since 30+99=129. The low-order byte
of the sum can be interpreted to mean 30 — 1 =29.

74

STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243
Bytes: 1
Cycles: 1
Encoding: [11 01 Jo10 0]
Operation: DA

-contents of Accumulator are BCD

IF - [[(As) > 9] V[(AC) =1]]
THEN(A3,) < (As) + 6
AND
IF [[(A)> 9] V(O =1]]
THEN (A7) < (A7) +6
DEC byte
Function: Decrement
Description: The variable indicated is decremented by 1. An original value of 00H will underflow to
OFFH.
No flags are affected. Four operand addressing modes are allowed: accumulator, register,
direct, or register-indirect.
Note: When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, not the input pins.
Example: Register 0 contains 7FH (01111111B). Internal RAM locations 7EH and 7FH contain 00H
and 40H, respectively. The instruction sequence,
DEC @RO
DEC RO
DEC @RO
will leave register 0 set to 7EH and internal RAM locations 7EH and 7FH set to OFFH and
3FH.
DEC A
Bytes: 1
Cycles: 1
Encoding: [00 0 1 [0 100
Operation: DEC
(A)—=(A) -1
DEC Rn
Bytes: 1
Cycles: 1
Encoding: | 0001 [1rrr
Operation: DEC
(Rn)—(Rn) - 1
STC MCU Limited website: www.STCMCU.com 75

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243
DEC direct
Bytes: 2
Cycles: 1
Encoding: | 00 01 [0 1 0 1| [direct address
Operation: DEC
(direct)«—(direct) —1
DEC @Ri
Bytes: 1
Cycles: 1
Encoding: [0001 [o11i
Operation: DEC
(Ri))—((Ri)) - 1
DIV AB
Function: Divide
Description: DIV AB divides the unsigned eight-bit integer in the Accumulator by the unsigned eight-bit
integer in register B. The Accumulator receives the integer part of the quotient; register B
receives the integer remainder. The carry and OV flags will be cleared.
Exception: if B had originally contained 00H, the values returned in the Accumulator and
B-register will be undefined and the overflow flag will be set. The carry flag is cleared in any
case.
Example: The Accumulator contains 251(OFBH or 11111011B) and B contains 18(12H or 00010010B).
The instruction,
DIV AB
will leave 13 in the Accumulator (ODH or 00001101B) and the value 17 (11H or 00010010B)
in B, since 251 = (13x18) + 17. Carry and OV will both be cleared.
Bytes: 1
Cycles: 4
Encoding: [10 0 00100
Operation: DIV

B -

76

STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

DJNZ <byte>, <rel-addr>

Function:
Description:

Example:

DJNZ Rn,rel

Decrement and Jump if Not Zero

DJNZ decrements the location indicated by 1, and branches to the address indicated by the
second operand if the resulting value is not zero. An original value of 00H will underflow to
OFFH. No flags are afected. The branch destination would be computed by adding the signed
relative-displacement value in the last instruction byte to the PC, after incrementing the PC
to the first byte of the following instruction.

The location decremented may be a register or directly addressed byte.

Note: When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, not the input pins.

Internal RAM locations 40H, 50H, and 60H contain the values 01H, 70H, and 15H,
respectively. The instruction sequence,

DINZ 40H, LABEL 1
DINZ 50H, LABEL 2
DINZ 60H, LABEL 3

will cause a jump to the instruction at label LABEL 2 with the values 00H, 6FH, and 15H in
the three RAM locations. The first jump was not taken because the result was zero.

This instruction provides a simple way of executing a program loop a given number of times,
or for adding a moderate time delay (from 2 to 512 machine cycles) with a single instruction
The instruction sequence,

MOV R2,#8
TOOOLE: CPL P1.7
DINZ R2, TOOGLE

will toggle P1.7 eight times, causing four output pulses to appear at bit 7 of output Port 1.
Each pulse will last three machine cycles; two for DJINZ and one to alter the pin.

Bytes:
Cycles:
Encoding: | 1 1 01 | I rrr | [reladdess |
Operation: DJNZ
(PC) «— (PC) +2
(Rn) < (Rn) -1
IF (Rn)>0or (Rn)<0
THEN
(PC) « (PC)+ rel
DJNZ direct, rel
Bytes: 3
Cycles: 2
Encoding: | 1 1 01 [0 10 1| [directaddress | | rel address
STC MCU Limited website: www.STCMCU.com 77

www.STCMCU.com

Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

Operation:

DINZ

(PC) « (PC) +2

(direct) « (direct) — 1

IF (direct) > 0 or (direct) <0

THEN
(PC) «— (PC) +rel
INC <byte>
Function: Increment
Description: INC increments the indicated variable by 1. An original value of OFFH will overflow to
00H.No flags are affected. Three addressing modes are allowed: register, direct, or register-
indirect.
Note: When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, not the input pins.
Example: Register 0 contains 7EH (011111110B). Internal RAM locations 7EH and 7FH contain OFFH
and 40H, respectively. The instruction sequence,
INC @RO
INC RO
INC @RO
will leave register 0 set to 7FH and internal RAM locations 7EH and 7FH holding
(respectively) 00H and 41H.
INC A
Bytes: 1
Cycles: 1
Encoding: [00 0 00100
Operation: INC
(A) « (A)+1
INC Rn
Bytes: 1
Cycles: 1
Encoding: [00 0 0] I rrr
Operation: INC
(Rn) < (Rn)+1
INC direct
Bytes: 2
Cycles: 1
Encoding: | 0000 [0 10 1| | direct address
Operation: INC

(direct)«—(direct) + 1

78

STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

INC @Ri
Bytes: 1
Cycles: 1
Encoding: [0000 Jo 1 1i
Operation: INC
(Ri))—(RD) +1
INC DPTR
Function: Increment Data Pointer
Description: Increment the 16-bit data pointer by 1. A 16-bit increment (modulo 2'°) is performed; an
overflow of the low-order byte of the data pointer (DPL) from OFFH to 00H will increment
the high-order-byte (DPH). No flags are affected.
This is the only 16-bit register which can be incremented.
Example: Register DPH and DPL contains 12H and OFEH,respectively. The instruction sequence,
INC DPTR
INC DPTR
INC DPTR
will change DPH and DPL to 13H and O1H.
Bytes:
Cycles: 2
Encoding: [1 0 1 0Joo0 1 1]
Operation: INC

JB bit, rel

(DPTR) « (DPTR)+1

Function: Jump if Bit set
Description: If the indicated bit is a one, jump to the address indicated; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative-displacement
in the third instruction byte to the PC, after incrementing the PC to the first byte of the next
instruction. The bit tested is not modified. No flags are affected.
Example: The data present at input port 1 is 11001010B. The Accumulator holds 56 (01010110B). The
instruction sequence,
JB Pl.2,LABELI
JB ACC.2,LABEL2
will cause program execution to branch to the instruction at label LABEL2.
Bytes: 3
Cycles: 2
Encoding: [00 10 [000 0] | bitaddess | [rel address
Operation: JB
(PC) «— (PC)+3
IF (bit)=1
THEN
(PC) « (PC) +rel
STC MCU Limited website: www.STCMCU.com

79

www.STCMCU.com

Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

JBC bit, rel

Function: Jump if Bit is set and Clear bit
Description: If the indicated bit is one,branch to the address indicated;otherwise proceed with the next
instruction. The bit wili not be cleared if it is already a zero. The branch destination is
computed by adding the signed relative-displacement in the third instruction byte to the PC,
after incrementing the PC to the first byte of the next instruction. No flags are affected.
Note: When this instruction is used to test an output pin, the value used as the original data
will be read from the output data latch, not the input pin.
Example: The Accumulator holds 56H (01010110B). The instruction sequence,
JBC ACC.3,LABELI
JBC ACC.2,LABEL2
will cause program execution to continue at the instruction identified by the label LABEL2,
with the Accumulator modified to 52H (01010010B).
Bytes: 3
Cycles: 2
Encoding: | 0001 | 0000 | | bit address | | rel. address
Operation: JBC
(PC) « (PO)+ 3
IF (bit)=1
THEN
(bit) <0
(PC) « (PC) +rel
JC rel
Function: Jump if Carry is set
Description: If the carry flag is set, branch to the address indicated; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative-displacement in
the second instruction byte to the PC, after incrementing the PC twice.No flags are affected.
Example: The carry flag is cleared. The instruction sequence,
IC LABELI
CPL C
IC LABEL2s
will set the carry and cause program execution to continue at the instruction identified by the
label LABEL2.
Bytes: 2
Cycles: 2
Encoding: | 0100 | 0000 | | rel. address
Operation: JC
(PC) « (PC)+2
IF (O)=1
THEN
(PC) < (PC) +rel

80

STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

JMP

@A+DPTR

Function:
Description:

Example:

Bytes:
Cycles:
Encoding:

Operation:

JNB bit, rel

Jump indirect

Add the eight-bit unsigned contents of the Accumulator with the sixteen-bit data pointer,
and load the resulting sum to the program counter. This will be the address for subsequent
instruction fetches. Sixteen-bit addition is performed (modulo 2'¢): a carry-out from the low-
order eight bits propagates through the higher-order bits. Neither the Accumulator nor the
Data Pointer is altered. No flags are affected.

An even number from 0 to 6 is in the Accumulator. The following sequence of instructions
will branch to one of four AJMP instructions in a jump table starting at]JMP_TBL:

MOV DPTR, #IMP_TBL
IMP @A+DPTR

AIMP LABELO

AIMP LABELI

AIMP LABEL2

AIMP LABEL3

If the Accumulator equals 04H when starting this sequence, execution will jump to label
LABEL2. Remember that AJMP is a two-byte instruction, so the jump instructions start at
every other address.

1
2
[01 11

IMP
(PC) < (A) + (DPTR)

JMP-TBL:

[00 1 1]

Function: Jump if Bit is not set
Description: If the indicated bit is a zero, branch to the indicated address; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative-displacement
in the third instruction byte to the PC, after incrementing the PC to the first byte of the next
instruction. The bit tested is not modified. No flags are affected.
Example: The data present at input port 1 is 11001010B. The Accumulator holds 56H (01010110B).
The instruction sequence,
INB P1.3, LABEL1
INB ACC.3, LABEL2
will cause program execution to continue at the instruction at label LABEL2
Bytes: 3
Cycles: 2
Encoding: [00 1 1 [000 0] [bitaddess | [rel address
Operation: JNB
(PC) « (PC)+ 3
IF (bit)=0
THEN (PC) « (PC) + rel
STC MCU Limited website: www.STCMCU.com 81

www.STCMCU.com

Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

JNC rel
Function: Jump if Carry not set
Description: If the carry flag is a zero, branch to the address indicated; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative-displacement
in the second instruction byte to the PC, after incrementing the PC twice to point to the next
instruction. The carry flag is not modified
Example: The carry flag is set. The instruction sequence,
JNC LABELI
CPL C
JNC LABEL2
will clear the carry and cause program execution to continue at the instruction identified by
the label LABEL2.
Bytes: 2
Cycles: 2
Encoding: | 0 1 01 [00 00| [reladdress
Operation: JNC
(PC) — (PC)+2
IF (C)=0
THEN (PC) « (PC) + rel
JNZ rel
Function: Jump if Accumulator Not Zero
Description: If any bit of the Accumulator is a one, branch to the indicated address; otherwise proceed
with the next instruction. The branch destination is computed by adding the signed relative-
displacement in the second instruction byte to the PC, after incrementing the PC twice. The
Accumulator is not modified. No flags are affected.
Example: The Accumulator originally holds 00H. The instruction sequence,
INZ LABELI1
INC A
INZ LAEEL2
will set the Accumulator to 01H and continue at label LABEL2.
Bytes: 2
Cycles: 2
Encoding: | 0111 | 0000] | rel. address
Operation: JNZ
(PC) — (PC)+2
IF (A)#0

THEN (PC) « (PC) + rel

82

STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

JZ rel
Function: Jump if Accumulator Zero
Description: If all bits of the Accumulator are zero, branch to the address indicated; otherwise proceed
with the next instruction. The branch destination is computed by adding the signed relative-
displacement in the second instruction byte to the PC, after incrementing the PC twice. The
Accumulator is not modified. No flags are affected.
Example: The Accumulator originally contains 01H. The instruction sequence,
JZ LABELI
DEC A
JZ LAEEL2
will change the Accumulator to 00H and cause program execution to continue at the
instruction identified by the label LABEL2.
Bytes: 2
Cycles: 2
Encoding: | 01 10 [000 0] [reladdress
Operation: JZ
(PC) « (PC)+2
IF (A)=0

THEN (PC) « (PC) +rel

LCALL addrl6

Function: Long call
Description: LCALL calls a subroutine loated at the indicated address. The instruction adds three to the

program counter to generate the address of the next instruction and then pushes the 16-bit
result onto the stack (low byte first), incrementing the Stack Pointer by two. The high-order
and low-order bytes of the PC are then loaded, respectively, with the second and third bytes
of the LCALL instruction. Program execution continues with the instruction at this address.
The subroutine may therefore begin anywhere in the full 64K-byte program memory address
space. No flags are affected.

Example: Initially the Stack Pointer equals 07H. The label “SUBRTN” is assigned to program memory
location 1234H. After executing the instruction,
LCALL SUBRTN
at location 0123H, the Stack Pointer will contain 09H, internal RAM locations 08H and 09H
will contain 26H and 01H, and the PC will contain 1234H.

Bytes: 3
Cycles: 2
Encoding: | 000 1 | 0010 | | addr15-addr8 | | addr7-addr0
Operation: LCALL
(PC) « (PC) +3
(SP) — (SP)+1
((SP)) < (PC,)
(SP) — (SP)+1
((SP)) « (PCys5)
(PC) « addr;,
STC MCU Limited website: www.STCMCU.com 83

www.STCMCU.com

Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

LJMP addrlé

Function:

Description:

Example:

Bytes:
Cycles:
Encoding:

Operation:

Long Jump

LJMP causes an unconditional branch to the indicated address, by loading the high-order
and low-order bytes of the PC (respectively) with the second and third instruction bytes. The
destination may therefore be anywhere in the full 64K program memory address space. No
flags are affected.

The label “JMPADR” is assigned to the instruction at program memory location 1234H. The
instruction,

LIMP JMPADR

at location 0123H will load the program counter with 1234H.
3
2
| 0000

LIMP
(PC) « addr;

0010 | | addr15-addr8 | | addr7-addr0

MOV <dest-byte>, <src-byte>

Function:

Description:

Example:

MOV A,Rn

Bytes:
Cycles:
Encoding:

Operation:

Move byte variable

The byte variable indicated by the second operand is copied into the location specified by the
first operand. The source byte is not affected. No other register or flag is affected.

This is by far the most flexible operation. Fifteen combinations of source and destination
addressing modes are allowed.

Internal RAM location 30H holds 40H. The value of RAM location 40H is 10H. The data
present at input port 1 is 11001010B (0OCAH).

MOV RO, #30H ;R0<=30H

MOV A, @RO ;A<=40H

MOV RI,A :R1 <=40H

MOV B,@Rl :B<=10H

MOV ~ @RLPl ;RAM (40H) <= 0CAH
MOV P2, Pl :P2 #0CAH

leaves the value 30H in register 0,40H in both the Accumulator and register 1,10H in register
B, and 0CAH(11001010B) both in RAM location 40H and output on port 2.

1
1

[11 1 0] 1rrrx

MOV
(A) < (Rn)

84

STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922805190

Tel:86-755-82948412 Fax:86-755-82944243

*MOV A.direct
Bytes: 2
Cycles: 1

Encoding: [1 110 [010

1] | direct address |

MOV

(A)« (direct)

*MOV A, ACC is not a valid instruction
MOV A,@Ri

Operation:

Bytes: 1
Cycles: 1
Encoding: | 11 1 0 [0 1 1
Operation: MOV
(A) < ((Ri))
MOV A#data
Bytes: 2
Cycles: 1
Encoding: | 01 11 [0 10 0] [immediatedata
Operation: MOV
(A)« #data
MOV Rn, A
Bytes: 1
Cycles: 1
Encoding: [1 111 [1rrr
Operation: MOV
(Rn)«—(A)
MOV Rn,direct
Bytes: 2
Cycles: 2
Encoding: | 1 010 | 1 rrr | | directaddr
Operation: MOV
(Rn)«—(direct)
MOV Rn,#data
Bytes: 2
Cycles: 1
Encoding: | 01 11 | lrrr | |immediatedata
Operation: MOV

(Rn) « #data

STC MCU Limited

website: www.STCMCU.com 85

www.STCMCU.com

Mobile:(86)13922805190

Tel:86-755-82948412

Fax:86-755-82944243

MOV direct, A

Bytes: 2
Cycles: 1
Encoding: | 1 1 1 1 [0 10 1| [directaddress |
Operation: MOV
(direct) « (A)
MOV direct, Rn
Bytes: 2
Cycles: 2
Encoding: | 1000 [1 rrr | [directaddress |
Operation: MOV
(direct) < (Rn)
MOV direct, direct
Bytes: 3
Cycles: 2
Encoding: | 1000 Jo 10 1] [diradde (src) |
Operation: MOV
(direct)«— (direct)
MOV direct, @Ri
Bytes:
Cycles: 2
Encoding: | 1000 [o 1 1i]| [directadd |
Operation: MOV
(direct)«—((R1))
MOV direct,#data
Bytes: 3
Cycles: 2
Encoding: [0 1 1 1 [0 1 0 1| | direct address |
Operation: MOV
(direct) « #data
MOV @Ri, A
Bytes: 1
Cycles: 1
Encoding: [1 111 Jo1 1
Operation: MOV
((Ri)) < (A)

86

STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

MOV @Ri, direct

Bytes:
Cycles:
Encoding:

Operation:

2
2

[[1010

MOV
((Ri)) « (direct)

[01 1] [directaddr

MOV @Ri, #data

Bytes:
Cycles:
Encoding:

Operation:

2
1

| 0111 | immediate data

MOV
((Ri)) « #data

[0 1 1]

MOV <dest-bit>, <src-bit>

Function: Move bit data
Description: The Boolean variable indicated by the second operand is copied into the location specified by
the first operand. One of the operands must be the carry flag; the other may be any directly
addressable bit. No other register or flag is affected.
Example: The carry flag is originally set. The data present at input Port 3 is 11000101B. The data
previously written to output Port 1 is 35H (00110101B).
MOV P13,C
MOV C,P33
MOV P1.2,C
will leave the carry cleared and change Port 1 to 39H (00111001B).
MOV C,bit
Bytes: 2
Cycles: 1
Encoding: [1 0 1 0 [0 0 1 1] [bit address |
Operation: MOV
(C) « (bit)
MOV bit,C
Bytes:
Cycles: 2
Encoding: | 1 0 0 1 0 0 1 0] | _bitaddress
Operation: MOV
(bit)— (C)
STC MCU Limited website: www.STCMCU.com 87

www.STCMCU.com

Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

MOV DPTR, #data 16

Function:

Description:

Example:

Bytes:
Cycles:
Encoding:

Operation:

Load Data Pointer with a 16-bit constant

The Data Pointer is loaded with the 16-bit constant indicated. The 16-bit constant is loaded
into the second and third bytes of the instruction. The second byte (DPH) is the high-order
byte, while the third byte (DPL) holds the low-order byte. No flags are affected.

This is the only instruction which moves 16 bits of data at once.

The instruction,
MOV DPTR, #1234H
will load the value 1234H into the Data Pointer: DPH will hold 12H and DPL will hold 34H.

3
2
[1 00

100 0 0] [immediate data 15-8

MOV
(DPTR) « #data,s,,
DPH DPL « #data, s ¢ #data,

MOVC A, @A+ <base-reg>

Function:
Description:

Example:

Move Code byte

The MOVC instructions load the Accumulator with a code byte, or constant from program
memory. The address of the byte fetched is the sum of the original unsigned eight-bit.
Accumulator contents and the contents of a sixteen-bit base register, which may be either
the Data Pointer or the PC. In the latter case, the PC is incremented to the address of the
following instruction before being added with the Accumulator; otherwise the base register
is not altered. Sixteen-bit addition is performed so a carry-out from the low-order eight bits
may propagate through higher-order bits. No flags are affected.

A value between 0 and 3 is in the Accumulator. The following instructions will translate the
value in the Accumulator to one of four values defimed by the DB (define byte) directive.

REL-PC: INC A
MOVC A, @A+PC
RET
DB 66H
DB 77H
DB 88H
DB 99H

If the subroutine is called with the Accumulator equal to 01H, it will return with 77H in the
Accumulator. The INC A before the MOVC instruction is needed to “get around” the RET
instruction above the table. If several bytes of code separated the MOVC from the table, the
corresponding number would be added to the Accumulator instead.

MOVC A,@A+DPTR

Bytes:
Cycles:
Encoding:

Operation:

1
2

[100 1 Joo1 1]

MOVC
(A) < ((A)+(DPTR))

88

STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

MOVC A,@A+PC

Bytes:
Cycles:

Encoding:

Operation:

1
2

[1000 Joou11
MOVC

(PC) « (PC)+1

(A) = (A)HPC))

MOVX <dest-byte> , <src-byte>

Function:
Description:

Example:

MOVX A,@Ri
Bytes:

Cycles:
Encoding:

Operation:

Move External

The MOVX instructions transfer data between the Accumulator and a byte of external data
memory, hence the “X” appended to MOV. There are two types of instructions, differing in
whether they provide an eight-bit or sixteen-bit indirect address to the external data RAM.

In the first type, the contents of RO or R1 in the current register bank provide an eight-bit
address multiplexed with data on P0. Eight bits are sufficient for external I/O expansion
decoding or for a relatively small RAM array. For somewhat larger arrays, any output port
pins can be used to output higher-order address bits. These pins would be controlled by an
output instruction preceding the MOVX.

In the second type of MOV X instruction, the Data Pointer generates a sixteen-bit address.

P2 outputs the high-order eight address bits (the contents of DPH) while PO multiplexes the
low-order eight bits (DPL) with data. The P2 Special Function Register retains its previous
contents while the P2 output buffers are emitting the contents of DPH. This form is faster and
more efficient when accessing very large data arrays (up to 64K bytes), since no additional
instructions are needed to set up the output ports.

It is possible in some situations to mix the two MOVX types. A large RAM array with its
high-order address lines driven by P2 can be addressed via the Data Pointer, or with code to
output high-order address bits to P2 followed by a MOV X instruction using RO or R1.

An external 256 byte RAM using multiplexed address/data lines (e.g., an Intel 8155 RAM/
I/O/Timer) is connected to the 8051 Port 0. Port 3 provides control lines for the external
RAM. Ports 1 and 2 are used for normal I/O. Registers 0 and 1 contain 12H and 34H.
Location 34H of the external RAM holds the value 56H. The instruction sequence,

MOVX A, @R1
MOVX @RO, A

copies the value 56H into both the Accumulator and external RAM location 12H.

1
2

[11 1 0Joo0 13

MOVX
(A) — (RD)

STC MCU Limited

website: www.STCMCU.com 89

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

MOVX A,@DPTR

Bytes: 1
Cycles: 2
Encoding: [1 110 [0000
Operation: MOVX
(A) < ((DPTR))
MOVX @Ri, A
Bytes: 1
Cycles: 2
Encoding: [11 11 [o0o01i
Operation: MOVX
(Ri))(A)
MOVX @DPTR, A
Bytes: 1
Cycles: 2
Encoding: [1 111 0000
Operation: MOVX
(DPTR)«—(A)
MUL AB
Function: Multiply
Description: MUL AB multiplies the unsigned eight-bit integers in the Accumulator and register B. The
low-order byte of the sixteen-bit product is left in the Accumulator, and the high-order byte
in B. If the product is greater than 255 (OFFH) the overflow flag is set; otherwise it is cleared.
The carry flag is always cleared
Example: Originally the Accumulator holds the value 80 (50H). Register B holds the value 160
(0AOH). The instruction,
MUL AB
will give the product 12,800 (3200H), so B is changed to 32H (00110010B) and the
Accumulator is cleared. The overflow flag is set, carry is cleared.
Bytes: 1
Cycles: 4
Encoding: [1 0 1 0Jo 1 0 0
Operation: MUL
(A)ro—= (A)X(B)
(B)IS-S

90

STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243
NOP
Function: No Operation
Description: Execution continues at the following instruction. Other than the PC, no registers or flags are
affected.

Example: It is desired to produce a low-going output pulse on bit 7 of Port 2 lasting exactly 5 cycles. A
simple SETB/CLR sequence would generate a one-cycle pulse, so four additional cycles
must be inserted. This may be done (assuming no interrupts are enabled) with the instruction
sequence.

CLR P2.7
NOP
NOP
NOP
NOP
SETB P2.7
Bytes: 1
Cycles: 1
Encoding: [0 0 0 0 J0o 0 0 0
Operation: NOP

(PC) « (PC)+1

ORL <dest-byte>, <src-byte>

Function: Logical-OR for byte variables
Description: ORL performs the bitwise logical-OR operation between the indicated variables, storing the
results in the destination byte. No flags are affected.
The two operands allow six addressing mode combinations. When the destination is the
Accumulator, the source can use register, direct, register-indirect, or immediate addressing;
when the destination is a direct address, the source can be the Accumulator or immediate
data.
Note: When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, not the input pins.
Example: If the Accumulator holds 0C3H (11000011B) and RO holds 55H (01010101B) then the
instruction,
ORL A,RO
will leave the Accumulator holding the value 0D7H (11010111B).
When the destination is a directly addressed byte, the instruction can set combinations of bits
in any RAM location or hardware register. The pattern of bits to be set is determined by a
mask byte, which may be either a constant data value in the instruction or a variable
computed in the Accumulator at run-time.The instruction,
ORL P1,#00110010B
will set bits 5,4, and 1of output Port 1.
STC MCU Limited website: www.STCMCU.com 91

www.STCMCU.com

Mobile:(86)13922805190 Tel:86-755-82948412

Fax:86-755-82944243

ORL A,Rn
Bytes:
Cycles:
Encoding:

Operation:

ORL A,direct
Bytes:
Cycles:
Encoding:

Operation:

ORL A,@Ri
Bytes:
Cycles:
Encoding:

Operation:

ORL A, #data
Bytes:
Cycles:
Encoding:

Operation:

ORL direct, A
Bytes:

Cycles:
Encoding:

Operation:

1
1

|0100|1rrr

ORL
(A) < (A)V(Rn)

2
1

| 01 00 |0 10 1] |directaddress

ORL
(A)— (A)V (direct)

1
1

[0100Jo 1 13

ORL

(A)—=(A)V((Ri)

2

1

[0 1 00Jo 1 0 0] [immeditedata |
ORL

(A)— (A)V #data

2
1
| 01 00 |0 01 0 |directaddress

ORL
(direct)«— (direct) \VV (A)

ORL direct, #data

Bytes:
Cycles:
Encoding:

Operation:

3
2

| 0100 |0 0 1 1] | direct address | | immediate data |

ORL
(direct) « (direct) \ #data

92

STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

ORL C, <src-bit>
Function: Logical-OR for bit variables
Description: Set the carry flag if the Boolean value is a logical 1; leave the carry in its current state
otherwise. A slash (“/) preceding the operand in the assembly language indicates that the
logical complement of the addressed bit is used as the source value, but the source bit itself is
not affected. No other flags are affected.
Example: Set the carry flag if and only if P1.0=1,ACC. 7= 1, or OV =0:
MOV C,P1.0 ;LOAD CARRY WITH INPUT PIN P10
ORL C,ACC.7 ;OR CARRY WITH THE ACC.BIT 7
ORL C,/OV ;OR CARRY WITH THE INVERSE OF OV
ORL C, bit
Bytes: 2
Cycles: 2
Encoding: | 0 1 1 1 [o 0 1 0] [_bit address
Operation: ORL
(C) «— (C)V (bit)
ORL C, /bit
Bytes: 2
Cycles: 2
Encoding: [1 0 1 0 [0 0 0 0] [bitaddress |
Operation: ORL
(C) « (C)\V(bit)
POP direct
Function: Pop from stack
Description: The contents of the internal RAM location addressed by the Stack Pointer is read, and the
Stack Pointer is decremented by one. The value read is then transferred to the directly
addressed byte indicated. No flags are affected.
Example: The Stack Pointer originally contains the value 32H, and internal RAM locations 30H
through 32H contain the values 20H, 23H, and 01H, respectively. The instruction sequence,
POP DPH
POP DPL
will leave the Stack Pointer equal to the value 30H and the Data Pointer set to 0123H. At this
point the instruction,
POP SP
will leave the Stack Pointer set to 20H. Note that in this special case the Stack Pointer was
decremented to 2FH before being loaded with the value popped (20H).
Bytes: 2
Cycles: 2
Encoding: | 1 1 01 [0 0 0 0] | direct address
Operation: POP
(diect) « ((SP))
(SP) «—(SP)-1
STC MCU Limited website: www.STCMCU.com 93

www.STCMCU.com

Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

PUSH direct

Function: Push onto stack
Description: The Stack Pointer is incremented by one. The contents of the indicated variableis then copied

into the internal RAM location addressed by the Stack Pointer. Otherwise no flags are
affected.

Example: On entering interrupt routine the Stack Pointer contains 09H. The Data Pointer holds the
value 0123H. The instruction sequence,
PUSH DPL
PUSH DPH
will leave the Stack Pointer set to 0BH and store 23H and 01H in internal RAM locations
0AH and OBH, respectively.

Bytes:
Cycles: 2
Encoding: | 1 1 00 [0 0 0 0] [direct address |
Operation: PUSH
(SP) «— (SP) +1
((SP)) « (direct)
RET
Function: Return from subroutine
Description: RET pops the high-and low-order bytes of the PC successively from the stack, decrementing

the Stack Pointer by two. Program execution continues at the resulting address, generally the
instruction immediately following an ACALL or LCALL. No flags are affected.

Example: The Stack Pointer originally contains the value 0BH. Internal RAM locations 0OAH and 0BH
contain the values 23H and 01H, respectively. The instruction,
RET
will leave the Stack Pointer equal to the value 09H. Program execution will continue at
location 0123H.

Bytes:
Cycles: 2
Encoding: [0 0 10 Jo 0 1 0
Operation: RET

(PC\55) < ((SP))
(SP) « (SP) -1
(PCr,) < ((SP))
(SP) « (SP) -1

94

STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243
RETI
Function: Return from interrupt
Description: RETI pops the high- and low-order bytes of the PC successively from the stack, and restores

the interrupt logic to accept additional interrupts at the same priority level as the one just
processed. The Stack Pointer is left decremented by two. No other registers are affected; the
PSW is not automatically restored to its pre-interrupt status. Program execution continues at
the resulting address, which is generally the instruction immediately after the point at which
the interrupt request was detected. If a lower- or same-level interrupt had been pending when
the RETT instruction is executed, that one instruction will be executed before the pending
interrupt is processed.

Example: The Stack Pointer originally contains the value 0BH. An interrupt was detected during the
instruction ending at location 0122H. Internal RAM locations 0AH and OBH contain the
values 23H and 01H, respectively. The instruction,

RETI
will leave the Stack Pointer equal to 09H and return program execution to location 0123H.
Bytes:
Cycles: 2

Encoding: [0 0 11 Jo 0 1 0

Operation: RETI
(PCy55) — ((SP))
(SP) < (SP) -1
(PCy) < ((SP)
(SP) < (SP) -1

RL A
Function: Rotate Accumulator Left
Description: The eight bits in the Accumulator are rotated one bit to the left. Bit 7 is rotated into the bit 0

position. No flags are affected.

Example: The Accumulator holds the value 0C5H (11000101B). The instruction,

RL A
leaves the Accumulator holding the value 8BH (10001011B) with the carry unaffected.
Bytes: 1
Cycles: 1
Encoding: [0 0 10 [0 0 1 1]
Operation: RL
(Ant1) < (An) n=0-6
(A0) «— (A7)
STC MCU Limited website: www.STCMCU.com 95

www.STCMCU.com

Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

RLC A
Function: Rotate Accumulator Left through the Carry flag
Description: The eight bits in the Accumulator and the carry flag are together rotated one bit to the left. Bit
7 moves into the carry flag; the original state of the carry flag moves into the bit 0 position.
No other flags are affected.
Example: The Accumulator holds the value 0C5H (11000101B), and the carry is zero. The instruction,
RLC A
leaves the Accumulator holding the value 8BH (10001011B) with the carry set.
Bytes: 1
Cycles: 1
Encoding: | 0 0 11 [0 0 1 1|
Operation: RLC
(Ant1l) < (An) n=0-6
(A0) —(©)
(©) — (A7)
RR A
Function: Rotate Accumulator Right
Description: The eight bits in the Accumulator are rotated one bit to the right. Bit 0 is rotated into the bit 7
position. No flags are affected.
Example: The Accumulator holds the value 0C5H (11000101B). The instruction,
RR A
leaves the Accumulator holding the value OE2H (11100010B) with the carry unaffected.
Bytes: 1
Cycles: 1
Encoding: | 0 0 00 [0 0o 1 1|
Operation: RR
(An) < (Antl) n=0-6
(A7) < (A0)
RRC A
Function: Rotate Accumulator Right through the Carry flag
Description: The eight bits in the Accumulator and the carry flag are together rotated one bit to the right.
Bit 0 moves into the carry flag; the original value of the carry flag moves into the bit 7
position.No other flags are affected.
Example: The Accumulator holds the value 0C5H (11000101B), and the carry is zero. The instruction,
RRC A
leaves the Accumulator holding the value 62H (01100010B) with the carry set.
Bytes: 1
Cycles: 1
Encoding: [0 0 01 [o 0 1 1]
Operation: RRC
(Ant1l) < (An) n=0-6
(A7) (O
(C) < (A0)

96

STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243
SETB <bit>
Function: Set bit
Description: SETB sets the indicated bit to one. SETB can operate on the carry flag or any directly

addressable bit. No other flags are affected

Example: The carry flag is cleared. Output Port 1 has been written with the value 34H (00110100B).
The instructions,
SETB C
SETB P1.0
will leave the carry flag set to 1 and change the data output on Port 1 to 35H (00110101B).
SETB C
Bytes: 1
Cycles: 1
Encoding: [1 1 01 Jo 0 1 1
Operation: SETB
(€)1
SETB bit
Bytes: 2
Cycles: 1
Encoding: [1 1 0 1 [0 0 1 0] [bitaddress |
Operation: SETB
(bit) « 1
SJMP rel
Function: Short Jump
Description: Program control branches unconditionally to the address indicated. The branch destination is
computed by adding the signed displacement in the second instruction byte to the PC, after
incrementing the PC twice. Therefore, the range of destinations allowed is from 128bytes
preceding this instruction to 127 bytes following it.
Example: The label “RELADR?” is assigned to an instruction at program memory location 0123H. The
instruction,
SIMP RELADR
will assemble into location 0100H. After the instruction is executed, the PC will contain the
value 0123H.
(Note: Under the above conditions the instruction following SIMP will be at 102H.Therefore,
the displacement byte of the instruction will be the relative offset (0123H - 0102H) = 21H.
Put another way, an SIMP with a displacement of OFEH would be an one-instruction infinite
loop).
Bytes: 2
Cycles: 2
Encoding: [1 0 00 [0 0 0 0] [rel address
Operation: SJMP
(PC) < (PO)+2
(PC) « (PC)+rel
STC MCU Limited website: www.STCMCU.com 97

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

SUBB A, <src-byte>

Function: Subtract with borrow

Description: SUBB subtracts the indicated variable and the carry flag together from the Accumulator,
leaving the result in the Accumulator. SUBB sets the carry (borrow)flag if a borrow is needed
for bit 7, and clears C otherwise.(If C was set before executing a SUBB instruction, this
indicates that a borrow was needed for the previous step in a multiple precision subtraction,
so the carry is subtracted from the Accumulator along with the source operand).AC is set if a
borrow is needed for bit 3, and cleared otherwise. OV is set if a borrow is needed into bit 6,
but not into bit 7, or into bit 7, but not bit 6.

When subtracting signed integers OV indicates a negative number produced when a negative
value is subtracted from a positive value, or a positive result when a positive number is
subtracted from a negative number.

The source operand allows four addressing modes: register, direct, register-indirect, or
immediate.

Example: The Accumulator holds 0C9H (11001001B), register 2 holds 54H (01010100B), and the
carry flag is set. The instruction,

SUBB A,R2

will leave the value 74H (01110100B) in the accumulator, with the carry flag and AC cleared
but OV set.

Notice that 0C9H minus 54H is 75H. The difference between this and the above result is due
to the carry (borrow) flag being set before the operation. If the state of the carry is not known
before starting a single or multiple-precision subtraction, it should be explicitly cleared by a
CLR C instruction.

SUBB A, Rn
Bytes: 1
Cycles: 1
Encoding: [10 0 1 [1 rrr |

Operation: SUBB
(A) = (A)-(©) - (Rn)
SUBB A, direct
Bytes: 2
Cycles:
Encoding: [1 0 0 1 [0 1 0 1] [directaddress |

Operation: SUBB
(A) < (A) - (C) - (direct)

SUBB A, @Ri
Bytes: 1
Cycles: 1
Encoding: [1 0 0 1 Jo 1 1 i

Operation: SUBB
(A) < (A)- (O) - (R))

o8 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

SUBB A, #data

Bytes: 2
Cycles: 1
Encoding: | 1 00 1 | 01 0 0 | | immediate data |
Operation: SUBB
(A) < (A) - (C) - #data
SWAP A
Function: Swap nibbles within the Accumulator
Description: SWAP A interchanges the low- and high-order nibbles (four-bit fields) of the Accumulator
(bits 3-0 and bits 7-4). The operation can also be thought of as a four-bit rotate instruction.
No flags are affected.
Example: The Accumulator holds the value 0CSH (11000101B). The instruction,
SWAP A
leaves the Accumulator holding the value SCH (01011100B).
Bytes: 1
Cycles: 1
Encoding: | 1 1 00 [0 1 0 0|
Operation: SWAP
(Avg) <= (Ary)
XCH A, <byte>
Function: Exchange Accumulator with byte variable
Description: XCH loads the Accumulator with the contents of the indicated variable, at the same time
writing the original Accumulator contents to the indicated variable. The source/destination
operand can use register, direct, or register-indirect addressing.
Example: RO contains the address 20H. The Accumulator holds the value 3FH (00111111B). Internal
RAM location 20H holds the value 75H (01110101B). The instruction,
XCH A, @RO
will leave RAM location 20H holding the values 3FH (00111111B) and 75H (01110101B) in
the accumulator.
XCH A,Rn
Bytes: 1
Cycles: 1
Encoding: | 1 1 0 0 [I rrr
Operation: XCH
(A) <= (Rn)
XCH A, direct
Bytes: 2
Cycles: 1
Encoding: | 1 100 [0 10 1| [directaddress |
Operation: XCH
(A) < (direct)
STC MCU Limited website: www.STCMCU.com 99

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

XCH A, @Ri
Bytes: 1
Cycles: 1
Encoding: | 1 100 [0 1 1 i
Operation: XCH

(A) <= ((Ri)
XCHD A, @Ri

Function: Exchange Digit

Description: XCHD exchanges the low-order nibble of the Accumulator (bits 3-0), generally representing
a hexadecimal or BCD digit, with that of the internal RAM location indirectly addressed by
the specified register. The high-order nibbles (bits 7-4) of each register are not affected. No
flags are affected.

Example: RO contains the address 20H. The Accumulator holds the value 36H (00110110B). Internal
RAM location 20H holds the value 75H (01110101B). The instruction,

XCHD A, @RO

will leave RAM location 20H holding the value 76H (01110110B) and 35H (00110101B) in
the accumulator.

Bytes: 1
Cycles: 1
Encoding: [1 101 [0 1 1i

Operation: XCHD
(As0) <= (Rizo)

XRL <dest-byte>, <src-byte>

Function: Logical Exclusive-OR for byte variables
Description: XRL performs the bitwise logical Exclusive-OR operation between the indicated variables,
storing the results in the destination. No flags are affected.

The two operands allow six addressing mode combinations.When the destination is the
Accumulator, the source can use register, direct, register-indirect, or immediate addressing;
when the destination is a direct address,the source can be the Accumulator or immediate data.

(Note: When this instruction is used to modify an output port, the value used as the original
port data will be read from the output data latch, not the input pins.)

Example: If the Accumulator holds 0C3H (11000011B) and register 0 holds 0AAH (10101010B) then
the instruction,
XRL A, RO
will leave the Accumulator holding the vatue 69H (01101001B).

When the destination is a directly addressed byte, this instruction can complement combinna-
tion of bits in any RAM location or hardware register. The pattern of bits to be complemented
is then determined by a mask byte, either a constant contained in the instruction or a variable
computed in the Accumulator at run-time. The instruction,

XRL P1, #00110001B

will complement bits 5,4 and 0 of outpue Port 1.

100 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922805190 Tel:86-755-82948412

Fax:86-755-82944243

XRL A, Rn
Bytes:
Cycles:
Encoding:

Operation:

XRL A, direct
Bytes:

Cycles:
Encoding:

Operation:

XRL A, @Ri
Bytes:
Cycles:
Encoding:

Operation:

XRL A, #data
Bytes:

Cycles:
Encoding:

Operation:

XRL direct, A
Bytes:

Cycles:
Encoding:

Operation:

1
1
|0110|1rrr

XRL
(A) < (A) A (Rn)

|0110|0101| |directaddress|

XRL
(A) « (A) A (direct)

1
1

[o01 1 0Jo1 1

XRL

(A) < (A) A (Ri))

2

1

|01 1 0|0100| |immediatedata|
XRL

(A) — (A) A #data

2

1

[0 1 1 0Joo0 1 0] [direct address
XRL

(direct) < (direct) A (A)

XRL direct, #dataw

Bytes: 3
Cycles: 2
Encoding: [0 1 1 0] 00 1 1| | direct address | [immediate data |
Operation: XRL
(direct) «— (direct) A # data
STC MCU Limited website: www.STCMCU.com 101

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

Chapter 6 Interrupts

There are 9 interrupt vector addresses available in STC15F204EA series. Associating with each interrupt vector,
the interrupt sources can be individually enabled or disabled by setting or clearing a bit in the registers IE,
INT_CLKO. These registers also contains a global disable bit(EA), which can be cleared to disable all interrupts
at once.

All interrupt sources, except external interrupt 2 and external interrupt 3 and external interrupt 4, have one
corresponding bit to represent its priority, which is located in SFR named IP register. Higher-priority interrupt
will be not interrupted by lower-priority interrupt request. If two interrupt requests of different priority levels are
received simultaneously, the request of higher priority is serviced. If interrupt requests of the same priority level
are received simultaneously, an internal polling sequence determine which request is serviced. The following
table shows the internal polling sequence in the same priority level and the interrupt vector address.

Interrupt Table
. Interrupt
Vector | Polling Sequence o . Interrupt Interrupt Enable
Interrupt Source address | (Priority within level) I;régﬂg Priority Request Flag bitf Control Bit
INTO .
(External interrupt 0) 0003H 0 (highest) PXO0 0/1 IEO EX0/EA
Timer 0 000BH 1 PTO 0/1 TFO ETO/EA
INT1
(External interrupt 1) 0013H 2 PX1 0/1 IE1 EX1/EA
Timerl 001BH 3 PT1 0/1 TF1 ET1/EA
ADC 002BH 5 PADC 0/1 ADC FLAG EADC/EA
LVD 0033H 6 PLVD 0/1 LVDF ELVD/EA
INT2 0053H 10 0 EX2/EA
INT3 005BH 11 0 EX3/EA
INT4 0083H 16 0 EX4/EA

102 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

6.1 Interrupt Structure

both Negative-Edge and
Positive-Edge can trigger
the external interrupt
) Highest Priority
IP Registers Level Interrupt
IE, INT_CLKO Registers
Lowest Priority
TCON.0/IT0=0 >(EXO0 o Level Interrupt
PX0 0 >
INTO —o— —o —o o0 hich
TCON.O/ITO=I . | g
0
PT0 © g
TFO)l—o/—c/rc 00 d
TCON.2/IT1=0 X EXI | 0 N
e
INTI —o—~ EIH—o"—ofo o ”
TCON2/ITI=1 I
ET1 | — >
TF1 H—o— oo o, 0 i
I
EADC ol N Interrupt
ADC_FLAG NEDS VA v 4 Polling
: Sequence
ELVD pLvp ol
LVDF y—o— oo 0l U N
I
I
EX2 |
N2, ——— o »
I
EX3 |
INT3 — []—F—"——° d
I
EX4
T — e |
I v
| low
EA'
I
KGlobal Enable
EA

STC15F204EA series Interrupt system diagram

STC MCU Limited website: www.STCMCU.com 103

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

The External Interrupts INTO and INT1 can each be either negative-edge-activated or positive-edge-activated,
depending on bits ITO and IT1 in Register TCON. When ITx (x=0 or 1) is set, the external interrupts INTx (x=0
or 1) can be negative-edge-activated. When ITx (x=0 or 1) is cleared, both of Negative-Edge and Positive-Edge
can trigger the external interrupt INTx(x=0 or 1). The flags that actually generate these interrupts are bits IEQ and
IE1 in TCON.The interrupt flag will automatically cleared after interrupt acknowledge.

The interrupt from INTx (x=0,1) can trigger interrupt as well as wakes up CPU from power-down mode.

The Timer 0 and Timer] Interrupts are generated by TFO and TF1, which are set by a rollover in their respective
Timer/Counter registers in most cases. When a timer interrupt is generated, the flag that generated it is cleared by
the on-chip hardware when the service routine is vectored to.

The ADC interrupt is generated by the flag— ADC_FLAG (ADC_CONTR.4). It should be cleared by software.

The Low Voltage Detect interrupt is generated by the flag — LVDF(PCON.5) in PCON register. It should be
cleared by software.

The External Interrupts INT2 ~ INT4 only can be negative-edge-activated. The interrupt flag is implied, not user
acceptable. The interrupt flag will be cleared after interrupt acknowledge or EXn (n=2,3,4) goes low.
The interrupt from INTx (x=2,3,4) can trigger interrupt as well as wakes up CPU from power-down mode.

All of the bits that generate interrupts can be set or cleared by software, with the same result as though it had
been set or cleared by hardware. In other words, interrupts can be generated or pending interrupts can be canceled
in software.

Interrupt Trigger
Source Trigger Moment
INTO N . PN .
(External interrupt 0) (ITO = 1): = Negative-Edge (ITO = 0): = Positive-Edge and Negative-Edge
Timer 0 Timer0 overflow
INT1 . - .
(External interrupt 1) (IT1 = 1): = Negative-Edge (IT1 =0): = Positive-Edge and Negative-Edge
Timerl Timer] overflow
LVD Power drops under LVD-setting level
INT2 Negative-Edge
INT3 Negative-Edge
INT4 Negative-Edge

104 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

6.2 Interrupt Register

Value after
Symbol Description Address Bit Address and Symbol Power-on or
MSB LSB Reset

IE Interrupt Enable ASH | EA |ELvD|EADC| - | ETI | EXI | ETO | EX0 |000x 0000B

IP Interrupt Priority Low | B8H | - [puvp [papc| - [P11 | pxi | pro | pxo [x00x 0000B

TCON | Timer Control register | 88H | TF1 | TR1 | TFo | TRO | 1EI | IT1 | 1EO | ITO {0000 0000B

PCON [Power Control register | 87H - | - |uvpE| PoF | GFI | GFo | PD | IDL |xx110000B
External Interrupt - [Exa JExs [Ex2 | - | - [riciko]TocLko

INT CLKO enable and Clock 8FH x000 xx00B

output register
ADC_CONTR | ADC control register | BCH ADCJ’OWER'SPEEDI|SPEED0|ADC7FLAG| ADC_START |CHsz | CHS1 | cuiso | 0000 0000B

IE: Interrupt Enable Rsgister

[SFR Name [SFRAddress] bit | B7 | B6 | B5 [B4 | B3 [B2 [Bl [B0 |
IE [A8H [name [EA [ELVD [EADC | - | ETI [EXI [ET0 [EX0 |

EA : disables all interrupts. if EA = 0,no interrupt will be acknowledged. if EA = 1, each interrupt source is
individually enabled or disabled by setting or clearing its enable bit.

ELVD : Low volatge detection interrupt enable
0 : = Disable Voltage Drop interrupt
1 : = Enable Voltage Drop interrupt.

EADC : ADC interrupt enable bit
0 : = Disable ADC interrupt
1 : = Enable ADC interrupt.

ET1 : Timer 1 interrupt enable bit
0 : = Disable Timer] interrupt
1 : = Enable Timer] interrupt.

EX1 : External interrupt 1 enable bit

0 : = Disable INT1 interrupt

1 : =Enable INT1 interrupt.
A Negative-Edge from INT1 pin will trigger an interrupt if IT1 (TCON.2) is set, and both of Negative-Edge
and Positive-Edge will trigger an interrupt if ITI(TCON.2) is cleared. The interrupt flag IE1(TCON.3) will
automatically cleared after interrupt acknowledge.
The interrupt from INT1 can trigger interrupt as well as wakes up CPU from power-down mode.

ETO : Timer 0 interrupt enable bit
0 := Disable Timer0 interrupt
1 := Enable Timer0 interrupt.

EXO0 : External interrupt O enable bit

0 := Disable INTO interrupt

1 := Enable INTO interrupt.

A Negative-Edge from INTO pin will trigger an interrupt if ITO(TCON.0) is set, and both of Negative-Edge
and Positive-Edge will trigger an interrupt if ITO(TCON.0) is cleared. The interrupt flag IEO(TCON.1) will
automatically cleared after interrupt acknowledge.

The interrupt from INTO can trigger interrupt as well as wakes up CPU from power-down mode.

STC MCU Limited website: www.STCMCU.com 105

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412

Fax:86-755-82944243

IP: Interrupt Priority Register (Address: B8H)

(MSB) (LSB)
| - |PLVD|RADC| . | PT1| PX1| PTO| PXO|

Priority bit = 1 assigns high priority .
Priority bit=0 assigns low priority.

Symbol Position Function
PLVD IP.6 Low voltage detection interrupt priority.
PADC IP.5 ADC interrupt priority bit.
PT1 IP.3 Timer 1 interrupt priority bit
PX1 IP.2 External interrupt 1 priority bit
PTO IP.1 Timer O interrupt priority bit
PX0 IP.0 External interrupt O priority bit
TCON register: Timer/Counter Control Register (Address: 88H)
(MSB) (LSB)

[TF1 | TR1 | TF0 | TRO [1E1 [IT1 | 160 | ITO |

Symbol Position Name and Significance Symbol Position Name and Significance
TF1 TCON.7 Timer 1 overflow Flag. Set by IE1 TCON.3 Interrupt 1 Edge flag. Set by
hardware on Timer/Counter overflow. hardware when external interrupt
cleared by hardware when processor edge detected.Cleared when
vectors to interrupt routine. interrupt processed.
TR1 TCON.6 Timer 1 Run control bit. Set/cleared IT] TCON.2 Intenupt 1 Type control bit. Set/

by software to turn Timer/Counter

cleared by software to specify

on/off. falling edge/low level triggered
external interrupts.
TFO TCON.5 Timer 0 overflow Flag. Set by IE0O TCON.I Interrupt 0 Edge flag. Set by
hardware on Timer/Counter overflow. hardware when external interrupt

cleared by hardware when processor
vectors to interrupt routine.

edge detected.Cleared when
interrupt processed.

TRO TCON.4 Timer 0 Run control bit. Set/cleared ITO TCON.O Intenupt 0 Type control bit. Set/

by software to turn Timer/Counter
on/off.

PCON register (Power Control Register)

cleared by software to specify
falling edge/low level triggered
external interrupts.

SFR name | Address bit B7 B6 BS B4 B3 B2

B1

BO

PCON 87H name - - | LVDF | POF GF1 | GFO

PD

IDL

LVDF : Low-Voltage Flag. Once low voltage condition is detected (VCC power is lower than LVD

voltage), it is set by hardware (and should be cleared by software).

POF : Power-On flag. It is set by power-off-on action and can only cleared by software.

GF1 : General-purposed flag 1
GFO0 : General-purposed flag 0
PD : Power-Down bit.

IDL : Idle mode bit.

106 STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

INT_CLKO register

SFR name |Address| bit B7 B6 B5 B4 B3 B2 Bl BO
INT_CLKO 8FH name - EX4 EX3 EX2 - - TICLKO | TOCLKO

EX4 : External interrupt 4 enable bit
0 : = Disable INT4 interrupt
1 : = Enable INT4 interrupt.
Only Negatie-Edge from TNT4 pin will trigger an interrupt to the CPU. The interrupt flag is implied, not user
acceptable. The interrupt flag will be cleared after interrupt acknowledge or EX4 goes low.
The interrupt from INT4 can trigger interrupt as well as wakes up CPU from power-down mode.

EX3 : External interrupt 3 enable bit
0 : = Disable INT3 interrupt
1 : = Enable INT3 interrupt.
Only Negatie-Edge from INT3 pin will trigger an interrupt to the CPU. The interrupt flag is implied, not user
acceptable. The interrupt flag will be cleared after interrupt acknowledge or EX3 goes low.
The interrupt from TNT3 can trigger interrupt as well as wakes up CPU from power-down mode.

EX2 : External interrupt 2 enable bit

0 := Disable INT2interrupt

1 := Enable TNT? interrupt.

Only Negative-Edge from TNT2pin will trigger an interrupt to the CPU. The interrupt flag is implied, not user
acceptable. The interrupt flag will be cleared after interrupt acknowledge or EX2 goes low.

The interrupt from TNT2 can trigger interrupt as well as wakes up CPU from power-down mode.

T1CLKO : When set, P3.4 is enabled to be the clock output of Timer 1. The clock rate is Timer 1 overflow rate
divided by 2.

TOCLKO : When set, P3.5 is enabled to be the clock output of Timer 0. The clock rate is Timer 0 overflow rate
divided by 2.

ADC_CONTR: AD Control register
SFR name | Address | bit B7 B6 BS B4 B3 B2 B1 BO
ADC_CONTR| BCH |name | ADC_POWER |SPEEDI|SPEEDO |[ADC_FLAG| ADC_START | CHS2 |CHS1|CHS0

ADC_POWER(ADC CONTR.7) : When clear, shut down the power of ADC bolck. When set, turn on the power
of ADC block.

ADC _FLAG(ADC CONTR.4) : ADC interrupt flag.

ADC _STRAT : ADC start bit, which enable ADC conversion. It will automatically cleared by the device after the
device has finished the conversion.

STC MCU Limited website: www.STCMCU.com 107

www.STCMCU.com

Mobile:(86)13922805190

Tel:86-755-82948412 Fax:86-755-82944243

6.3 Interrupt Priorities

All interrupt sources, except INT2, INT3 and INT4, can also be individually programmed to one of two priority
levels by setting or clearing the bits in Special Function Register IP. A low-priority interrupt can itself be
interrupted by a high-pority interrupt, but not by another low-priority interrupt. A high-priority interrupt can’t be
interrupted by any other interrupt source.

If two requests of different priority levels are received simultaneously, the request of higher priority level
is serviced. If requests of the same priority level are received simultaneously, an internal polling sequence
determines which request is serviced. Thus within each priority level there is a second priority structure
determined by the polling sequence,as follows:

N R WO

9.

10.
I1.
12.
13.
14.
15.
16.

Source Polling Sequence
(Priority Within Level)

INTO (highest)
Timer 0
INT1

Timer 1

ADC interrupt
LVD

INT2
INT3

\
INT4 (lowest)

Note that the “priority within level” structure is only used to resolve simultaneous requests of the same prionty

level.

If programming in C language (Keil C), polling sequence is the interrupt number, for example:

void
void
void
void
void
void
void
void
void

Int0_Routine(void)
Timer0 Rountine(void)
Intl Routine(void)
Timer]l Rountine(void)
ADC_Routine(void)
LVD_Routine(void)
Int2_Routine(void)

Int3 Routine(void)

Int4 Routine(void)

interrupt
interrupt
interrupt
interrupt
interrupt
interrupt
interrupt
interrupt
interrupt

0;
1;
2;
3;
5;
6;
10;

11;
16;

108

STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

6.4 How Interrupts Are Handled

External interrupt pins and other interrupt sources are sampled at the rising edge of each instruction OPcode
fetch cycle. The samples are polled during the next instruction OPcode fetch cycle. If one of the flags was in a set
condition of the first cycle, the second cycle of polling cycles will find it and the interrupt system will generate an
hardware LCALL to the appropriate service routine as long as it is not blocked by any of the following conditions.

Block conditions :

* Aninterrupt of equal or higher priority level is already in progress.

e The current cycle(polling cycle) is not the final cycle in the execution of the instruction in progress.
* The instruction in progress is RETI or any write to the IE, IP registers.

e The ISP/IAP activity is in progress.

Any of these four conditions will block the generation of the hardware LCALL to the interrupt service routine.
Condition 2 ensures that the instruction in progress will be completed before vectoring into any service routine.
Condition 3 ensures that if the instruction in progress is RETI or any access to IE, IP, then at least one or more
instruction will be executed before any interrupt is vectored to.

The polling cycle is repeated with the last clock cycle of each instruction cycle. Note that if an interrupt flag is
active but not being responded to for one of the above conditions, if the flag is not still active when the blocking
condition is removed, the denied interrupt will not be serviced. In other words, the fact that the interrupt flag
was once active but not being responded to for one of the above conditions, if the flag is not still active when the
blocking condition is removed, the denied interrupt will not be serviced. The interrupt flag was once active but
not serviced is not kept in memory. Every polling cycle is new.

Note that if an interrupt of higher priority level goes active prior to the rising edge of the third machine cycle,
then in accordance with the above rules it will be vectored to during fifth and sixth machine cycle, without any
instruction of the lower priority routine having been executed.

Thus the processor acknowledges an interrupt request by executing a hardware-generated LCALL to the
appropriate servicing routine. In some cases it also clears the flag that generated the interrupt, and in other cases
it doesn’t. This has to be done in the user’s software. The hardware-generated LCALL pushes the contents of the
Program Counter onto the stack (but it does not save the PSW) and reloads the PC with an address that depends
on the source of the interrupt being vectored to, as shown be low.

STC MCU Limited website: www.STCMCU.com 109

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

Source Vector Address
External Interrupt 0 0003H
Timer 0 000BH
External Interrupt 1 0013H
Timer 1 001BH
/ 0023H
ADC interrupt 002BH
LVD 0033H
/ 003BH
/ 0043H
/ 004BH
External Interrupt 2 0053H
External Interrupt 3 005BH
/ 0063H
/ 006BH
/ 0073H
/ 007BH
External Interrupt 4 0083H

Execution proceeds from that location until the RETI instruction is encountered. The RETI instruction informs
the processor that this interrupt routine is no longer in progress, then pops the top two bytes from the stack and
reloads the Program Counter. Execution of the interrupted program continues from where it left off.

Note that a simple RET instruction would also have returned execution to the interrupted program, but it would
have left the interrupt control system thinking an interrupt was still in progress.

110 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

6.5 External Interrupts

The external interrupt 0 and 1 can be programmed to be negative-edge-activated or both negative-edge-activated
and positive-edge-activated by setting or clearing bit IT1 or ITO in Register TCON. If ITx (x=0 or 1) is set,
the external interrupts INTx (x=0 or 1) will be negative-edge-activated. In this mode if successive samples
INTx(x=0,1) of the pin show a high in one cycle and a low in the next cycle, interrupt request flag IEx(x=0,1) in
TCON is set. Flag bit IEx then requests the interrupt. If ITx (x=0 or 1) is cleared, the external interrupt INTx(x=0
or 1) will be triggered by either of Negative-Edge and Positive-Edge. In this mode if successive samples
INTx(x=0,1) of the pin show a high in one cycle and a low in the next cycle or a low in one cycle and a high in
the next cycle, interrupt request flag IEx in TCON is set and then requests the interrupt.

The External Interrupts INT2 ~ INT4 only can be negative-edge-activated. The interrupt flag is implied, not user
acceptable. The interrupt flag will be cleared after interrupt acknowledge or EXn (n=2,3,4) in INT CLKO register
goes low.

All external interrupts can trigger interrupt as well as wakes up CPU from power-down mode.

Since the external interrupt pins are sampled once each machine cycle, an input high or low should hold for at
least 12 system clocks to ensure sampling. In the external interrupt is transition-activated, the external source has
to hold the request pin high for at least one machine cycle, and then hold it low for at least one machine cycle to
ensure that the transition is seen so that interrupt request flag IEx will be set. [Ex will be automatically cleared by
the CPU when the service routine is called.

The next texts list some demo procedures about how external interrupts operate.

External interrupt 0 (INT0) Demo program (written in C language):

/* */
/* --- STC MCU International Limited */
/* --- STC 15 Series MCU ExtO(Rising edge/Falling edge) Demo ------- */
/* --- Mobile: (86)13922805190 */
/* --- Fax: 86-755-82944243 */
/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */
/* 1f you want to use the program or the program referenced in the ----- */
/* article, please specify in which data and procedures from STC =~ ----- */
/* */

#include "reg51.h"

bit FLAG; //1:rising edge int O:falling edge int
//External interruptQ service routine
void exint0() interrupt 0 //interrupt O (location at 0003H)
{
FLAG = INTO; //read INTO(P3.2) port status, INT0=0(Falling); INT0=1(Rising)
¥
void main()
{
ITO=0; //set INTO int type (1:Falling only 0:Rising & Falling)
EX0=1; //enable INTO interrupt
EA=1; //open global interrupt switch
while (1);
}

STC MCU Limited website: www.STCMCU.com 111

Fax:86-755-82944243

i

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412
External interrupt 0 (INT0) Demo program (written in Assembly language) :

*/
;/*¥ --- STC MCU International Limited */

;/*¥ --- STC 15 Series MCU ExtO(Rising edge/Falling edge) Demo ------- */

;/* --- Mobile: (86)13922805190 */
;/* --- Fax: 86-755-82944243 */
;/* --- Tel: 86-755-82948412 */
/% -—- Web: www.STCMCU.com */
;/* If you want to use the program or the program referenced in the ----- */
;/* article, please specify in which data and procedures from STC =~ ----- */
/¥ */

FLAG

BIT 20H.0

s

;interrupt vector table

ORG 0000H
LIMP MAIN
ORG 0003H
LIMP EXINTO
ORG 0100H
MAIN:
MOV SP, #7FH
CLR 1TO
SETB EXO0
SETB EA
SIMP §

s

;External interrupt0 service routine

EXINTO:
PUSH PSW
MOV C, INTO
MOV FLAG, C
POP PSW
RETI
END

;interrupt 0 (location at 0003H)

;read INTO(P3.2) port status
;INT0=0(Falling); INT0=1(Rising)

;1:rising edge int 0:falling edge int

;set INTO int type (1:Falling only 0:Rising & Falling)
;enable INTO interrupt
;open global interrupt switch

112

STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

External interrupt 1 (INT1) Demo program (written in C language) :

/* */
/* --- STC MCU International Limited */
/* --- STC 15 Series MCU Extl(Rising edge/Falling edge) Demo ------- */
/* --- Mobile: (86)13922805190 */
/* --- Fax: 86-755-82944243 */
/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */
/* If you want to use the program or the program referenced in the ---*/
/* article, please specify in which data and procedures from STC ~ ----*/
/* */

#include "reg51.h"
bit FLAG; //1:rising edge int O:falling edge int

//External interruptl service routine

void exintl() interrupt 2 //interrupt 2 (location at 0013H)
{
FLAG =INT1; /lread INT1(P3.3) port status, INT1=0(Falling); INT1=1(Rising)
H
void main()
{
IT1=0; //set INT1 int type (1:Falling only 0:Rising & Falling)
EX1=1; //enable INT1 interrupt
EA=1; //open global interrupt switch
while (1);
b

STC MCU Limited website: www.STCMCU.com

113

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

External interrupt 1 (INT1) Demo program (written in Assembly language) :

/% */
;/* --- STC MCU International Limited */
;/* --- STC 15 Series MCU Ext1(Rising edge/Falling edge) Demo ------- */
;/* --- Mobile: (86)13922805190 */
;/* --- Fax: 86-755-82944243 */
;/* --- Tel: 86-755-82948412 */
/% -—- Web: www.STCMCU.com */
;/* If you want to use the program or the program referenced in the ------ */
;/* article, please specify in which data and procedures from STC = ------ */
¥ */
FLAG BIT 20H.0 ;1:rising edge int 0:falling edge int
;interrupt vector table
ORG 0000H
LIMP MAIN
ORG 0013H ;interrupt 2 (location at 0013H)

LIMP EXINTI1

ORG 0100H
MAIN:
MOV SP, #7FH ;initial SP
CLR IT1 ;set INT1 int type (1:Falling only 0:Rising & Falling)
SETB EXI1 ;enable INTT1 interrupt
SETB EA ;open global interrupt switch
SIMP §

s

;External interrupt] service routine

EXINTI:
PUSH PSW
MOV C, INT1 ;read INT1(P3.3) port status
MOV FLAG, C ;INT1=0(Falling); INT1=1(Rising)
POP PSW
RETI
END

114 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

External interrupt 2 (INT2) Demo program (written in C language) :

/* */
/* --- STC MCU International Limited */
/* --- STC 15 Series MCU Ext2(Falling edge) Demo -----------=-------- */
/* --- Mobile: (86)13922805190 */
/* --- Fax: 86-755-82944243 */
/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */
/* If you want to use the program or the program referenced in the ----*/
/* article, please specify in which data and procedures from STC ----*/
/* */

#include "reg51.h"
sfr INT CLKO = 0x8f; //- EX4 EX3 EX2 - - TICLKO TOCLKO

//External interrupt2 service routine

void exint2() interrupt 10 //interrupt 10 (location at 0053H)

{

H

void main()

{ —
INT_CLKO |=0x10; //(EX2 = 1)enable INT2 interrupt
EA=1; //open global interrupt switch
while (1);

H

STC MCU Limited website: www.STCMCU.com 115

www.STCMCU.com

Mobile:(86)13922805190 Tel:86-755-82948412

Fax:86-755-82944243

External interrupt 2 (INT2) Demo program (written in Assembly language) :

¥ */

;/*¥ --- STC MCU International Limited */
;/* --- STC 15 Series MCU Ext2(Falling edge) Demo ------------------- */
;/* --- Mobile: (86)13922805190 */
;/* --- Fax: 86-755-82944243 */
;/* - Tel: 86-755-82948412 */
/% -—- Web: www.STCMCU.com */

;/* If you want to use the program or the program referenced in the ---*/
;/* article, please specify in which data and procedures from STC =~ ---*/

i

*/

INT CLKO DATA O08FH

s

;interrupt vector table

ORG
LIMP

ORG
LIMP

0000H
MAIN

0053H
EXINT2

ORG
MAIN:

MOV

ORL

SETB

SIMP

0100H

SP, #7FH

INT_CLKO,
EA

$

s

;External interrupt2 service routine

EXINT2:
RETI

END

#10H

;- EX4 EX3 EX2 - - TICLKO TOCLKO

;interrupt 10 (location at 0053H)

;initial SP

;(EX2 = 1)enable INT?2 interrupt

;open global interrupt switch

116

STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

External interrupt 3 (INT3) Demo program (written in C language) :

/* */
/* --- STC MCU International Limited */
/* --- STC 15 Series MCU Ext3(Falling edge) Demo ------------------- */
/* --- Mobile: (86)13922805190 */
/* --- Fax: 86-755-82944243 */
/% --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */
/* If you want to use the program or the program referenced in the --*/
/* article, please specify in which data and procedures from STC = ---*/
/* */

#include "reg51.h"
sfr INT _CLKO = 0x8f; //- EX4 EX3 EX2 - - TICLKO TOCLKO

//External interrupt3 service routine

void exint3() interrupt 11 //interrupt 11 (location at 005BH)

{

H

void main()

{ —
INT_CLKO |= 0x20; //(EX3 = 1)enable INT3 interrupt
EA=1; //open global interrupt switch
while (1);

H

STC MCU Limited website: www.STCMCU.com 117

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

External interrupt 3 (INT3) Demo program (written in Assembly language) :

e */
;/*¥ --- STC MCU International Limited */
;/* --- STC 15 Series MCU Ext3(Falling edge) Demo ------------------- */
;/* --- Mobile: (86)13922805190 */
;/* --- Fax: 86-755-82944243 */
3/ --- Tel: 86-755-82948412 */
/% -—- Web: www.STCMCU.com */
;/* If you want to use the program or the program referenced in the ---*/
;/* article, please specify in which data and procedures from STC ---*/
e */
INT CLKO DATA O08FH ;- EX4 EX3 EX2 - - TICLKO TOCLKO

s

;interrupt vector table

ORG 0000H
LIMP MAIN

ORG 005BH ;interrupt 11 (location at 005BH)
LIMP EXINT3

ORG 0100H

MAIN:
MOV SP, #TFH ;initial SP
ORL INT CLKO, #20H ;(EX3 = 1)enable INT3 interrupt
SETB EA ;open global interrupt switch
SIMP §

s

;External interrupt 3 service routine

EXINTS3:
RETI

END

118 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

External interrupt 4 (INT4) Demo program (written in C language) :

/* */
/* --- STC MCU International Limited */
/* --- STC 15 Series MCU Ext4(Falling edge) Demo ------------------- */
/* --- Mobile: (86)13922805190 */
/* --- Fax: 86-755-82944243 */
/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */
/* If you want to use the program or the program referenced in the --*/
/* article, please specify in which data and procedures from STC — ---*/
/* */

#include "reg51.h"
sfr INT_CLKO = 0x8f; //- EX4 EX3 EX2 - - TICLKO TOCLKO

//External interrupt4 service routine

void exint4() interrupt 16 //interrupt 16 (location at 0083H)

{

b

void main()

{ —
INT_CLKO |= 0x40; //(EX4 = 1)enable INT4 interrupt
EA=1; //open global interrupt switch
while (1);

b

STC MCU Limited website: www.STCMCU.com 119

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

External interrupt 4 (INT4) Demo program (written in Assembly language) :

e */
;/* -—- STC MCU International Limited */
;/* === STC 15 Series MCU Ext4(Falling edge) Demo ------------------- */
;/* --- Mobile: (86)13922805190 */
;/* --- Fax: 86-755-82944243 */
;/* --- Tel: 86-755-82948412 */
/% -—- Web: www.STCMCU.com */
;/* If you want to use the program or the program referenced in the --*/
;/* article, please specify in which data and procedures from STC =~ ---*/
e */
INT_CLKO DATA O08FH ;- EX4 EX3 EX2 - - TICLKO TOCLKO

s

;interrupt vector table

ORG 0000H
LIMP MAIN

ORG 0083H ;interrupt 16 (location at 0083H)
LIMP EXINT4

ORG 0100H
MAIN:
MOV SP, #7FH :initial SP
ORL INT_CLKO, #40H :(EX4 = 1)enable INT4 interrupt
SETB EA ;open global interrupt switch
SIMP $

s

;External interrupt4 service routine

EXINT4:
RETI

END

120 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243
Chapter 7 Timer/Counter 0 and 1

Timer 0 and timer 1 are almost like the ones in the conventional 8051, both of them can be individually
configured as timers or event counters.

In the “Timer” function, the register is incremented every 12 system clocks or every system clock depending on
AUXR.7(T0x12) bit and AUXR.6(T1x12). In the default state, it is fully the same as the conventional 8051. In
the x12 mode, the count rate equals to the system clock.

In the “Counter” function, the register is incremented in response to a 1-to-0 transition at its corresponding
external input pin, TO or T1. In this function, the external input is sampled once at the positive edge of every clock
cycle. When the samples show a high in one cycle and a low in the next cycle, the count is incremented. The new
count value appears in the register during at the end of the cycle following the one in which the transition was
detected. Since it takes 2 machine cycles (24 system clocks) to recognize a 1-to-0 transition, the maximum count
rate is 1/24 of the system clock. There are no restrictions on the duty cycle of the external input signal, but to
ensure that a given level is sampled at least once before it changes, it should be held for at least one full machine
cycle.

In addition to the “Timer” or “Counter” selection, Timer 0 and Timer 1 have four operating modes from which

to select. The “Timer” or “Counter” function is selected by control bits C/T in the Special Function Register
TMOD. These two Timer/Counter have four operating modes, which are selected by bit-pairs (M1, M0) in
TMOD. Modes 0, 1, and 2 are the same for both Timer/Counter 0 and 1. Mode 3 is different.The four operating

modes are described in the following text.

Value after
Symbol Description Address Bit Address and Symbol Power-on or
MSB LSB Reset
TCON Timer Control 88H TF1 | TRI | TFO | TRO | IE1 | IT1 | IEO [ITO |0000 0000B
TMOD Timer Mode 89H |GATE| ¢/T | M1 | MO |GATE| ¢/T | M1 | Mo [0000 0000B
TLO Timer Low 0 8AH 0000 0000B
TL1 Timer Low 1 8BH 0000 0000B
THO Timer High 0 8CH 0000 0000B
THI Timer High 1 8DH 0000 0000B
AUXR Auxiliary register | 8EH |T0x12 | T1x12| - | - | - | - | - | - | 00xx xxxxB
External interrupt - | EX4 | EX3 | EX2 | - | - | TICLKO | TOCLKO
INT_CLKO | enable and Clock | 8FH x000 xx00B
Output register

STC MCU Limited website: www.STCMCU.com 121

www.STCMCU.com

Mobile:(86)13922805190

Tel:86-755-82948412

Fax:86-755-82944243

TCON register: Timer/Counter Control Register (Address: 88H)

Symbol
TF1

TR1

TFO

TRO

(MSB)

(LSB)

[TF1 | TR1 | TFo | TRO [1E1 [IT1 [1EO | ITO |

Position
TCON.7

Name and Significance
Timer 1 overflow Flag. Set by

hardware on Timer/Counter overflow.

cleared by hardware when processor
vectors to interrupt routine.

Timer 1 Run control bit. Set/cleared
by software to turn Timer/Counter
on/off.

TCON.6

TCON.5 Timer 0 overflow Flag. Set by

hardware on Timer/Counter overflow.

cleared by hardware when processor
vectors to interrupt routine.

Timer 0 Run control bit. Set/cleared
by software to turn Timer/Counter
on/off.

TCON.4

Symbol
IE1

IT1

1EO

ITO

Position Name and Significance

TCON.3 Interrupt 1 Edge flag. Set by
hardware when external interrupt
edge detected.Cleared when
interrupt processed.

TCON.2 Intenupt 1 Type control bit. Set/
cleared by software to specify
falling edge/low level triggered
external interrupts.

TCON.1 Interrupt 0 Edge flag. Set by
hardware when external interrupt
edge detected.Cleared when
interrupt processed.

TCON.0 Intenupt 0 Type control bit. Set/
cleared by software to specify
falling edge/low level triggered
external interrupts.

TMOD register : Timer/Counter Mode Control Register (Address: 89H)

GATE
C/IT

M1

(MSB)

(LSB)

|Gate[o | M1 | Mo [GATE| o | M1 | Mo |

Timer 1

Gating control when set.

Timer 0

Timer or Counter Selector cleared for Timer operation (input from internal system clock). Set for
Counter operation (input from "Tx"(x=0,1) input pin).

Mo Operating Mode
0 16-bit auto-reload Timer/Counter for Timer 0 and Timer 1
1 16-bit Timer/Counter"THx"and"TLx"are cascaded;there is no prescaler
0 8-bit auto-reload Timer/Counter “THx” holds a value which is to be reloaded into “TLx”

each time it overflows.

1 (Timer 0) TLO is an 8-bit Timer/Counter controlled by the standard Timer 0 control bits
THO is an 8-bit timer only controlled by Timer 1 control bits.

1 (Timer 1) Timer/Counter 1 stopped

122

STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922805190 Tel:86-755-82948412

Fax:86-755-82944243

AUXR register (Address:8EH)

LSB

SFR name | Address| bit B7 B6 B5 B4

B3 B2

Bl

B0

AUXR S8EH | name | TOx12 T1x12 - -

TOox12
0 : The clock source of Timer 0 is SYSclk/12.
1 : The clock source of Timer 0 is SYSclk/1.
T1x12
0 : The clock source of Timer 1 is SYSclk/12.
1 : The clock source of Timer 1 is SYSclk/1.

INT_CLKO : External interrupt enable and clock output register

SFR name | Address| bit | B7 B6 B5 B4 B3

B2

B1

BO

INT_ CLKO | 8FH |name| - EX4 | EX3 | EX2 -

T1CLKO

TOCLKO

T1CLKO : When set, P3.4 is enabled to be the clock output of Timer 1. The clock rate is Timer 1

overflow rate divided by 2.

TOCLKO : When set, P3.5 is enabled to be the clock output of Timer 0. The clock rate is Timer 0

overflow rate divided by 2.

STC MCU Limited

website: www.STCMCU.com

123

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

7.1 Timer/Counter 0 Mode of Operation

Mode 0

In this mode, the timer 0 is configured as a 16-bit re-loadable timer/counter. As the count rolls over from all 1s
to all Os, it sets the timer interrupt flag TFO. The counted input is enabled to the timer when TRO = 1 and either
GATE=0 or INTO= 1.(Setting GATE = 1 allows the Timer to be controlled by external input INTO, to facilitate
pulse width measurements.) TRO is a control bit in the Special Function Register TCON. GATE is in TMOD.

AUXR.7/T0x12=0
TFO Interrupt
l Toggle
TLO
M'— >{ CLKOUTO
; P3.5
GATE [] :
RL_THO | RL_TLO TOCLKO
(8bits) | (8 bits)

Timer/Counter 0 Mode 0: 16-Bit Auto-Reload

For Timer 0, there are 2 implied registers RL_TLO and RL THO implemented to meet Mode 0 operation
requirement. The addresses of RL_TLO/RL_THO are homogeneous to TLO/THO.

While the Timer 0 is configured to operate under Mode 0 (TMOD[1:0]/[M1, M0] = 00b), a write to TLO[7:0] will
simultaneously write to RL_TLO while TRO = 0, but only write to RL_TLO while TRO=1. A write to THO[7:0]
will simultaneously write to RL_THO while TRO = 0, but only write to RL__ THO while TRO=1.

Under MODEO operating, overflow of [THO,TLO] will automatically reload value [RL_THO,RL TLO] onto
[THO,TLO].

STC15F204EA series is able to generate a programmable clock output on P3.5. When TOCLKO bit
in INT_CLKO SFR is set, TO timer overflow pulse will toggle P3.5 latch to generate a 50% duty clock.
The frequency of clock-out is as following :

(SYSclk/2) / (256 — THO), when T0x12=1
or (SYSclk/2/12)/ (256 — THO), when TOx12=0

124 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

The following program is an C language code that domestrates Timer 0 in 16-bit auto-reload timer mode.

/* */
/* --- STC MCU International Limited */
/* --- STC 15 Series 16-bit auto-reload Timer Demo ----------------- */
/* --- Mobile: (86)13922805190 */
/* -—- Fax: 86-755-82944243 */
/* -—- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */

/* 1f you want to use the program or the program referenced in the */
/* article, please specify in which data and procedures from STC */
/* */

#include "reg51.h"

typedef unsigned char BYTE;
typedef unsigned int WORD;

/1

/* define constants */
#define FOSC 18432000L

#define MODEIT //Timer clock mode, comment this line is 12T mode, uncomment is 1T mode
#ifdef MODEIT

#define TIMS (65536-FOSC/1000) //1ms timer calculation method in 1T mode

felse

#define TIMS (65536-FOSC/12/1000) //1ms timer calculation method in 12T mode

#endif

/* define SFR */
sfr AUXR = 0x8e; //Auxiliary register
sbit TEST LED = P0"0; /lwork LED, flash once per second

/* define variables */
WORD count; //1000 times counter

/1

/* Timer0 interrupt routine */
void tm0 _isr() interrupt 1 using 1

{
if (count-- == 0) /1ms * 1000 -> 1s
{
count = 1000; //reset counter
TEST LED =! TEST LED; /Iwork LED flash
¥
¥

STC MCU Limited website: www.STCMCU.com 125

www.STCMCU.com

Mobile:(86)13922805190 Tel:86-755-82948412

Fax:86-755-82944243

I

/* main program */
void main()

{

#ifdef MODEIT
AUXR = 0x80; /timerQ work in 1T mode

#endif
TMOD = 0x00; //set timer0 as mode0 (16-bit auto-reload)
TLO = TIMS; //initial timer0O low byte
THO =TIMS >>§; //initial timer0 high byte
TRO=1; //timerO0 start running
ETO=1; //enable timer0 interrupt
EA=1; //open global interrupt switch
count = 0; //initial counter
while (1); //loop

§

The following program is as the same as the above program except in assembly language.

% */
;/* --- STC MCU International Limited */
;/*¥ --- STC 15 Series 16-bit auto-reload Timer Demo ----------=------- */
;/* --- Mobile: (86)13922805190 */
;/* --- Fax: 86-755-82944243 */
/% - Tel: 86-755-82948412 */
/% --- Web: www.STCMCU.com */

;/* If you want to use the program or the program referenced in the */
;/* article, please specify in which data and procedures from STC */

S*

;/* define constants */
#define MODEIT

#ifdef MODEIT

TIMS EQU 0B80OH
#else

TIMS EQU 0FA00H
#endif

;/* define SFR */
AUXR DATA 8EH
TEST LED BIT P1.0

;/* define variables */
COUNT DATA 20H

;Timer clock mode, comment this line is 12T mode, uncomment is 1T mode

;1ms timer calculation method in 1T mode is (65536-18432000/1000)

;1ms timer calculation method in 12T mode is (65536-18432000/12/1000)

;Auxiliary register
;work LED, flash once per second

;1000 times counter (2 bytes)

126

STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922805190

Tel:86-755-82948412

Fax:86-755-82944243

ORG
LIMP
ORG
LIMP

0000H
MAIN
000BH
TMO_ISR

s

;/* main program */

MAIN:

#ifdef MODEIT
MOV

#endif
MOV
MOV
MOV
SETB
SETB
SETB
CLR
MOV
MOV
SIMP

AUXR, #80H
TMOD, #00H

TLO, #LOW TIMS
THO, #HIGH TIMS
TRO

ETO

EA

A

COUNT, A
COUNT+I, A

$

s

;/* TimerO interrupt routine */

stimerO work in 1T mode

;set timer(O as modeO (16-bit auto-reload)

;initial timer(O low byte
;initial timer0 high byte
stimer0 start running

;enable timer(interrupt
;open global interrupt switch

;initial counter

TMO_ISR:
PUSH ACC
PUSH PSW
MOV A, COUNT
ORL A, COUNT+1 ;check whether count(2byte) is equal to 0
INZ SKIP
MOV COUNT, #LOW 1000 ;1ms * 1000 -> 1s
MOV COUNT+1, #HIGH 1000
CPL TEST_LED ;work LED flash
SKIP:
CLR C
MOV A, COUNT ;count--
SUBB A, #1
MOV COUNT, A
MOV A, COUNT+1
SUBB A, #0
MOV COUNT+I, A
POP PSW
POP ACC
RETI
END
STC MCU Limited website: www.STCMCU.com 127

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

Mode 1

In this mode, the timer register is configured as a 16-bit register. As the count rolls over from all Is to all Os, it
sets the timer interrupt flag TFO. The counted input is enabled to the timer when TRO = 1 and either GATE=0 or
INTO = 1.(Setting GATE = 1 allows the Timer to be controlled by external input INTO, to facilitate pulse width
measurements.) TRO is a control bit in the Special Function Register TCON. GATE is in TMOD.

The 16-Bit register consists of all 8 bits of THO and the lower 8 bits of TLO. Setting the run flag (TRO) does not
clear the registers.

mXR 7/T0x12=0

AUXR.7/T0x 12=1

TO Pin 4+

TRO

SYSclk

GATE

INTO

Timer/Counter 0 Mode 1 : 16-Bit Timer/Counter

Mode 2

Mode 2 configures the timer register as an 8-bit counter(TLO) with automatic reload. Overflow from TLO not
only set TFO, but also reload TLO with the content of THO, which is preset by software. The reload leaves THO
unchanged.

STC15F204EA series is able to generate a programmable clock output on P3.5. When TOCLKO bit
in INT_CLKO SFR is set, TO timer overflow pulse will toggle P3.5 latch to generate a 50% duty clock.
The frequency of clock-out is as following :

(SYSclk/2) / (256 — THO), when T0x12=1
or (SYSclk/2/12) / (256 — THO) , when T0x12=0
AUXR.7/T0x12=0
TFO Interrupt
SYSclk
Toggle
> |crxouro
P3.5
TOCLKO

Timer/Counter 0 Mode 2: 8-Bit Auto-Reload

128 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922805190 Tel:86-755-82948412

Fax:86-755-82944243

Example: write a program using Timer 0 to create a SKHz square wave on P1.0.

Assembly Language Solution:

ORG
MOV
MOV
MOV
SETB
LOOP: INB
CLR
CPL
SIMP
END

C Language Solution using Timer Interrupt :

0030H
TMOD, #20H
TLO, #9CH
THO, #9CH
TRO
TFO, LOOP
TFO
P1.0
LOOP

#include <REG51.H>

sbit
main()

{

}

portbit = P1°0;

TMOD = 0x02;
THO = 9CH;
TRO=1;

IE = 0x82
while(1);

void TOISR(void) interrupt 1

{
H

portbit = !portbit;

;8-bit auto-reload mode
;initialize TLO

;-100 reload value in THO
;Start Tmier 0

;Wait for overflow

;Clear Timer overflow flag
;Toggle port bit

;Repeat

/* SFR declarations */
/* Use variable portbit to refer to P1.0 */

/* timer 0, mode 2 */

/* 100us delay */

/* Start timer */

/* Enable timer 0 interrupt */
/* repeat forever */

/*toggle port bit P1.0 */

STC MCU Limited

website: www.STCMCU.com

129

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

Mode 3

Timer 1 in Mode 3 simply holds its count, the effect is the same as setting TR1 = 0. Timer 0 in Mode 3 established
TLO and THO as two separate 8-bit counters. TLO use the Timer O control bits: CIT L,GATE,TRO, INTO and TFO.
THO is locked into a timer function (counting machine cycles) and takes over the use of TR1 from Tmer 1. Thus,
THO now controls the “Timer 1” interrupt.

Mode 3 is provided for applications requiring an extra 8-bit timer or counter. When Timer 0 is in Mode 3, Timer 1
can be turned on and off by switching it out of and into its own Mode 3, or can still be used by the serial port as a
baud rate generator, or in fact, in any application not requiring an interrupt.

12 AUXR.7/T0x12=0

THO
° El_n (8 Bits) TF1 — Interrupt

control

SYSclk

TR1

Timer/Counter 0 Mode 3: Two 8-Bit Counters

130 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

7.2 Timer/Counter 1 Mode of Operation

Mode 0

In this mode, the timer register is configured as a 16-bit re-loadable timer/counter. As the count rolls over from all
Is to all Os, it sets the timer interrupt flag TF1. The counted input is enabled to the timer when TR1 = 1 and either
GATE=0 or INT1 = 1. (Setting GATE = 1 allows the Timer to be controlled by external input INT1, to facilitate
pulse width measurements.) TRO is a control bit in the Special Function Register TCON. GATE is in TMOD.

AUXR.6/T1x12=0
TF1 Interrupt
- l Toggle
XR.6/T1x12=1
THI1 TLI /
__ 4 @ bits) | (8 bity) ;o—>{ DL Jerkoum

i P3.4

GATE [] !
o
INT1 (8 bits) (8 bits)

Timer/Counter 1 Mode 0: 16-Bit Auto-Reload

For Timer 1, there are 2 implied registers RL_TL1 and RL_TH1 implemented to meet Mode 0 operation
requirement. The addressed of RL_TL1/RL_THI are homogeneous to TL1/TH1.

While the Timer 1 is configured to operate under Mode 0 (TMOD[5:4]/[M1, M0] = 00b), a write to TL1[7:0] will
simultaneously write to RL_TL1 while TR1 = 0, but only write to RL_TL1 while TR1 = 1. A write to TH1[7:0]
will simultaneously write to RL_TH1 while TR1 = 0, but only write to RL_TH1 while TR1 = 1.

Under MODEO operating, overflow of [TH1,TL1] will automatically reload value [RL_TH1,RL_TL1] onto
[TH1,TL1].

STC15F204EA series is able to generate a programmable clock output on P3.4. When T1CLKO bit
in INT_CLKO SFR is set, T1 timer overflow pulse will toggle P3.4 latch to generate a 50% duty clock.
The frequency of clock-out is as following :

(SYSelk/2) / (256 — TH1), when T1x12=1
or (SYSclk/2/12) /(256 -~ TH1), when T1x12=0

STC MCU Limited website: www.STCMCU.com 131

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

The following program is an assembly language code that domestrates Timer 1 in 16-bit auto-reload timer mode.

/* */
/* --—- STC MCU International Limited */
/* --- STC 15 Series 16-bit auto-reload Timer Demo ----------------- */
/* --- Mobile: (86)13922805190 */
/* —-- Fax: 86-755-82944243 */
/* —-- Tel: 86-755-82948412 */
/* --—- Web: www.STCMCU.com */

/* If you want to use the program or the program referenced in the */
/* article, please specify in which data and procedures from STC */
/* */

#include "reg51.h"

typedef unsigned char BYTE;
typedef unsigned int WORD;

/1

/* define constants */
#define FOSC 18432000L

#define MODEIT //Timer clock mode, comment this line is 12T mode, uncomment is 1T mode
#ifdet MODEI1T

#define TIMS (65536-FOSC/1000) //1ms timer calculation method in 1T mode

#else

#define TIMS (65536-FOSC/12/1000) //1ms timer calculation method in 12T mode

#endif

/* define SFR */
sfr AUXR = 0x8e; //Auxiliary register
sbit TEST LED = P0"0; //work LED, flash once per second

/* define variables */
WORD count; //1000 times counter

/1

/* Timerl interrupt routine */
void tm1_isr() interrupt 3 using 1

{
if (count-- == 0) //1ms * 1000 -> 1s
{
count = 1000; //reset counter
TEST LED =! TEST LED; //work LED flash
}
}

132 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412

Fax:86-755-82944243

1

/* main program */
void main()

{

#ifdef MODEIT
AUXR = 0x40; /timerl work in 1T mode

#endif
TMOD = 0x00; //set timer1 as mode0 (16-bit auto-reload)
TL1 =TIMS; //initial timer1 low byte
TH1 =TIMS >>§; //initial timer1 high byte
TR1=1; //timer] start running
ET1=1; //enable timerl interrupt
EA=1; //open global interrupt switch
count = 0; //initial counter
while (1); //loop

}

The following program is as the same as the above program except in assembly language.

e */
;/* --- STC MCU International Limited */
;/* --- STC 15 Series 16-bit auto-reload Timer Demo ----------------- */
;/* --- Mobile: (86)13922805190 */
;/* --- Fax: 86-755-82944243 */
;/* --- Tel: 86-755-82948412 */
/% -—- Web: www.STCMCU.com */

;/* If you want to use the program or the program referenced in the */
;/* article, please specify in which data and procedures from STC */

/% */

;/* define constants */

#define MODEIT ;Timer clock mode, comment this line is 12T mode, uncomment is 1T mode
#ifdef MODEIT

TIMS EQU 0B800OH ;1ms timer calculation method in 1T mode is (65536-18432000/1000)
felse

TIMS EQU OFAOOH ;1ms timer calculation method in 12T mode is (65536-18432000/12/1000)
#endif

;/* define SFR */

AUXR DATA S8EH ;Auxiliary register

TEST LED BIT P1.0 ;work LED, flash once per second

;/* define variables */

COUNT DATA 20H ;1000 times counter (2 bytes)

STC MCU Limited website: www.STCMCU.com

133

www.STCMCU.com Mobile:(86)13922805190

Tel:86-755-82948412

Fax:86-755-82944243

s

ORG 0000H
LIMP MAIN
ORG 001BH

LIMP TMI1 ISR

s

;/* main program */

MAIN:
#ifdef MODEIT

MOV AUXR, #40H
#endif

MOV TMOD, #00H
MOV TLI, #LOW TIMS
MOV THI, #HIGH T1IMS

SETB TRI
SETB ETI1
SETB EA
CLR A

MOV COUNT, A
MOV COUNT+I, A
SIMP §

s

;/* Timer] interrupt routine */

TM1_ISR:
PUSH ACC
PUSH PSW
MOV A, COUNT
ORL A, COUNT-+1
INZ SKIP

MOV COUNT, #LOW 1000
MOV COUNT+1, #HIGH 1000
CPL TEST LED

SKIP:
CLR C
MOV A, COUNT
SUBB A, #1
MOV COUNT, A
MOV A, COUNT+I
SUBB A, #0
MOV COUNT+I, A
POP PSW
POP ACC
RETI
END

stimer] work in 1T mode

;set timerl as mode0 (16-bit auto-reload)

;initial timer] low byte
;initial timer] high byte
stimer] start running

;enable timer1 interrupt

;open global interrupt switch

;initial counter

;check whether count(2byte) is equal to 0

;Ims * 1000 -> 1s

;work LED flash

;count--

134 STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

Mode 1

In this mode, the timer register is configured as a 16-bit register. As the count rolls over from all 1s to all Os, it
sets the timer interrupt flag TF1. The counted input is enabled to the timer when TR1 = 1 and either GATE=0 or
INT1= 1.(Setting GATE = 1 allows the Timer to be controlled by external input INTI, to facilitate pulse width
measurements.) TRI is a control bit in the Special Function Register TCON. GATE is in TMOD.

The 16-Bit register consists of all 8 bits of THI and the lower 8§ bits of TL1. Setting the run flag (TR1) does not
clear the registers.

SYSclk

AUXR.6/T1x12=0

Interrupt

Timer/Counter 1 Mode 1 : 16-Bit Counter

Mode 2

Mode 2 configures the timer register as an 8-bit counter(TL1) with automatic reload. Overflow from TL1 not
only set TFx, but also reload TL1 with the content of TH1, which is preset by software. The reload leaves TH1
unchanged.

STC15F204EA series is able to generate a programmable clock output on P3.4. When TICLKO bit
in INT_CLKO SFR is set, T1 timer overflow pulse will toggle P3.4 latch to generate a 50% duty clock.
The frequency of clock-out is as following :

(SYSclk/2) / (256 — TH1), when T1x12=1
or (SYSclk/2/12) / (256 — TH1) , when T1x12=0
TF1 Interrupt
Toggle
L X |cikou
0 5 P3.4
an TICLKO

Timer/Counter 1 Mode 2: 8-Bit Auto-Reload

STC MCU Limited website: www.STCMCU.com 135

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

7.3 Generic Programmable Clock Output

There are 3 generic clocks can be induced to I/O pins.

SFR Name | SFR Address | bit B7 B6 B5 B4 B3 B2 Bl BO
INT_CLKO 8FH name - EX4 EX3 EX2 - - |TICLKO|TOCLKO
SFR Name | SFR Address bit B7 B6 B5 B4 B3 B2 Bl B0

IRC_CLKO BBH name | EN_IRCO - - - DIVIRCO - - -

Output Clock from system clock(Internal RC) to P0.0

Set EN_IRCO(IRC_CLKO.7) to switch P0.0 into IRC clock output pin. Depending on DIVIRCO set or clear, the
output frequency will be SYSclk/2 or SYSclk.

Output Clock from TimerO Overflow onto P3.5

Setting TOCLKO can switch P3.5 into clock output pin, and the clock with frequency TimerO-Overflow-Rate
divided by 2. The frequency of clock-out is as following :
(SYSclk/2) / (256 — THO), when T0x12=1
or (SYSclk/2/12) / (256 — THO) , when T0x12=0

Output Clock from Timerl Overflow onto P3.4

Setting TICLKO can switch P3.4 into clock output pin, and the clock with frequency Timerl-Overflow-Rate
divided by 2. The frequency of clock-out is as following :

(SYSclk/2) / (256 — TH1), when T1x12=1
or (SYSclk/2/12)/ (256~ TH1), when T1x12=0

136 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412

Fax:86-755-82944243

The following program is an C language code that domestrates Internal RC oscillator Clock Output function.

/* */
/* --- STC MCU International Limited */
/* --- STC 15 Series MCU IRC clock output Demo ------------------ */
/* --- Mobile: (86)13922805190 */
/* --- Fax: 86-755-82944243 */
/* --- Tel: 86-755-82948412 */
/¥ --- Web: www.STCMCU.com */

/* If you want to use the program or the program referenced in the */
/* article, please specify in which data and procedures from STC */
/* */

sfr IRC_CLKO = 0xbb; //EN_IRCO - - - DIVIRCO - - -

/]

void main()

{
IRC_CLKO = 0x80; //1000,0000 P0.0 output clock signal which frequency is SYSclk
// IRC_CLKO = 0x88; //1000,1000 P0.0 output clock signal which frequency is SYSclk/2
while (1);
H
STC MCU Limited website: www.STCMCU.com

137

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

The following program is an Assembly language code that domestrates Internal RC oscillator Clock Output
function.

¥ */
;/*¥ --- STC MCU International Limited */
;/* --- STC 15 Series MCU IRC clock output Demo ------------=------ */
;/* --- Mobile: (86)13922805190 */
;/* --- Fax: 86-755-82944243 */
;/* - Tel: 86-755-82948412 */
/% -—- Web: www.STCMCU.com */

;/* If you want to use the program or the program referenced in the */
;/* article, please specify in which data and procedures from STC */
J */

IRC_CLKO DATA 0BBH ;EN_IRCO - - - DIVIRCO - - -

s

;interrupt vector table

ORG 0000H

LIMP MAIN

ORG 0100H
MAIN:

MOV SP#7FH ;initial SP

MOV IRC_CLKO, #80H ;1000,0000 P0.0 output clock signal which frequency is SYSclk
; MOV IRC_CLKO,#88H ;1000,1000

;P0.0 output clock signal which frequency is SYSclk/2
SIMP §
END

138 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

The following program is an C language code that domestrates Timer 0 as Programmable Clock Output function.

/* */
/* --- STC MCU International Limited */
/* --- STC 15 Series Programmable Clock Output Demo ----------------- */
/* --- Mobile: (86)13922805190 */
/* --- Fax: 86-755-82944243 */
/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */

/* If you want to use the program or the program referenced in the ----*/
/* article, please specify in which data and procedures from STC ~ ----*/

/*

*/

#include "reg51.h"

/]

/* define constants */
#define FOSC 18432000L

//#define MODEIT //Timer clock mode, comment this line is 12T mode, uncomment is 1T mode

#ifdet MODEI1T

#define F38_4KHz (65536-FOSC/2/38400)

#else

#define F38_4KHz (65536-FOSC/2/12/38400)

#endif

/* define SFR */

sfr AUXR = 0x8e¢;
sfr INT _CLKO = 0x8f;
sbit TOCLKO = P3"5;

/]

/* main program */
void main()

//38.4KHz frequency calculation method of 1T mode

//38.4KHz frequency calculation method of 12T mode

//Auxiliary register
//External interrupt enable and clock output control register
/timer0 clock output pin

{
#ifdef MODEIT
AUXR = 0x80; //timer0 work in 1T mode
#endif
TMOD = 0x00; //set timer(0 as mode0 (16-bit auto-reload)
TLO =F38 4KHz; //initial timer0 low byte
THO = F38 4KHz>> §; //initial timer0 high byte
TRO=1; /timer0 start running
INT CLKO =0x01; //enable timer0 clock output
while (1); //loop
b
STC MCU Limited website: www.STCMCU.com 139

www.STCMCU.com

Mobile:(86)13922805190

Tel:86-755-82948412 Fax:86-755-82944243

The following program is an assembly language code that domestrates Timer 0 as Programmable Clock Output

function.

¥ */
;/*¥ --- STC MCU International Limited */
;/*¥ --- STC 15 Series Programmable Clock Output Demo ---------------- */
;/* --- Mobile: (86)13922805190 */
;/* --- Fax: 86-755-82944243 */
;/* -~ Tel: 86-755-82948412 */
/% -—- Web: www.STCMCU.com */

;/* If you want to use the program or the program referenced in the ---*/

;/* article, please specify in which data and procedures from STC

i

Y

*/

;/* define constants */
#define MODEIT

#ifdef MODEIT

F38 4KHz EQU OFF10H
#else

F38 4KHz
#endif

EQU OFFECH

;/* define SFR */

;Timer clock mode, comment this line is 12T mode, uncomment is 1T mode

;38.4KHz frequency calculation method of 1T mode is (65536-18432000/2/38400)

;38.4KHz frequency calculation method of 12T mode(65536-18432000/2/12/38400)

AUXR DATA 08EH ;Auxiliary register
INT CLKO DATA 08FH ;External interrupt enable and clock output control register
TOCLKO BIT P3.5 stimer0 clock output pin
ORG 0000H
LIMP MAIN
;/* main program */
MAIN:
#ifdef MODEIT
MOV AUXR, #80H ;timer0 work in 1T mode
#endif
MOV TMOD, #00H ;set timer(as mode0 (16-bit auto-reload)
MOV TLO, #LOW F38 4KHz ;initial timer(low byte
MOV THO, #HIGH F38 4KHz ;initial timer0 high byte
SETB TRO
MOV INT CLKO, #01H ;enable timer(clock output
SIMP §
END

140

STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

The following program is an C language code that domestrates Timer 1 as Programmable Clock Output function.

/* */
/* --- STC MCU International Limited */
/* --- STC 15 Series Programmable Clock Output Demo ---------------- */
/* --- Mobile: (86)13922805190 */
/* --- Fax: 86-755-82944243 */
/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */
/* 1f you want to use the program or the program referenced in the ----*/
/* article, please specify in which data and procedures from STC = ----*/
/* */

#include "reg51.h"

/1

/* define constants */
#define FOSC 18432000L
//#define MODEI1T //Timer clock mode, comment this line is 12T mode, uncomment is 1T mode

#ifdet MODEI1T

#define F38_4KHz (65536-FOSC/2/38400) /138.4KHz frequency calculation method of 1T mode
felse

#define F38_4KHz (65536-FOSC/2/12/38400) //38.4KHz frequency calculation method of 12T mode
#endif

/* define SFR */

sfr AUXR = 0x8e; //Auxiliary register

sfr INT_CLKO = 0x8f; //External interrupt enable and clock output control register
sbit TICLKO = P3"4; /ftimerl clock output pin

/

/* main program */
void main()

{

#ifdet MODEI1T
AUXR = 0x40; /timer] work in 1T mode

#endif
TMOD = 0x00; //set timer1 as mode0 (16-bit auto-reload)
TL1=F38 4KHz; //initial timer1 low byte
TH1 =F38 4KHz>>§; //initial timer1 high byte
TR1=1; //timerl start running
INT_CLKO = 0x02; /lenable timerl clock output
while (1); //loop

H

STC MCU Limited website: www.STCMCU.com 141

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

The following program is an assembly language code that domestrates Timer 1 as Programmable Clock Output
function.

J* */
;/* --- STC MCU International Limited */
;/* --- STC 15 Series Programmable Clock Output Demo ---------------- */
;/* --- Mobile: (86)13922805190 */
;/* --- Fax: 86-755-82944243 */
;/* --- Tel: 86-755-82948412 */
/% -—- Web: www.STCMCU.com */
;/* If you want to use the program or the program referenced in the ---*/
;/* article, please specify in which data and procedures from STC =~ ----*/
J* */

;/* define constants */
#define MODEIT ;Timer clock mode, comment this line is 12T mode, uncomment is 1T mode

#ifdef MODEIT

F38 4KHz EQU OFFI10H ;38.4KHz frequency calculation method of 1T mode is (65536-18432000/2/38400)
felse

F38 4KHz EQU OFFECH ;38.4KHz frequency calculation method of 12T mode (65536-18432000/2/1
2/38400)

#endif

;/* define SFR */

AUXR DATA 08EH ;Auxiliary register
INT CLKO DATA 08FH ;External interrupt enable and clock output control register
T1CLKO BIT P3.4 stimer] clock output pin

ORG 0000H

LIMP MAIN

>

;/* main program */

MAIN:
#iftdef MODEIT
MOV AUXR, #40H stimerl work in 1T mode
#endif
MOV TMOD, #00H ;set timerl as mode0 (16-bit auto-reload)
MOV TLI1, #LOW F38 4KHz ;initial timerl low byte
MOV THI, #HIGH F38 4KHz ;initial timerl high byte
SETB TRI1
MOV INT CLKO, #02H ;enable timerl clock output
SIMP §
END

142 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

7.4 Changes of STC15F204EA series Timers compared with standard 8051

The Timer 0 and Timerl are almost the same to standard 80C51 MCU excepting the following
changes.

Timer0 and Timer1 Clock Sources

SFR Name |SFR Address bit B7 B6 B5 B4 B3 B2 Bl BO
AUXR 8EH name TOox12 Tix12 - -
TOx12

0 := The clock source of Timer 0 is SY Sclk/12.
1 := The clock source of Timer 0 is SY Sclk.

Tix12
0 := The clock source of Timer 1 is SYSclk/12.
1 := The clock source of Timer 1 is SYSclk.

Change MODEO functionality

The MODEO operations for Timerl and Timer0O have been changed to 16-bit re-loadable timer/counter from
13-bit timer/counter.

There are 4 implied registers RL_TLO, RL_THO, RL_TL1, and RL_TH1 implemented to meet MODEOQ operation
requirement. The addressed of RL_TLO/RL_THO/RL_TL1/RL _TH1 are homogeneous to TLO/THO/TL1/THI.

While the Timer0 is configured to operate under MODEO (TMOD[1:0]/[M1,M0] = 00b), a write to TLO[7:0] will
simultaneously write to RL_TLO while TRO = 0, but only write to RL_TLO while TR0 = 1. A write to THO[7:0]
will simultaneously write to RL_THO while TRO = 0, but only write to RL_THO while TR0 = 1.

Under MODEO operating, overflow of [THO,TLO] will automatically reload value [RL_THO,RL_TLO] onto
[THO,TLO].

TFO Interrupt

Toggle

THO | TLO
o | dti [— | D etxouto

P3.5
[]
RL_THO | RL_TLO

Timer/Counter 0 Mode 0: 16-Bit Auto-Reload

TOCLKO

STC MCU Limited website: www.STCMCU.com 143

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

While the Timerl is configured to operate under MODEO (TMOD[5:4]/[M1,M0] = 00b), a write to TL1[7:0] will
simultaneously write to RL_TL1 while TR1 = 0, but only write to RL_TL1 while TR1 = 1. A write to TH1[7:0]
will simultaneously write to RL_TH1 while TR1 = 0, but only write to RL.__TH1 while TR1 = 1.

Under MODEO operating, overflow of [TH1,TL1] will automatically reload value [RL_TH1,RL TL1] onto
[TH1,TL1].

TF1 Interrupt
SYSclk
Toggle
TLI
M— >< CLKOUTI
i P3.4
GATE [] J
(8 bits) | (8 bits)
Timer/Counter 1 Mode 0: 16-Bit Auto-Reload
STC MCU Limited. website: www.STCMCU.com

144

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

Chapter 8 Simulate Serial Port Program

8.1 Programs using Timer 0 to realize Simulate Serial Port
————Timer 0 in 16-bit Auto-Reload Mode

There are two procedures using Timer 0 to realize simulate serial port, one written in C language and the other
written in Assembly language. Timer 0 in the following two programs both operate in 16-bit auto-reload mode.

C language code listing:

/* */
/* --- STC MCU International Limited */
/* --- STC 15 Series 1/0 simulate serial port */
/* --- Mobile: (86)13922805190 */
/* --- Fax: 86-755-82944243 */
/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */

/* If you want to use the program or the program referenced in the */
/* article, please specify in which data and procedures from STC ~ */
/* */

#include "reg51.h"

//define baudrate const
//BAUD = 256 - FOSC/3/BAUDRATE/M (1T:M=1; 12T:M=12)
/INOTE: (FOSC/3/BAUDRATE) must be greater than 98, (RECOMMEND GREATER THAN 110)

//#define BAUD 0xF400 //'1200bps @ 11.0592MHz
//#define BAUD 0xFAO00 //2400bps @ 11.0592MHz
/[#define BAUD 0xFDO0O // 4800bps @ 11.0592MHz
/[#define BAUD OxFE80 //'9600bps @ 11.0592MHz
/[#define BAUD 0xFF40 //19200bps @ 11.0592MHz
//#define BAUD 0xFFAO //38400bps @ 11.0592MHz
//#define BAUD 0xECO00 // 1200bps @ 18.432MHz
/[#define BAUD 0xF600 // 2400bps @ 18.432MHz
/[#define BAUD 0xFBO00 // 4800bps @ 18.432MHz
//#define BAUD 0xFD80 // 9600bps @ 18.432MHz
//#define BAUD 0xFECO //19200bps @ 18.432MHz
#define BAUD 0xFF60 //38400bps @ 18.432MHz
//#define BAUD 0xE800 // 1200bps @ 22.1184MHz
/[#define BAUD 0xF400 //2400bps @ 22.1184MHz
//#define BAUD 0xFAO00 // 4800bps @ 22.1184MHz
/[#define BAUD 0xFDO0O // 9600bps @ 22.1184MHz
/[#define BAUD OxFE80 //19200bps @ 22.1184MHz
/[#define BAUD 0xFF40 //38400bps @ 22.1184MHz
/[#define BAUD 0xFF80 //57600bps @ 22.1184MHz

STC MCU Limited website: www.STCMCU.com 145

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412

Fax:86-755-82944243

sfr AUXR = 0x8E;
sbit RXB = P3"0;
sbit TXB = P3"1;

typedef bit BOOL;
typedef unsigned char BYTE;
typedef unsigned int WORD;

//define UART TX/RX port

BYTE TBUF,RBUF;
BYTE TDAT,RDAT;
BYTE TCNT,RCNT;
BYTE TBIT,RBIT;
BOOL TING,RING;
BOOL TEND,REND;
void UART _INIT();
BYTE t, r;
BYTE buf16];
void main()
{
TMOD = 0x00; //timer0 in 16-bit auto reload mode
AUXR = 0x80; //timer0 working at 1T mode
TLO = BAUD;
THO = BAUD>>§; //initial timer(and set reload value
TRO=1; /Itiemr0 start running
ETO=1; //enable timer0 interrupt
PTO=1; //improve timer(interrupt priority
EA=1; /lopen global interrupt switch
UART _INIT();
while (1)
{ //user's function
if (REND)
{
REND = 0;
buf[r++ & 0x0f] = RBUF;
§
if (TEND)
{
if (t!=r)
{
TEND = 0;
TBUF = buf[t++ & 0x0f];
TING = 1;
H
H
H
H
146 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190

Tel:86-755-82948412

/]
//Timer interrupt routine for UART

void tmO() interrupt 1 using 1

Fax:86-755-82944243

{
if (RING)
{
if (--RCNT == 0)
{
RCNT = 3; //reset send baudrate counter
if (~-RBIT == 0)
{
RBUF = RDAT; //save the data to RBUF
RING =0; //stop receive
REND = 1; //set receive completed flag
}
else
{
RDAT >>= 1;
if (RXB) RDAT |= 0x80; //shift RX data to RX buffer
}
}
}
else if (!RXB)
{
RING =1; //set start receive flag
RCNT =4; //initial receive baudrate counter
RBIT=9; //initial receive bit number (8 data bits + 1 stop bit)
}
if (--TCNT == 0)
{
TCNT = 3; //reset send baudrate counter
if (TING) //judge whether sending
{
if (TBIT == 0)
{
//send start bit
TDAT =TBUF; //load data from TBUF to TDAT
TBIT=9; //initial send bit number (8 data bits + 1 stop bit)
}
STC MCU Limited website: www.STCMCU.com 147

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

else
{
TDAT >>=1; //shift data to CY
if (--TBIT == 0)
{
TXB =1,
TING =0; //stop send
TEND = 1; //set send completed flag
¥
else
{
TXB =CY; /Iwrite CY to TX port
¥
¥
¥
}
¥
/]

//initial UART module variable

void UART INIT()

{
TING =0;
RING =0;
TEND = 1;
REND = 0;
TCNT =0;
RCNT =0;

148 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190

Tel:86-755-82948412

Fax:86-755-82944243

Assembly language code listing:
/*

*/

/* --- STC MCU International Limited
/* --- STC 15 Series 1/0O simulate serial port

*/
*/

/* --- Mobile: (86)13922805190
/* --- Fax: 86-755-82944243

*/
*/

/% --- Tel: 86-755-82948412

*/

/* --—- Web: www.STCMCU.com

*/

/* If you want to use the program or the program referenced in the */

/* article, please specify in which data and procedures from STC */

/*

*/

;define baudrate const
;BAUD = 65536 - FOSC/3/BAUDRATE/M (1T:M=1;

12T:M=12)

;NOTE: (FOSC/3/BAUDRATE) must be greater then 75, (RECOMMEND GREATER THEN 100)

;BAUD EQU 0F400H ; 1200bps @ 11.0592MHz
;BAUD EQU OFAOOH ; 2400bps @ 11.0592MHz
;BAUD EQU OFDOOH ; 4800bps @ 11.0592MHz
;BAUD EQU OFES8OH ; 9600bps @ 11.0592MHz
;BAUD EQU OFF40H ;19200bps @ 11.0592MHz
;BAUD EQU OFFAOH ;38400bps @ 11.0592MHz
;BAUD EQU OFFCOH ;57600bps @ 11.0592MHz
;BAUD EQU OECOOH ; 1200bps @ 18.432MHz
;BAUD EQU 0OF600H ; 2400bps @ 18.432MHz
;BAUD EQU OFBOOH ; 4800bps @ 18.432MHz
;BAUD EQU OFDS8OH ; 9600bps @ 18.432MHz
;BAUD EQU OFECOH ;19200bps @ 18.432MHz
;BAUD EQU OFF60H ;38400bps @ 18.432MHz
BAUD EQU OFF95H ;57600bps @ 18.432MHz
;BAUD EQU 0OES800H ; 1200bps @ 22.1184MHz
;BAUD EQU 0F400H ; 2400bps @ 22.1184MHz
;BAUD EQU OFAOOH ; 4800bps @ 22.1184MHz
;BAUD EQU OFDOOH ; 9600bps @ 22.1184MHz
;BAUD EQU OFES8OH ;19200bps @ 22.1184MHz
;BAUD EQU OFF40H ;38400bps @ 22.1184MHz
;BAUD EQU OFF80H ;57600bps @ 22.1184MHz
STC MCU Limited website: www.STCMCU.com 149

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

;define UART TX/RX port

RXB BIT P3.0
TXB BIT P3.1

;define SFR

AUXR DATA 8EH

;define UART module variable

TBUF DATA O08H ;(RO) ready send data buffer (USER WRITE ONLY)
RBUF DATA 09H ;(R1) received data buffer (UAER READ ONLY)
TDAT DATA O0OAH ;(R2) sending data buffer ~(RESERVED FOR UART MODULE)
RDAT DATA OBH ;(R3) receiving data buffer (RESERVED FOR UART MODULE)
TCNT DATA OCH ;(R4) send baudrate counter (RESERVED FOR UART MODULE)
RCNT DATA ODH ;(RS) receive baudrate counter (RESERVED FOR UART MODULE)
TBIT DATA OEH ;(R6) send bit counter (RESERVED FOR UART MODULE)
RBIT DATA OFH ;(R7) receive bit counter (RESERVED FOR UART MODULE)
TING BIT 20H.0 ; sending flag (USER WRITE "1" TO TRIGGER SEND DATA, CLEAR BY
MODULE)
RING BIT 20H.1 ; receiving flag (RESERVED FOR UART MODULE)
TEND BIT 20H.2 ;sent flag (SET BY MODULE AND SHOULD USER CLEAR)
REND BIT 20H.3 ; received flag (SET BY MODULE AND SHOULD USER CLEAR)
RPTR DATA 21H ;circular queue read pointer
WPTR DATA 22H ;circular queue write pointer
BUFFER DATA 23H ;circular queue buffer (16 bytes)

ORG 0000H

LIMP RESET

;TimerO interrupt routine for UART

ORG 000BH

PUSH ACC ;4 save ACC

PUSH PSW ;4 save PSW

MOV PSW, #08H ;3 using register group 1

L UARTSTART:

150 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

JB RING, L RING ;4 judge whether receiving
JB RXB, L REND ; check start signal
L RSTART:
SETB RING ; set start receive flag
MOV RS5, #4 ; initial receive baudrate counter
MOV R7, #9 ; initial receive bit number (8 data bits + 1 stop bit)
SJIMP L REND ; end this time slice
L RING:
DINZ RS, L REND ;4 judge whether sending
MOV RS, #3 ;2 reset send baudrate counter
L RBIT:
MOV C, RXB ;3 read RX port data
MOV A, R3 ;1 and shift it to RX buffer
RRC A ;1
MOV R3, A ;2
DINZ R7, L REND ;4 judge whether the data have receive completed
L RSTOP:
RLC A ; shift out stop bit
MOV Rl, A ; save the data to RBUF
CLR RING ; stop receive
SETB REND ; set receive completed flag
L REND
L TING:
DINZ R4, L TEND ;4 check send baudrate counter
MOV R4, #3 ;2 reset it
INB TING, L TEND ;4 judge whether sending
MOV A, R6 ;1 detect the sent bits
INZ L TBIT ;3 "0" means start bit not sent
L TSTART:
CLR TXB ; send start bit
MOV TDAT, RO ; load data from TBUF to TDAT
MOV R, #9 ; initial send bit number (8 data bits + 1 stop bit)
JMP L TEND ; end this time slice
L TBIT:
MOV A, R2 ;1 read data in TDAT
SETB C ;1 shift in stop bit
RRC A ;1 shift data to CY
MOV R2, A ;2 update TDAT
MOV TXB, C ;4 write CY to TX port
DINZ R, L TEND ;4 judge whether the data have send completed
L TSTOP:
CLR TING ; stop send
SETB TEND ; set send completed flag
L TEND
L UARTEND:
POP PSW ;3 restore PSW
POP ACC ;3 restore ACC
RETI ;4 (69)
STC MCU Limited website: www.STCMCU.com 151

www.STCMCU.com

Mobile:(86)13922805190

Tel:86-755-82948412 Fax:86-755-82944243

s

;initial UART module variable

UART INIT:
CLR TING
CLR RING
SETB TEND
CLR REND
CLR A

MOV TCNT, A
MOV RCNT, A
RET

s

;main program entry

RESET:
MOV RO, #7FH
CLR A
MOV ~ @RO, A
DINZ RO, $-1
MOV SP, #7FH

;system initial

MOV TMOD, #00H

MOV AUXR, #80H

MOV TLo, #LOW BAUD
MOV THO, #HIGH BAUD

SETB TRO
SETB ETO
SETB PTO
SETB EA

LCALL UART INIT

MAIN:

INB REND, CHECKREND
CLR REND

MOV A, RPTR

INC RPTR

ANL A, #OFH

ADD A, #BUFFER
MOV RO, A

MOV ~ @RO, RBUF

;clear RAM

;initial SP

;timer0 in 16-bit auto reload mode
;timer0 working at 1T mode
;initial timer0 and

;set reload value

;tiemr0 start running

;enable timer(interrupt

;improve timer0 interrupt priority
;open global interrupt switch

;if (REND)

i

: REND = 0;

: BUFFER[RPTR++ & 0xf] = RBUF;

152 STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243
CHECKREND:
JNB TEND, MAIN ;if (TEND)
MOV A, RPTR :{
XRL A, WPTR : if (WPTR != REND)
iz MAIN : {
CLR TEND : TEND = 0;
MOV A, WPTR : TBUF = BUFFER[WPTR++ & 0xfJ;
INC WPTR : TING = 1;
ANL A, #OFH :)
ADD A, #BUFFER)
MOV RO, A :
MOV TBUF, @RO :
SETB TING :
SIMP MAIN
END
STC MCU Limited

website: www.STCMCU.com 153

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243
8.2 Programs using Timer 1 to realize Simulate Serial Port

————Timer 1 in 16-bit Auto-Reload Mode

There are two procedures using Timer 1 to realize simulate serial port, one written in C language and the other
written in Assembly language. Timer 1 in the following two programs both operate in 16-bit auto-reload mode.

C language code listing:

/* */
/* --- STC MCU International Limited */
/* --- STC 15 Series I/O simulate serial port */
/* --- Mobile: (86)13922805190 */
/* --- Fax: 86-755-82944243 */
/* --- Tel: 86-755-82948412 */
/% --- Web: www.STCMCU.com */

/* If you want to use the program or the program referenced in the */
/* article, please specify in which data and procedures from STC */
/* */

#include "reg51.h"

//define baudrate const
//BAUD = 256 - FOSC/3/BAUDRATE/M (1T:M=1; 12T:M=12)
//INOTE: (FOSC/3/BAUDRATE) must be greater than 98, (RECOMMEND GREATER THAN 110)

/f#define BAUD 0xF400 //'1200bps @ 11.0592MHz
/H#define BAUD 0xFA00 //2400bps @ 11.0592MHz
/f#define BAUD 0xFDO0O /1 4800bps @ 11.0592MHz
/f#define BAUD OxFE80 //'9600bps @ 11.0592MHz
/f#define BAUD 0xFF40 //19200bps @ 11.0592MHz
/H#define BAUD OxFFAOQ //38400bps @ 11.0592MHz
/f#define BAUD 0xECO00 //'1200bps @ 18.432MHz
/f#define BAUD 0xF600 // 2400bps @ 18.432MHz
/I#define BAUD 0xFB0O // 4800bps @ 18.432MHz
/f#define BAUD 0xFD80 //'9600bps @ 18.432MHz
/f#define BAUD OxFECO //19200bps @ 18.432MHz
#define BAUD 0xFF60 //38400bps @ 18.432MHz
/f#define BAUD 0xE800 //'1200bps @ 22.1184MHz
/f#define BAUD 0xF400 /1 2400bps @ 22.1184MHz
/H#define BAUD 0xFA00 /1 4800bps @ 22.1184MHz
/f#define BAUD 0xFDO0O //'9600bps @ 22.1184MHz
/f#define BAUD OxFES80 //19200bps @ 22.1184MHz
/f#define BAUD 0xFF40 //38400bps @ 22.1184MHz
/f#define BAUD OxFF80 //57600bps @ 22.1184MHz

154 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922805190

Tel:86-755-82948412

Fax:86-755-82944243

sfr AUXR = 0x8E;
sbit RXB = P30;
sbit TXB = P3"1;

typedef bit BOOL;
typedef unsigned char BYTE,;
typedef unsigned int WORD;

//define UART TX/RX port

BYTE TBUF,RBUF;
BYTE TDAT,RDAT;
BYTE TCNT,RCNT;
BYTE TBIT,RBIT;
BOOL TING,RING;
BOOL TEND,REND;
void UART_INIT();
BYTE t,1;
BYTE buf[16];
void main()
{
TMOD = 0x00; //timerl in 16-bit auto reload mode
AUXR = 0x40; //timer] working at 1T mode
TL1 =BAUD;
THI1 = BAUD>>g; //initial timer] and set reload value
TR1=1; //tiemr] start running
ETl1 =1, //enable timer] interrupt
PT1=1; //improve timer! interrupt priority
EA=1; //open global interrupt switch
UART_INIT();
while (1)
{ //user's function
if (REND)
{
REND = 0;
buf[r++ & 0x0f] = RBUF;
§
if (TEND)
{
if (t!=r)
{
TEND = 0;
TBUF = buf[t++ & 0x0f];
TING = 1;
§
§
§
§
STC MCU Limited website: www.STCMCU.com 155

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243
/]
//Timer interrupt routine for UART

void tm1() interrupt 3 using 1

{
if (RING)
{
if (--RCNT == 0)
{
RCNT = 3; //reset send baudrate counter
if (--RBIT ==0)
{
RBUF =RDAT; //save the data to RBUF
RING =0; //stop receive
REND = 1; //set receive completed flag
}
else
{
RDAT >>= [;
if (RXB) RDAT |= 0x80; //shift RX data to RX buffer
}
}
}
else if ('RXB)
{
RING =1; //set start receive flag
RCNT =4, //initial receive baudrate counter
RBIT=9; //initial receive bit number (8 data bits + 1 stop bit)
}
if (--TCNT == 0)
{
TCNT =3; //reset send baudrate counter
if (TING) //judge whether sending
{
if (TBIT == 0)
{
TXB = 0; //send start bit
TDAT = TBUF; //load data from TBUF to TDAT
TBIT=9; //initial send bit number (8 data bits + 1 stop bit)
}

156 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

else
{
TDAT >>=1; //shift data to CY
if (--TBIT == 0)
{
TXB =1,
TING =0; //stop send
TEND = 1; //set send completed flag
H
else
{
TXB =CY; /Iwrite CY to TX port
H
H

I/
//initial UART module variable

void UART _INIT()

{
TING =0;
RING =0;
TEND = 1;
REND = 0;
TCNT =0;
RCNT = 0;

STC MCU Limited website: www.STCMCU.com 157

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412

Fax:86-755-82944243

Assembly language code listing:

/* */
/* --- STC MCU International Limited */
/* --- STC 15 Series 1/0 simulate serial port */
/* --- Mobile: (86)13922805190 */
/* --- Fax: 86-755-82944243 */
/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */

/* If you want to use the program or the program referenced in the */
/* article, please specify in which data and procedures from STC ~ */
/* */

;define baudrate const
;BAUD = 65536 - FOSC/3/BAUDRATE/M (1T:M=1; 12T:M=12)

;NOTE: (FOSC/3/BAUDRATE) must be greater then 75, (RECOMMEND GREATER THEN 100)

:BAUD EQU OF400H ; 1200bps @ 11.0592MHz
:BAUD EQU OFA00H : 2400bps @ 11.0592MHz
:BAUD EQU OFDO0OH ; 4800bps @ 11.0592MHz
:BAUD EQU OFESOH : 9600bps @ 11.0592MHz
:BAUD EQU OFF40H :19200bps @ 11.0592MHz
:BAUD EQU OFFAOH :38400bps @ 11.0592MHz
:BAUD EQU OFFCOH :57600bps @ 11.0592MHz
:BAUD EQU OECO0H : 1200bps @ 18.432MHz
:BAUD EQU OF600H : 2400bps @ 18.432MHz
:BAUD EQU OFBOOH ; 4800bps @ 18.432MHz
:BAUD EQU OFDSOH : 9600bps @ 18.432MHz
:BAUD EQU OFECOH :19200bps @ 18.432MHz
:BAUD EQU OFF60H :38400bps @ 18.432MHz
BAUD EQU OFF95H :57600bps @ 18.432MHz
:BAUD EQU OES00H : 1200bps @ 22.1184MHz
:BAUD EQU OF400H : 2400bps @ 22.1184MHz
:BAUD EQU OFA00H : 4800bps @ 22.1184MHz
:BAUD EQU OFDO0OH - 9600bps @ 22.1184MHz
:BAUD EQU OFESOH :19200bps @ 22.1184MHz
:BAUD EQU OFF40H :38400bps @ 22.1184MHz
:BAUD EQU OFF80H :57600bps @ 22.1184MHz

158 STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

;define UART TX/RX port

RXB BIT P3.0
TXB BIT P3.1

;define SFR

AUXR DATA 8EH

;define UART module variable

TBUF
RBUF
TDAT
RDAT
TCNT
RCNT
TBIT

RBIT

TING
RING
TEND
REND

RPTR

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

BIT
BIT
BIT
BIT

08H

09H

0AH
0BH
0CH
0DH
0EH
OFH

20H.0
20H.1
20H.2
20H.3

DATA 21H
WPTR DATA 22H
BUFFER DATA 23H

;(RO) ready send data buffer (USER WRITE ONLY)

;(R1) received data buffer (UAER READ ONLY)

;(R2) sending data buffer =~ (RESERVED FOR UART MODULE)
;(R3) receiving data buffer (RESERVED FOR UART MODULE)
;(R4) send baudrate counter (RESERVED FOR UART MODULE)
;(R5) receive baudrate counter (RESERVED FOR UART MODULE)
;(R6) send bit counter (RESERVED FOR UART MODULE)
;(R7) receive bit counter (RESERVED FOR UART MODULE)

;sending flag(USER WRITE"1"TO TRIGGER SEND DATA,CLEAR BY MODULE)
; receiving flag (RESERVED FOR UART MODULE)
;sent flag (SET BY MODULE AND SHOULD USER CLEAR)
; received flag (SET BY MODULE AND SHOULD USER CLEAR)

;circular queue read pointer
;circular queue write pointer
;circular queue buffer (16 bytes)

ORG

LIMP RESET

0000H

;Timerl interrupt routine for UART

ORG 001BH
PUSH ACC ;4 save ACC
PUSH PSW ;4 save PSW
MOV PSW, #08H ;3 using register group 1
L UARTSTART:
JB RING, L _RING ;4 judge whether receiving
JB RXB, L REND ; check start signal
STC MCU Limited

website: www.STCMCU.com 159

www.STCMCU.com

Mobile:(86)13922805190

Tel:86-755-82948412 Fax:86-755-82944243

L RSTART:
SETB
MOV
MOV
SIMP
L RING:
DINZ
MOV
L RBIT:
MOV
MOV
RRC
MOV
DINZ
L_RSTOP:
RLC
MOV

DINZ
MOV
JNB
MOV
INZ
L _TSTART:
CLR
MOV
MOV
IMP
L TBIT:
MOV
SETB
RRC
MOV
MOV
DINZ
L_TSTOP:
CLR
SETB

L UARTEND:
POP
POP

RETI

RING
RS,
R7,

L REND

REND

R4,
R4,
TING,

L TBIT

TXB
TDAT,

L_TEND

>0

=

25
TXB,

TING
TEND

PSW
ACC

#4
#9

L REND

RXB
R3

L REND

L_TEND

L_TEND
R6

RO

#9

R2

_TEND

set start receive flag

initial receive baudrate counter

initial receive bit number (8 data bits + 1 stop bit)
end this time slice

;4 judge whether sending
;2 reset send baudrate counter

;3 read RX port data

;1 and shift it to RX buffer
;1
2

;4 judge whether the data have receive completed

; shift out stop bit

; save the data to RBUF

; stop receive

; set receive completed flag

;4 check send baudrate counter
;2 reset it

;4 judge whether sending

;1 detect the sent bits

;3 "0" means start bit not sent

; send start bit

; load data from TBUF to TDAT

; initial send bit number (8 data bits + 1 stop bit)
; end this time slice

;1 read data in TDAT

;1 shift in stop bit

;1 shift data to CY

;2 update TDAT

;4 write CY to TX port

;4 judge whether the data have send completed

; stop send
; set send completed flag

;3 restore PSW
;3 restore ACC
;4 (69)

160

STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

s

;initial UART module variable

UART INIT:
CLR TING
CLR RING
SETB TEND
CLR REND
CLR A

MOV TCNT,A
MOV RCNTA
RET

s

;main program entry

RESET:
MOV RO, #7FH ;clear RAM
CLR A
MOV ~ @RO, A
DINZ RO, $-1
MOV SP, #7FH ;initial SP

;system initial

MOV TMOD, #00H stimerl in 16-bit auto reload mode
MOV AUXR, #40H stimer] working at 1T mode
MOV TLI, #LOW BAUD ;initial timer1 and

MOV THI, #HIGH BAUD ;set reload value

SETB TRI stiemr] start running

SETB ETI ;enable timerl interrupt

SETB PTI1 ;improve timerl interrupt priority
SETB EA ;open global interrupt switch

LCALL UART INIT

MAIN:

JNB REND, CHECKREND ;if (REND)
CLR REND {

MOV A, RPTR : REND = 0;

INC RPTR : BUFFER[RPTR++ & 0xf] = RBUF;
ANL A, #OFH 3

ADD A, #BUFFER :

MOV RO, A :

MOV ~ @RO, RBUF :

STC MCU Limited website: www.STCMCU.com 161

www.STCMCU.com

Mobile:(86)13922805190

Tel:86-755-82948412

Fax:86-755-82944243

CHECKREND:
JNB TEND, MAIN
MOV A, RPTR
XRL A, WPTR
1z MAIN
CLR TEND
MOV A, WPTR
INC WPTR
ANL A, #OFH
ADD A, #BUFFER
MOV RO, A
MOV TBUF, @RO
SETB TING
SIMP MAIN
END

if (TEND)

{

; if (WPTR != REND)

TEND = 0;
TBUF = BUFFER[WPTR++ & 0xfJ;
TING = 1;

162

STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

Chapter 9 Analog to Digital Converter

9.1 A/D Converter Structure

ADC_CONTR Register
ADC_POWERl SPEED]1 | SPEEDO | ADC_FLAG ADC_STARTl CHS2 |CHSI | CHSO0 |

|

ADC result Register:
ADC_ RES[7:0] and ADC_RESL[1:0]

ADC7/P1.7 —
ADC6/P1.6 —
ADCS5/P1.5 —
ADC4/P1.4 —
ADC3/P1.3 —
ADC2/P1.2 —
ADCI1/P1.1 —
ADCO/P1.0 —

\/

A\

Successive
Approximation
Register

SiLLLL

Comparator

10-bit DAC <:

ADC_RES[7:0]
ADC_B9JADC B8[ADC B7[ADC BsJAaDC Bs[ADC B4[ADC B3[aDC B2|
[- T - T - T - T - T - [apcBIiJADC Bo] ADC_RESL[1:0]

The ADC on STC15F204EA series is an 10-bit resolution, successive-approximation approach, medium-speed
A/D converter.

Conversion is invoked since ADC_STRAT(ADC_CONTR.3) bit is set. Before invoking conversion,
ADC_POWER/ADC_CONTR.7 bit should be set first in order to turn on the power of analog front-end in
ADC circuitry. Prior to ADC conversion, the desired I/O ports for analog inputs should be configured as input-
only or open-drain mode first. The converter takes around a fourth cycles to sample analog input data and other
three fourths cycles in successive-approximation steps. Total conversion time is controlled by two register bits
— SPEEDI1 and SPEEDO. Eight analog channels are available on P1 and only one of them is connected to to the
comparator depending on the selection bits {CHS2,CHS1,CHS0}. When conversion is completed, the result will
be saved onto {ADC RES,ADC RESL[1:0]} register. After the result are completed and saved, ADC FLAG is
also set. ADC_FLAG associated with its enable register IE.5(EADC). ADC_FLAG should be cleared in software.
The ADC interrupt service routine vectors to 2Bh . When the chip enters idle mode or power-down mode, the
power of ADC is gated off by hardware.

STC MCU Limited website: www.STCMCU.com 163

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

If users need 10-bit A/D Conversion result, They may be get the result from the following formula:

Vin

10-bit A/D Conversion Result:(ADC _RES[7:0], ADC RESL[1:0]) = 1024 x v
cc

If users only need 8-bit A/D Conversion result, They may be get the result from the following formula:

Vin

8-bit A/D Conversion Result:(ADC _RES[7:0])= 256 x v
cc

Vi, is the input voltage for analog channel, and V. is the MCU actual operating voltage whose referece
voltage is MCU operating voltage.

164 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

9.2 Register for ADC

SFR Name |SFR Address| bit B7 B6 B5 B4 B3 B2 Bl BO
P1ASF 9DH name | P17ASF | P16ASF | PI5SASF | P14ASF | P13ASF | P12ASF | P11ASF | P10ASF
PI1xASF

0 := Keep P1.x as general-purpose I/O function.
1 := SetPl.x as ADC input channel-x

ADC_CONTR(ADC Control register)
LSB
SFR Name |SFR Address| bit B7 B6 BS B4 B3 B2 | Bl B0
ADC_CONTR BCH name|ADC POWER|SPEEDI |SPEEDO|ADC FLAG|ADC START|CHS2|CHSI1|CHSO0

ADC_POWER : When clear shut down the power of ADC block. When set turn on the power of ADC block.
SPEED1, SPEEDO : Conversion speed selection.
00 : 540 clock cycles are needed for a conversion.

01 : 360 clock cycles are needed for a conversion.
10 : 180 clock cycles are needed for a conversion.
I1 : 90 clock cycles are needed for a conversion.

ADC_FLAG : ADC interrupt flag.It will be set by the device after the device has finished a conversion, and
should be cleared by the user's software.

ADC _STRAT : ADC start bit, which enable ADC conversion.It will automatically cleared by the device after the
device has finished the conversion.

CHS2 ~ CHSO : Used to select one analog input source from 8 channels.

CHS2 CHS1 CHSO0 Source
0 0 0 P1.0 (default) as the A/D channel input
0 0 1 P1.1 as the A/D channel input
0 1 0 P1.2 as the A/D channel input
0 1 1 P1.3 as the A/D channel input
1 0 0 P1.4 as the A/D channel input
1 0 1 P1.5 as the A/D channel input
1 1 0 P1.6 as the A/D channel input
1 1 1 P1.7 as the A/D channel input

Note : The corresponding bits in P1ASF should be configured correctly before starting A/D conversion. The
sepecificP1ASF bits should be set corresponding with the desired channels.

STC MCU Limited website: www.STCMCU.com 165

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412

Fax:86-755-82944243

ADC_RES(ADC result register)

SFR name |Address| bit B7 B6 BS5 B4 B3 B2 B1

BO

ADC_RES| BDH |name

The ADC_RES is the final result from the A/D conversion

ADC_RESL(Low Byte of ADC result register)

SFR name [Address| bit B7 B6 B5 B4 B3 B2 Bl

BO

ADC_RESL| BEH |name

IE: Interrupt Enable Rsgister (Address:A8H)

(MSB) (LSB)
| FA |ELVD|EADC| . | ETI | EX1 | ETO | EX0 |

Enable Bit = 1 enables the interrupt .
Enable Bit = 0 disables it .

Symbol Position Function

disables all interrupts. if EA = 0,no interrupt will be acknowledged. if
EA IE.7 EA =1, each interrupt source is individually enabled or disabled by

setting or clearing its enable bit.
EADC IE.5 ADC interrupt enable bit

IP: Interrupt Priority Register (Address:B8H)

(MSB) (LSB)
| - |PLVD|PADC| - | PTI | PX1 | PTO | PX0 |

Priority bit = 1 assigns high priority .
Priority bit =0 assigns low priority.
PADC IP.5 ADC interrupt priority bit.

166 STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

9.3 Program using interrupts to demostrate ADC

There are two example procedures using interrupts to demostrate A/D conversion, one written in assembly
langugage and the other in C language.

Assembly language code listing:

% */
;/*¥ --- STC MCU International Limited */
;/*¥ --- STC 15 Series MCU A/D Conversion Demo -----------=-=-------- */
;/* --- Mobile: (86)13922805190 */
;/* --- Fax: 86-755-82944243 */
3/* --- Tel: 86-755-82948412 */
;/* --- Web: www.STCMCU.com */

;/* If you want to use the program or the program referenced in the --*/
;/* article, please specify in which data and procedures from STC ~ --*/
% */

;define baudrate const
;BAUD = 65536 - FOSC/3/BAUDRATE/M (1T:M=1; 12T:M=12)
;NOTE: (FOSC/3/BAUDRATE) must be greater then 75, (RECOMMEND GREATER THEN 100)

;BAUD EQU 0F400H ; 1200bps @, 11.0592MHz
;BAUD EQU OFAOOH ; 2400bps @ 11.0592MHz
;BAUD EQU O0FDOOH ; 4800bps @ 11.0592MHz
;BAUD EQU OFE80H ; 9600bps @ 11.0592MHz

;BAUD EQU OFF40H ;19200bps @ 11.0592MHz
;BAUD EQU OFFAOH ;38400bps @ 11.0592MHz
;BAUD EQU OFFCOH ;57600bps @ 11.0592MHz

;BAUD EQU 0ECO0H ; 1200bps @ 18.432MHz
;BAUD EQU 0F600H ; 2400bps @ 18.432MHz
;BAUD EQU OFBOOH ; 4800bps @ 18.432MHz
;BAUD EQU OFDS8OH ; 9600bps @ 18.432MHz

;BAUD EQU OFECOH ;19200bps @ 18.432MHz
;BAUD EQU OFF60H ;38400bps @ 18.432MHz
BAUD EQU OFF95H ;57600bps @ 18.432MHz

;BAUD EQU OE800H ; 1200bps @ 22.1184MHz
;BAUD EQU 0F400H ; 2400bps @ 22.1184MHz
;BAUD EQU OFAOOH ; 4800bps @ 22.1184MHz
;BAUD EQU O0FDOOH ; 9600bps @ 22.1184MHz

;BAUD EQU OFE80H ;19200bps @ 22.1184MHz
;BAUD EQU OFF40H ;38400bps @ 22.1184MHz
;BAUD EQU OFF80H ;57600bps @ 22.1184MHz

;define UART TX/RX port
RXB BIT P3.0
TXB BIT P3.1

;define SFR
AUXR DATA 8&EH

STC MCU Limited website: www.STCMCU.com 167

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

;define UART module variable

TBUF DATA O08H ;(RO) ready send data buffer (USER WRITE ONLY)

RBUF DATA 09H ;(R1) received data buffer (UAER READ ONLY)

TDAT DATA O0OAH ;(R2) sending data buffer ~(RESERVED FOR UART MODULE)
RDAT DATA OBH ;(R3) receiving data buffer (RESERVED FOR UART MODULE)
TCNT DATA OCH ;(R4) send baudrate counter (RESERVED FOR UART MODULE)
RCNT DATA ODH ;(R5) receive baudrate counter (RESERVED FOR UART MODULE)
TBIT DATA OEH ;(R6) send bit counter (RESERVED FOR UART MODULE)
RBIT DATA OFH ;(R7) receive bit counter (RESERVED FOR UART MODULE)

TING BIT 20H.0 ;sending flag(USER WRITE"1"TO TRIGGER SEND DATA,CLEAR BY MODULE)

RING BIT 20H.1 ; receiving flag (RESERVED FOR UART MODULE)
TEND BIT 20H.2 ;sent flag (SET BY MODULE AND SHOULD USER CLEAR)
REND BIT 20H.3 ; received flag (SET BY MODULE AND SHOULD USER CLEAR)

;/¥*Declare SFR associated with the ADC */

ADC_CONTR EQU O0OBCH ;ADC control register

ADC_RES EQU OBDH ;ADC high 8-bit result register
ADC_LOW?2 EQU OBEH ;ADC low 2-bit result register

P1ASF EQU 09DH ;P1 secondary function control register

;/*Define ADC operation const for ADC_CONTR*/

ADC_POWER EQU 80H ;ADC power control bit
ADC _FLAG EQU 10H ;ADC complete flag
ADC_START EQU 08H ;ADC start control bit
ADC _SPEEDLL EQU 00H ;540 clocks
ADC SPEEDL EQU 20H ;360 clocks
ADC _SPEEDH EQU 40H ;180 clocks
ADC SPEEDHH EQU 60H ;90 clocks
ADCCH DATA 21H ;ADC channel NO.
ORG 0000H
LIMP MAIN
ORG 000BH

LIMP TMO_ISR

ORG 002BH
LIMP ADC_ISR

168 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922805190

Tel:86-755-82948412 Fax:86-755-82944243

;Init UART, use to show ADC result

;timer0 in 16-bit auto reload mode
;timer0 working at 1T mode

;Enable ADC interrupt and Open master interrupt switch
;enable timer(interrupt
;improve timer(Q interrupt priority

ORG 0100H
MAIN:
MOV SP, #7FH
MOV ADCCH, #0
LCALL INIT UART
LCALL INIT ADC ;Init ADC sfr
MOV TMOD, #00H
MOV AUXR, #80H
MOV TLO, #LOW BAUD ;initial timer(O and
MOV THO, #HIGH BAUD ;set reload value
SETB TRO stiemr0 start running
MOV IE, #0AOH
SETB ETO0
SETB PTO
SIMP §
S

;ADC interrupt service routine

*/

ADC_ISR:

PUSH ACC

PUSH PSW

ANL ADC CONTR, #NOTADC FLAG
MOV A, ADCCH

LCALL SEND DATA

MOV A, ADC_RES

LCALL SEND_DATA

;//if you want show 10-bit result, uncomment next 2 lines

;Clear ADC interrupt flag

;Send channel NO.
;Get ADC high 8-bit result
;Send to UART

R MOV A, ADC LOW2 ;Get ADC low 2-bit result
R LCALL SEND DATA ;Send to UART
INC ADCCH
MOV A, ADCCH
ANL A, #07H
MOV ADCCH, A
ORL A, #ADC_POWER | ADC_SPEEDLL | ADC_START
MOV ADC CONTR, A ;ADC power-on delay and re-start A/D conversion
POP PSW
POP ACC
RETI
STC MCU Limited website: www.STCMCU.com

169

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

i

;Initial ADC sfr

*/

INIT_ADC
MOV
MOV
MOV
ORL
MOV
MOV

P1ASF, #0FFH ;Set all P1 as analog input port

ADC_RES, #0 ;Clear previous result

A, ADCCH

A, #ADC POWER |ADC SPEEDLL | ADC _START

ADC_CONTR, A ;ADC power-on delay and Start A/D conversion
A, #2

LCALL DELAY

RET
i*

;Software delay function

*/

DELAY:

MOV R2, A
CLR A
MOV RO, A
MOV RI, A
DELAY1:
DINZ RO, DELAY1
DINZ RI, DELAY1
DINZ R2, DELAY1
RET
*
;Initial UART
; */
INIT UART:
CLR TING
CLR RING
SETB TEND
CLR REND
CLR A
MOV TCNT, A
MOV RCNT, A
RET
*
;Send one byte data to PC
;Input: ACC (UART data)
;Output:-
; */
SEND DATA:
INB TEND, $
CLR TEND
MOV TBUF, A
SETB TING
RET
170 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922805190

Tel:86-755-82948412 Fax:86-755-82944243

s

;Timer0 interrupt routine for UART

TMO_ISR:
PUSH ACC ;4 save ACC
PUSH PSW ;4 save PSW
MOV PSW, #08H ;3 using register group 1
L _UARTSTART:
JB RING, L _RING ;4 judge whether receiving
JB RXB, L REND ; check start signal
L _RSTART:
SETB RING ; set start receive flag
MOV RS, #4 ; initial receive baudrate counter
MOV R7, #9 ; initial receive bit number (8 data bits + 1 stop bit)
SIMP L REND ; end this time slice
L RING:
DINZ RS, L REND ;4 judge whether sending
MOV RS5, #3 ;2 reset send baudrate counter
L RBIT:
MOV C, RXB ;3 read RX port data
MOV A, R3 ;1 and shift it to RX buffer
RRC A ;1
MOV R3, A ;2
DINZ R7, L REND ;4 judge whether the data have receive completed
L _RSTOP:
RLC A ; shift out stop bit
MOV Rl, A ; save the data to RBUF
CLR RING ; stop receive
SETB REND ; set receive completed flag
L REND
L _TING:
DINZ R4, L TEND ;4 check send baudrate counter
MOV R4, #3 ;2 reset it
JNB TING, L _TEND ;4 judge whether sending
MOV A, R6 ;1 detect the sent bits
INZ L TBIT ;3 "0" means start bit not sent
L _TSTART:
CLR TXB ; send start bit
MOV TDAT, RO ; load data from TBUF to TDAT
MOV R6, #9 ; initial send bit number (8 data bits + 1 stop bit)
IMP L TEND ; end this time slice
L _TBIT:
MOV A, R2 ;1 read data in TDAT
SETB C ;1 shift in stop bit
RRC A ;1 shift data to CY
MOV R2, A ;2 update TDAT
MOV TXB, C ;4 write CY to TX port
DINZ R, L TEND ;4 judge whether the data have send completed
STC MCU Limited website: www.STCMCU.com 171

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412

Fax:86-755-82944243

L_TSTOP:

CLR TING ; stop send

SETB TEND ; set send completed flag
L_TEND
L_UARTEND:

POP PSW ;3 restore PSW

POP ACC ;3 restore ACC

RETI 4 (69)

END

C language code listing:

/*
/* --- STC MCU International Limited
/* --- STC 15 Series MCU A/D Conversion Demo ------==-=-=-mmmmmmeuv
/* --- Mobile: (86)13922805190

*/
*/
*/
*/

/* --- Fax: 86-755-82944243
/* --- Tel: 86-755-82948412

*/
*/

/* --- Web: www.STCMCU.com
/* If you want to use the program or the program referenced in the ---

/* article, please specify in which data and procedures from STC ---
/*

*/
*/
*/
*/

#include "reg51.h"
#include "intrins.h"

typedef bit BOOL;
typedef unsigned char BYTE;
typedef unsigned int WORD;

//define baudrate const
//BAUD = 256 - FOSC/3/BAUDRATE/M (1T:M=1; 12T:M=12)

//INOTE: (FOSC/3/BAUDRATE) must be greater then 98, (RECOMMEND GREATER THEN 110)

//#define BAUD 0xF400 //'1200bps @ 11.0592MHz
//#define BAUD 0xFA00 // 2400bps @ 11.0592MHz
//#define BAUD 0xFDO00 // 4800bps @ 11.0592MHz
//#define BAUD 0xFE80 // 9600bps @ 11.0592MHz
//#define BAUD 0xFF40 //19200bps @ 11.0592MHz
//#define BAUD 0xFFAOQ //38400bps @ 11.0592MHz

172 STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922805190 Tel:86-755-82948412

Fax:86-755-82944243

//#define BAUD 0xEC00
//#define BAUD 0xF600
//#define BAUD 0xFBO00
/[#define BAUD 0xFD80
/M#tdefine BAUD OxFECO
#define BAUD 0xFF60

//#define BAUD 0xE800
//#define BAUD 0xF400
//#define BAUD 0xFA00
/l#tdefine BAUD 0xFDO00
//#tdefine BAUD OxFES80
//#define BAUD 0xFF40
//#define BAUD 0xFF80

sfr AUXR = 0x8E;
sbit RXB = P3"0;
sbit TXB =P3"1;

// 1200bps @ 18.432MHz
// 2400bps @ 18.432MHz
// 4800bps @ 18.432MHz
// 9600bps @ 18.432MHz
//19200bps @ 18.432MHz
//38400bps @ 18.432MHz

// 1200bps @ 22.1184MHz

// 2400bps @ 22.1184MHz

// 4800bps @ 22.1184MHz
//9600bps @ 22.1184MHz
//19200bps @ 22.1184MHz
//38400bps @ 22.1184MHz
//57600bps @ 22.1184MHz

//define UART TX/RX port

/*Declare SFR associated with the ADC */

sfr ADC_CONTR = 0xBC;
sfr ADC_RES = 0xBD;
sfrADC LOW2 = O0xBE;
sfr PLASF = 0x9D;

//ADC control register

//ADC hight 8-bit result register

//ADC low 2-bit result register

//P1 secondary function control register

/*Define ADC operation const for ADC_CONTR*/

#define ADC_POWER 0x80 //ADC power control bit
#define ADC FLAG 0x10 //ADC complete flag
#define ADC_START 0x08 //ADC start control bit
#define ADC_SPEEDLL 0x00 //540 clocks

#define ADC_SPEEDL 0x20 //360 clocks

#define ADC_SPEEDH 0x40 //180 clocks

#define ADC_SPEEDHH 0x60 //90 clocks

void InitUart();

void SendData(BYTE dat);

void Delay(WORD n);

void InitADC();

BYTE TBUF,RBUF,

BYTE TDAT,RDAT;

BYTE TCNT,RCNT;

BYTE TBIT,RBIT;

BOOL TING,RING;

BOOL TEND,REND;

BYTE ch=0; //ADC channel NO.

STC MCU Limited website: www.STCMCU.com 173

www.STCMCU.com

Mobile:(86)13922805190

Tel:86-755-82948412 Fax:86-755-82944243

void main()

{
InitUart(); //Init UART, use to show ADC result
InitADC(); //Init ADC sfr
TMOD = 0x00; //timer0 in 16-bit auto reload mode
AUXR = 0x80; /timer0 working at 1T mode
TLO =BAUD;
THO = BAUD>>g; //initial timer0 and set reload value
TRO=1; /tiemr0 start running
IE = 0xa0; //Enable ADC interrupt and Open master interrupt switch
ETO=1; //enable timer0 interrupt
PTO=1; /[improve timer(Q interrupt priority
//Start A/D conversion
while (1);
H
/*
ADC interrupt service routine
*/
void adc_isr() interrupt 5 using 1
{

ADC_CONTR &=!ADC_FLAG; //Clear ADC interrupt flag

//Show Channel NO.
//Get ADC high 8-bit result and Send to UART

SendData(ch);
SendData(ADC_RES);

//if you want show 10-bit result, uncomment next line
// SendData(ADC_LOW?2); //Show ADC low 2-bit result

if (++ch>7) ch=0; //switch to next channel
ADC_CONTR =ADC_POWER | ADC_SPEEDLL | ADC_START | ch;

H
/*
Initial ADC sfr
*/
void InitADC()
{
P1ASF = 0xff; //Set all P1 as analog input port
ADC RES=0; //Clear previous result

ADC_CONTR =ADC_POWER | ADC_SPEEDLL | ADC_START | ch;

Delay(2);

//ADC power-on delay and Start A/D conversion

174

STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243
/*
Software delay function
*/
void Delay(WORD n)
{
WORD x;
while (n--)
{
x =5000;
while (x--);
H
H
/1

//Timer interrupt routine for UART

void tmO() interrupt 1 using 1

{
if (RING)
{
if (--RCNT == 0)
{
RCNT = 3; //reset send baudrate counter
if (--RBIT == 0)
{
RBUF = RDAT; //save the data to RBUF
RING = 0; //stop receive
REND = 1; //set receive completed flag
H
else
{
RDAT >>= [;
if (RXB) RDAT |= 0x80; //shift RX data to RX buffer
H
H
H
else if ('RXB)
{
RING =1; //set start receive flag
RCNT =4, //initial receive baudrate counter
RBIT=9; //initial receive bit number (8 data bits + 1 stop bit)
H
STC MCU Limited website: www.STCMCU.com 175

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

if (--TCNT == 0)
{
TCNT =3; //reset send baudrate counter
if (TING) //judge whether sending
{
if (TBIT == 0)
{
TXB = 0; //send start bit
TDAT =TBUF; //load data from TBUF to TDAT
TBIT=9; //initial send bit number (8 data bits + 1 stop bit)
¥
else
{
TDAT >>=1; //shift data to CY
if (--TBIT == 0)
{
TXB =1,
TING =0; //stop send
TEND = 1; //set send completed flag
¥
else
{
TXB =CY; /lwrite CY to TX port
¥
}
}
¥
¥
/]

//initial UART module variable
void InitUart()

{
TING =0;
RING =0;
TEND =1;
REND = 0;
TCNT =0;
RCNT =0;

¥

/]

//initial UART module variable
void SendData(BYTE dat)

{
while (!TEND);
TEND = 0;
TBUF = dat;
TING=1;

}

176 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

9.4 Program using polling to demostrate ADC

There are two example procedures using inquiry to demostrate A/D conversion, one written in assembly
langugage and the other in C language.

Assembly language code listing:

e */
;/* -—- STC MCU International Limited */
;/* -—- STC 15 Series MCU A/D Conversion Demo --------=========----- */
;/* --- Mobile: (86)13922805190 */
;/* --- Fax: 86-755-82944243 */
;/* --- Tel: 86-755-82948412 */
/% -—- Web: www.STCMCU.com */

;/* If you want to use the program or the program referenced in the ---*/
;/* article, please specify in which data and procedures from STC --*/
* K

;define baudrate const
;BAUD = 65536 - FOSC/3/BAUDRATE/M (1T:M=1; 12T:M=12)
;NOTE: (FOSC/3/BAUDRATE) must be greater then 75, (RECOMMEND GREATER THEN 100)

;BAUD EQU 0F400H ; 1200bps @ 11.0592MHz
;BAUD EQU OFAO0OH ; 2400bps @ 11.0592MHz
;BAUD EQU OFDOOH ; 4800bps @ 11.0592MHz
;BAUD EQU OFE80H ; 9600bps @ 11.0592MHz
;BAUD EQU OFF40H ;19200bps @ 11.0592MHz
;BAUD EQU OFFAOH ;38400bps @ 11.0592MHz
;BAUD EQU OFFCOH ;57600bps @ 11.0592MHz
;BAUD EQU 0OECO0OH ; 1200bps @ 18.432MHz
;BAUD EQU 0F600H ; 2400bps @ 18.432MHz
;BAUD EQU O0FBOOH ; 4800bps @ 18.432MHz
;BAUD EQU OFD80OH ; 9600bps @ 18.432MHz
;BAUD EQU OFECOH ;19200bps @ 18.432MHz
;BAUD EQU OFF60H ;38400bps @ 18.432MHz
BAUD EQU OFF95H ;57600bps @ 18.432MHz
;BAUD EQU 0OE800H ; 1200bps @ 22.1184MHz
;BAUD EQU 0F400H ; 2400bps @ 22.1184MHz
;BAUD EQU OFAO0OH ; 4800bps @ 22.1184MHz
;BAUD EQU OFDOOH ; 9600bps @ 22.1184MHz
;BAUD EQU OFESOH ;19200bps @ 22.1184MHz
;BAUD EQU OFF40H ;38400bps @ 22.1184MHz
;BAUD EQU OFF80H ;57600bps @ 22.1184MHz
;define UART TX/RX port

RXB BIT P3.0
TXB BIT P3.1

;define SFR
AUXR DATA 8EH

STC MCU Limited website: www.STCMCU.com 177

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243
;define UART module variable

TBUF DATA O08H ;(RO) ready send data buffer (USER WRITE ONLY)
RBUF DATA 09H ;(R1) received data buffer (UAER READ ONLY)
TDAT DATA O0OAH ;(R2) sending data buffer ~(RESERVED FOR UART MODULE)
RDAT DATA OBH ;(R3) receiving data buffer (RESERVED FOR UART MODULE)
TCNT DATA OCH ;(R4) send baudrate counter (RESERVED FOR UART MODULE)
RCNT DATA ODH ;(R5) receive baudrate counter (RESERVED FOR UART MODULE)
TBIT DATA OEH ;(R6) send bit counter (RESERVED FOR UART MODULE)
RBIT DATA OFH ;(R7) receive bit counter (RESERVED FOR UART MODULE)
TING BIT 20H.0 ;sending flag(USER WRITE"1"TO TRIGGER SEND DATA,CLEAR BY MODULE)
RING BIT 20H.1 ; receiving flag (RESERVED FOR UART MODULE)
TEND BIT 20H.2 ;sent flag (SET BY MODULE AND SHOULD USER CLEAR)
REND BIT 20H.3 ; received flag (SET BY MODULE AND SHOULD USER CLEAR)
;/¥Declare SFR associated with the ADC */
ADC_CONTR EQU OBCH ;ADC control register
ADC_RES EQU OBDH ;ADC high 8-bit result register
ADC_LOW2 EQU OBEH ;ADC low 2-bit result register
P1ASF EQU 09DH ;P1 secondary function control register
;/*Define ADC operation const for ADC_CONTR*/
ADC_POWER EQU 80H ;ADC power control bit
ADC FLAG EQU 10H ;ADC complete flag
ADC_START EQU 08H ;ADC start control bit
ADC_SPEEDLL EQU 00H ;540 clocks
ADC _SPEEDL EQU 20H ;360 clocks
ADC _SPEEDH EQU 40H ;180 clocks
ADC SPEEDHH EQU 60H ;90 clocks

ORG 0000H

LIMP MAIN

ORG 000BH

LIMP TMO_ISR

MAIN:

MOV SP, #TFH

MOV TMOD, #00H ;timer(in 16-bit auto reload mode
MOV AUXR, #80H ;timer0 working at 1T mode
MOV TLO, #LOW BAUD ;initial timer0 and

MOV THO, #HIGH BAUD ;set reload value

SETB TRO ;tiemrO start running

SETB ETO ;enable timer0Q interrupt

SETB PTO ;improve timer0 interrupt priority
SETB EA ;open global interrupt switch
LCALL INIT UART ;Init UART, use to show ADC result
LCALL INIT ADC ;Init ADC sfr

178 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922805190

Tel:86-755-82948412

Fax:86-755-82944243

MOV
LCALL
MOV
LCALL
NEXT:
MOV
LCALL
MOV
LCALL
MOV
LCALL
MOV
LCALL
MOV
LCALL
MOV
LCALL
MOV
LCALL
MOV
LCALL

SIMP

i*

A, #55H
SEND DATA
A, #66H
SEND DATA

A, #0
SHOW RESULT
A, #1
SHOW RESULT
A, #2
SHOW RESULT
A, #3
SHOW RESULT
A, #4
SHOW RESULT
A, #5
SHOW RESULT
A, #6
SHOW RESULT
A, #7
SHOW RESULT

NEXT

;Send ADC result to UART
;Input: ACC (ADC channel NO.)

;Output:-

*/

SHOW_RESULT:
LCALL

LCALL GET ADC RESULT

LCALL

SEND DATA

SEND DATA

;Show result

;Show result

;Show channel0 result
;Show channell result
;Show channel2 result
;Show channel3 result
;Show channel4 result
;Show channel5 result
;Show channel6 result

:Show channel7 result

;Show Channel NO.
;Get high 8-bit ADC result
;Show result

;//if you want show 10-bit result, uncomment next 2 lines

; MOV A, ADC _LOW?2 ;Get low 2-bit ADC result
; LCALL SEND DATA ;Show result
RET
STC MCU Limited website: www.STCMCU.com 179

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

i*
;Read ADC conversion result

;Input: ACC (ADC channel NO.)
;Output: ACC (ADC result)

GET ADC RESULT:

ORL A, #ADC_POWER | ADC_SPEEDLL | ADC_START
MOV ADC CONTR, A ;Start A/D conversion
NOP ;Must wait before inquiry
NOP
NOP
NOP

WAIT:
MOV A, ADC CONTR ;Wait complete flag
JNB ACC4, WAIT ;ADC_FLAG(ADC _CONTR.4)
ANL ADC _CONTR, #NOT ADC_FLAG ;Clear ADC_FLAG
MOV A, ADC RES ;Return ADC result
RET

*
;Initial ADC sfr

*/

INIT_ADC:

MOV Pl1ASF, #0FFH ;Open 8 channels ADC function
MOV ADC RES, #0 ;Clear previous result
MOV ADC CONTR, #ADC _POWER | ADC _SPEEDLL
MOV A, #2 ;ADC power-on and delay
LCALL DELAY
RET
*
;Initial UART
; */
INIT_UART:
CLR TING
CLR RING
SETB TEND
CLR REND
CLR A

MOV TCNT, A
MOV RCNT, A
RET

180 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243
i*

;Send one byte data to PC
;Input: ACC (UART data)
;Output:-
; */
SEND DATA:
JNB TEND, $
CLR TEND
MOV TBUF, A
SETB TING
RET
i*
;Software delay function
; */
DELAY:
MOV R2, A
CLR A
MOV RO, A
MOV RI, A
DELAY1:
DINZ RO, DELAY1
DINZ RI1, DELAY1
DINZ R2, DELAY1
RET

s

;TimerO interrupt routine for UART

TMO_ISR:
PUSH ACC ;4 save ACC
PUSH PSW ;4 save PSW
MOV PSW, #08H ;3 using register group 1

L UARTSTART:

B RING, L_RING ;4 judge whether receiving
JB RXB, L REND ;check start signal

L RSTART:
SETB RING ; set start receive flag

MOV RS, #4 ; initial receive baudrate counter
MOV R7, #9 ; initial receive bit number (8 data bits + 1 stop bit)
SIMP L _REND ; end this time slice
L RING:
DINZ RS, L REND ;4 judge whether sending
MOV RS, #3 ;2 reset send baudrate counter

STC MCU Limited website: www.STCMCU.com 181

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

L RBIT:
MOV C, RXB ;3 read RX port data
MOV A, R3 ;1 and shift it to RX buffer
RRC A ;1
MOV R3, A ;2
DINZ R7, L REND ;4 judge whether the data have receive completed
L RSTOP:
RLC A ; shift out stop bit
MOV Rl, A ; save the data to RBUF
CLR RING ; stop receive
SETB REND ; set receive completed flag
L REND
L TING
DINZ R4, L TEND ;4 check send baudrate counter
MOV R4, #3 ;2 reset it
JNB TING, L TEND ;4 judge whether sending
MOV A, R6 ;1 detect the sent bits
INZ L TBIT ;3 "0" means start bit not sent
L _TSTART:
CLR TXB ; send start bit
MOV TDAT, RO ; load data from TBUF to TDAT
MOV R6, #9 ; initial send bit number (8 data bits + 1 stop bit)
IMP L TEND ; end this time slice
L TBIT:
MOV A, R2 ;1 read data in TDAT
SETB C ;1 shift in stop bit
RRC A ;1 shift data to CY
MOV R2, A ;2 update TDAT
MOV TXB, C ;4 write CY to TX port
DINZ R, L TEND ;4 judge whether the data have send completed
L TSTOP:
CLR TING ; stop send
SETB TEND ; set send completed flag
L _TEND
L UARTEND:
POP PSW ;3 restore PSW
POP ACC ;3 restore ACC
RETI ;4 (69)
END

182 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922805190

Tel:86-755-82948412

Fax:86-755-82944243

C language code listing:
/*

*/

/* --—- STC MCU International Limited
/* --- STC 15 Series MCU A/D Conversion Demo
/* --- Mobile: (86)13922805190

/* --- Fax: 86-755-82944243

*/

_______________________ */

*/
*/

/* --- Tel: 86-755-82948412

/* --—- Web: www.STCMCU.com

*/
*/

/* If you want to use the program or the program referenced in the ---*/
/* article, please specify in which data and procedures from STC = ---*/

/*

#include "reg51.h"
#include "intrins.h"

typedef bit BOOL;
typedef unsigned char BYTE,;
typedef unsigned int WORD;

//define baudrate const

*/

//BAUD = 256 - FOSC/3/BAUDRATE/M (1T:M=1; 12T:M=12)
//INOTE: (FOSC/3/BAUDRATE) must be greater then 98, (RECOMMEND GREATER THEN 110)

//#define BAUD 0xF400
/[#define BAUD 0xFA00
/[#define BAUD 0xFDO0O0
/[#define BAUD O0xFE80
//#define BAUD 0xFF40
/i#define BAUD O0xFFAO0

//#define BAUD 0xEC00
//#define BAUD 0xF600
//#define BAUD 0xFB00
//#define BAUD 0xFDS80
//#define BAUD OxFECO
#define BAUD 0xFF60

/[#define BAUD 0xE800
//#define BAUD 0xF400
/[#define BAUD 0xFAO00
/[#define BAUD 0xFDO0O
/[#define BAUD O0xFE80
/f#define BAUD 0xFF40
//#define BAUD 0xFF80

// 1200bps @ 11.0592MHz
// 2400bps @ 11.0592MHz
// 4800bps @ 11.0592MHz
//9600bps @ 11.0592MHz
//19200bps @ 11.0592MHz
//38400bps @ 11.0592MHz

// 1200bps @ 18.432MHz
// 2400bps @ 18.432MHz
// 4800bps @ 18.432MHz
// 9600bps @ 18.432MHz
//19200bps @ 18.432MHz
//38400bps @ 18.432MHz

// 1200bps @ 22.1184MHz

// 2400bps @ 22.1184MHz

// 4800bps @ 22.1184MHz
//9600bps @ 22.1184MHz
//19200bps @ 22.1184MHz
//38400bps @ 22.1184MHz
//57600bps @ 22.1184MHz

STC MCU Limited

website: www.STCMCU.com

183

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412

Fax:86-755-82944243

sfr AUXR = 0x8E;
sbit RXB = P3"0; //define UART TX/RX port
sbit TXB = P3"1;

/*Declare SFR associated with the ADC */

sfr ADC_CONTR = 0xBC; //ADC control register

sfr ADC_ RES = 0xBD; //ADC high 8-bit result register

sfr ADC_ LOW2 = O0xBE; //ADC low 2-bit result register

sfr PLASF = 0x9D; //P1 secondary function control register

/*Define ADC operation const for ADC_CONTR*/

#define ADC_POWER 0x80 //ADC power control bit
#define ADC_FLAG 0x10 //ADC complete flag
#define ADC_START 0x08 //ADC start control bit
#define ADC_SPEEDLL 0x00 //540 clocks

#define ADC_SPEEDL 0x20 //360 clocks

#define ADC_SPEEDH 0x40 //180 clocks

#define ADC_SPEEDHH 0x60 //90 clocks

BYTE TBUF,RBUF,

BYTE TDAT,RDAT;

BYTE TCNT,RCNT;

BYTE TBIT,RBIT;

BOOL TING,RING;

BOOL TEND,REND;

void InitUart();

void InitADC();

void SendData(BYTE dat);
BYTE GetADCResult(BYTE ch);
void Delay(WORD n);

void ShowResult(BYTE ch);

void main()

{
TMOD = 0x00; //timer0 in 16-bit auto reload mode
AUXR = 0x80; /timer0 working at 1T mode
TLO = BAUD;
THO = BAUD>>g; //initial timer0 and set reload value
TRO=1; /tiemr0 start running
ETO=1; //enable timer0 interrupt
PTO=1; /fimprove timer0 interrupt priority
EA=1; //open global interrupt switch
InitUart(); //Init UART, use to show ADC result
InitADC(); //Init ADC sfr

184 STC MCU Limited.

website:

www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

while (1)
{
ShowResult(0); //Show Channel0
ShowResult(1); //Show Channell
ShowResult(2); //Show Channel2
ShowResult(3); //Show Channel3
ShowResult(4); //Show Channel4
ShowResult(5); //Show Channel5
ShowResult(6); //Show Channel6
ShowResult(7); //Show Channel7
}
}
/*
Send ADC result to UART

*/
void ShowResult(BYTE ch)
{

SendData(ch); //Show Channel NO.

SendData(GetADCResult(ch)); //Show ADC high 8-bit result
//if you want show 10-bit result, uncomment next line
// SendData(ADC_LOW?2); //Show ADC low 2-bit result
H
/*
Get ADC result

*/

BYTE GetADCResult(BYTE ch)

{
ADC_CONTR =ADC_POWER |ADC_SPEEDLL | ch | ADC_START;

~nop_(); //Must wait before inquiry
nop();
nop();
nop();
while ((ADC_CONTR & ADC _FLAG)); //Wait complete flag
ADC_CONTR &=~ADC FLAG; //Close ADC
return ADC_RES; //Return ADC result
}
/*
Initial ADC sfr
*/
void InitADC()
{
P1ASF = 0xff; //Open 8 channels ADC function
ADC RES=0; //Clear previous result
ADC_CONTR =ADC_POWER |ADC_SPEEDLL;
Delay(2); //ADC power-on and delay
b

STC MCU Limited website: www.STCMCU.com 185

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243
/*
Software delay function
*/
void Delay(WORD n)
{
WORD x;
while (n--)
{
x = 5000;
while (x--);
H
H
/]

//Timer interrupt routine for UART

void tm0() interrupt 1 using 1

//reset send baudrate counter

//save the data to RBUF
//stop receive
//set receive completed flag

if (RXB) RDAT |= 0x80; //shift RX data to RX buffer

{
if (RING)
{
if (--RCNT == 0)
{
RCNT = 3;
if (--RBIT == 0)
{
RBUF = RDAT;
RING =0;
REND = 1;
¥
else
{
RDAT >>=1;
¥
¥
¥
else if ('RXB)
{
RING = 1;
RCNT =4;
RBIT=9;
¥

//set start receive flag
//initial receive baudrate counter
//initial receive bit number (8 data bits + 1 stop bit)

186 STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

if (--TCNT == 0)
{
TCNT = 3; //reset send baudrate counter
if (TING) //judge whether sending
{
if (TBIT == 0)
{
TXB =0; //send start bit
TDAT =TBUF; //load data from TBUF to TDAT
TBIT=9; //initial send bit number (8 data bits + 1 stop bit)
}
else
{
TDAT >>= 1; //shift data to CY
if (--TBIT == 0)
{
TXB =1,
TING =0; //stop send
TEND = 1; //set send completed flag
}
else
{
TXB =CY; //write CY to TX port
}
}
}
}
}
//
//initial UART module variable
void InitUart()
{
TING = 0;
RING =0;
TEND =1;
REND = 0;
TCNT = 0;
RCNT =0;
}

//
//initial UART module variable
void SendData(BYTE dat)

{
while (!TEND);
TEND = 0;
TBUF = dat;
TING = 1;

}

STC MCU Limited website: www.STCMCU.com 187

www.STCMCU.com

Chapter 10 AP/ EEPROM

The ISP in STC15F204EA series makes it possible to update the user’s application program and non-volatile
application data (in [AP-memory) without removing the MCU chip from the actual end product. This useful
capability makes a wide range of field-update applications possible. (Note ISP needs the loader program pre-
programmed in the ISP-memory.) In general, the user needn’t know how ISP operates because STC has provided
the standard ISP tool and embedded ISP code in STC shipped samples.But, to develop a good program for ISP
function, the user has to understand the architecture of the embedded flash.

The embedded flash consists of 10 pages(max). Each page contains 512 bytes. Dealing with flash, the user
must erase it in page unit before writing (programming) data into it. Erasing flash means setting the content of
that flash as FFh. Two erase modes are available in this chip. One is mass mode and the other is page mode. The
mass mode gets more performance, but it erases the entire flash. The page mode is something performance less,
but it is flexible since it erases flash in page unit. Unlike RAM’s real-time operation, to erase flash or to write
(program) flash often takes long time so to wait finish.

Furthermore, it is a quite complex timing procedure to erase/program flash. Fortunately, the STC15F204EA
series carried with convenient mechanism to help the user read/change the flash content. Just filling the target
address and data into several SFR, and triggering the built-in ISP automation, the user can easily erase, read, and
program the embedded flash.

The In-Application Program feature is designed for user to Read/Write nonvolatile data flash. It may bring
great help to store parameters those should be independent of power-up and power-done action. In other words,
the user can store data in data flash memory, and after he shutting down the MCU and rebooting the MCU, he can
get the original value, which he had stored in.

The user can program the data flash according to the same way as ISP program, so he should get deeper un-
derstanding related to SFR TAP_DATA, IAP_ADDRL, IAP_ADDRH, IAP_CMD, IAP_TRIG, and IAP_CONTR.

Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

10.1 TAP /ISP Control Register

The following special function registers are related to the IAP/ISP operation. All these registers can be
accessed by software in the user’s application program.

Value after
Symbol Description Address Bit Address and Symbol Power-on or
MSB LSB Reset
TAP DATA | [SP/IAP Flash Data |-y 1111 1111B
- Register
ISP/IAP Flash
IAP_ADDRH Address High C3H 0000 0000B
1ap ADDRL| [SP/IAP Flash C4H 0000 0000B
Address Low
1ap cmp | ISPAAPFlash g f C T - 1 - L - 1 - [- [msifmso] o00s
- Command Register
IAP TRIG | [SPAAPFlash -y XXXX XXXXB
- Command Trigger
JAP_CONTR ISP/IAP.Control CTH IAPEN| SWBS [SWRST[CMD FAIL| - JwT2] wT1 | wT0 0000 x000B
Register
PCON Power Control 87TH | - | |LvDE | POF | GFI | GFo | PD | DL |xx11 0000B

STC MCU Limited. website: www.STCMCU.com

188

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

IAP_DATA: ISP/IAP Flash Data Register

LSB
SFR name | Address bit B7 B6 BS B4 B3 B2 Bl BO
IAP_DATA C2H name
IAP_DATA is the data port register for ISP/IAP operation. The data in [AP_DATA will be written into
the desired address in operating ISP/IAP write and it is the data window of readout in operating ISP/
IAP read.

IAP_ADDRH: ISP/IAP Flash Address High
LSB

SFR name | Address | bit B7 B6 BS5 B4 B3 B2 Bl BO
IAP_ ADDRH| C3H name
IAP_ADDRH is the high-byte address port for all ISP/IAP modes.

IAP_ADDRH]7:5] must be cleared to 000, if one bit of IAP_ ADDRH[7:5] is set, the IAP/ISP write
function must fail.

IAP_ADDRL: ISP/IAP Flash Address Low
LSB

SFR name | Address | bit B7 B6 B5 B4 B3 B2 Bl BO
IAP_ADDRL | C4H [name

IAP_ADDRL is the low port for all ISP/IAP modes. In page erase operation, it is ignored.

IAP_CMD: ISP/IAP Flash-operating Mode Command Register

LSB
SFR name | Address | bit B7 B6 B5 B4 B3 B2 Bl B0
IAP_CMD | C5H | name - - - - - - MS1 MSO0

B7~B2: Reserved.
MS1, MSO0 : ISP/IAP operating mode selection. IAP_CMD is used to select the flash mode for
performing numerous ISP/IAP function or used to access protected SFRs.
0, 0 : Standby
0, 1 : Data Flash/EEPROM read.
1, 0 : Data Flash/EEPROM program.
1, 1 : Data Flash/EEPROM page erase.

IAP_TRIG: ISP/IAP Flash Command Trigger Register.
LSB

SFR name | Address | bit B7 B6 B5 B4 B3 B2 Bl BO
IAP_TRIG| C6H [name

IAP_TRIG is the command port for triggering ISP/IAP activity and protected SFRs access. If IAP_TRIG is filled
with sequential 0x5Ah, 0xA5h and if IAPEN(IAP_CONTR.7) = 1, ISP/IAP activity or protected SFRs access will
triggered.

STC MCU Limited website: www.STCMCU.com 189

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

IAP_CONTR: ISP/IAP Control Register
SFR name |Address| bit B7 B6 BS B4 B3| B2 Bl BO
IAP_ CONTR| C7H | name | IAPEN | SWBS |SWRST|CMD FAIL| - | WT2 | WT1 | WTO

IAPEN : ISP/IAP operation enable.

0 : Global disable all ISP/IAP program/erase/read function.

1 : Enable ISP/IAP program/erase/read function.
SWBS: software boot selection control.

0 : Boot from main-memory after reset.

1 : Boot from ISP memory after reset.
SWRST: software reset trigger control.

0 : No operation

1 : Generate software system reset. It will be cleared by hardware automatically.
CMD_FAIL: Command Fail indication for ISP/IAP operation.

0 : The last ISP/IAP command has finished successfully.

1: The last ISP/IAP command fails. It could be caused since the access of flash memory was inhibited.
B3: Reserved. Software must write “0” on this bit when IAP_CONTR is written.

WT2~WTO : Waiting time selection while flash is busy.

Setting wait times CPU wait times
Read Program Sector Erase | Recommended System
W2 | WTT | WTo (2 SYSclks) =55uS =21mS Clock Frequency (MHz)
1 1 1 2 SYSclks 55SYSclks | 21012 SYSclks < 1MHz
1 1 0 2 SYSclks 110 SYSclks | 42024 SYSclks <2MHz
1 0 1 2 SYSclks 165 SYSclks | 63036 SYSclks <3MHz
1 0 0 2 SYSclks 330 SYSclks |126072 SYSclks < 6MHz
0 1 1 2 SYSclks 660 SYSclks |252144 SYSclks < 12MHz
0 1 0 2 SYSclks | 1100 SYSclks |420240 SYSclks <20MHz
0 0 1 2 SYSclks | 1320 SYSclks |504288 SYSclks <24MHz
0 0 0 2 SYSclks | 1760 SYSclks |672384 SYSclks <30MHz

Note: Software reset actions could reset other SFR,but it never influences bits IAPEN and SWBS.The IAPEN and
SWBS. The IAPEN and SWBS only will be reset by power-up action, while not software reset.

190 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

10.2 IAP/EEPROM Assembly Language Program Introduction

;/¥It is decided by the assembler/compiler used by users that whether the SFRs addresses are declared by the

DATA or the EQU directive*/
IAP_DATA DATA
IAP ADDRH DATA
IAP ADDRL DATA
IAP_CMD DATA
IAP TRIG DATA
IAP_ CONTR DATA

0C2H or IAP_DATA EQU 0C2H
0C3H or IAP_ADDRH EQU 0C3H
0C4H or IAP_ADDRL EQU 0C4H
0CSH or IAP_CMD EQU 0CSH
0C6H or IAP_TRIG EQU 0C6H
0C7TH or IAP_CONTR EQU 0C7H

;/*Define ISP/IAP/EEPROM command and wait time*/

ISP IAP BYTE READ EQU 1 :Byte-Read
ISP_IAP_BYTE_PROGRAM EQU 2 ;Byte-Program
ISP_IAP_SECTOR_ERASE EQU 3 ;Sector-Erase
WAIT TIME EQU 0 ;Set wait time

;/*Byte-Read*/
MOV IAP ADDRH, #BYTE ADDR HIGH ;Set ISP/IAP/EEPROM address high
MOV IAP ADDRL, #BYTE ADDR LOW :Set ISP/IAP/EEPROM address low
MOV IAP_CONTR, #WAIT TIME ;Set wait time
ORL IAP_CONTR, #10000000B ;Open ISP/IAP function
MOV IAP_CMD, #ISP_TIAP_BYTE_READ ;Set ISP/IAP Byte-Read command
MOV IAP_TRIG, #5AH ;Send trigger command]1 (0x5a)
MOV IAP TRIG, #0ASH ;Send trigger command2 (0xa5)
NOP ;CPU will hold here until ISP/IAP/EEPROM operation complete
MOV A, IAP DATA ;Read ISP/TAP/EEPROM data

;/*Disable ISP/IAP/EEPROM function, make MCU in a safe state*/

MOV
MOV
MOV
MOV

MOV

IAP_CONTR,
IAP_CMD,
IAP_TRIG,
IAP_ADDRH,

IAP_ADDRL,

#00000000B ;Close ISP/IAP/EEPROM function
#00000000B ;Clear ISP/IAP/EEPROM command
#00000000B ;Clear trigger register to prevent mistrigger
#OFFH ;Move 00 into address high-byte unit,
;Data ptr point to non-EEPROM area
#0FFH ;Move 00 into address low-byte unit,

;prevent misuse

;/*Byte-Program, if the byte is null(OFFH), it can be programmed; else, MCU must operate Sector-Erase firstly,

and then can operate Byte-Program.*/

MOV IAP DATA, #ONE DATA ;Write ISP/IAP/EEPROM data
MOV IAP_ADDRH, #BYTE ADDR _ HIGH ;Set ISP/IAP/EEPROM address high
MOV IAP ADDRL, #BYTE ADDR LOW ;Set ISP/IAP/EEPROM address low
MOV IAP CONTR, #WAIT TIME ;Set wait time
ORL IAP CONTR, #10000000B ;Open ISP/IAP function
MOV IAP CMD, #ISP_IAP BYTE READ ;Set ISP/IAP Byte-Read command
MOV IAP TRIG, #5AH ;Send trigger command]1 (0x5a)
MOV IAP TRIG, #0ASH ;Send trigger command2 (0xa5)
NOP ;CPU will hold here until ISP/IAP/EEPROM operation complete
STC MCU Limited website: www.STCMCU.com 191

Tel:86-755-82948412

Fax:86-755-82944243

www.STCMCU.com Mobile:(86)13922805190
;/*Disable ISP/IAP/EEPROM function, make MCU in a safe state*/
MOV IAP CONTR, #00000000B
MOV IAP CMD, #00000000B
:MOV TAP_TRIG, #00000000B
:MOV TAP_ADDRH, #FFH
:MOV TAP_ADDRL, #OFFH

;Close ISP/TAP/EEPROM function

;Clear ISP/IAP/EEPROM command
;Clear trigger register to prevent mistrigger
;Move 00H into address high-byte unit,
;Data ptr point to non-EEPROM area
;Move 00H into address low-byte unit,
;prevent misuse

;/*Erase one sector area, there is only Sector-Erase instead of Byte-Erase, every sector area account for 512

;Set the sector area starting address high
;Set the sector area starting address low

;Open ISP/IAP function

;Set Sectot-Erase command
;Send trigger command]1 (0x5a)
;Send trigger command2 (0xa5)

bytes*/
MOV IAP _ADDRH, #SECTOT FIRST BYTE ADDR HIGH
MOV IAP_ADDRL, #SECTOT FIRST BYTE ADDR LOW
MOV IAP CONTR, #WAIT TIME ;Set wait time
ORL IAP_CONTR, #10000000B
MOV [AP CMD, #ISP_IAP SECTOR ERASE
MOV IAP_TRIG, #5SAH
MOV AP _TRIG, #0ASH
NOP

;/*Disable ISP/IAP/EEPROM function, make MCU in a safe state*/

MOV IAP_CONTR, #00000000B
MOV IAP_CMD, #00000000B
;MOV TAP_TRIG, #00000000B
;MOV TAP_ADDRH, #OFFH
;MOV IAP ADDRL, #OFFH

;CPU will hold here until ISP/IAP/EEPROM operation complete

;Close ISP/IAP/EEPROM function

;Clear ISP/IAP/EEPROM command
;Clear trigger register to prevent mistrigger
;Move 00H into address high-byte unit,

; Data ptr point to non-EEPROM area
;Move 00H into address low-byte unit,
;prevent misuse

192 STC MCU Limited.

website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

10.3 EEPROM Demo Programs written in Assembly Language

e */
;/* -—- STC MCU International Limited */
;/*¥ -=- STC 1T Series MCU ISP/IAP/EEPROM Demo ----------------=----—- */
;/* --- Mobile: (86)13922805190 */
;/* --- Fax: 86-755-82944243 */
3/* --- Tel: 86-755-82948412 */
/% -—- Web: www.STCMCU.com */
;/* If you want to use the program or the program referenced in the ------ */
;/* article, please specify in which data and procedures from STC = ------ */
e */
;/*Declare SFRs associated with the IAP */

IAP DATA EQU 0C2H ;Flash data register

IAP_ ADDRH EQU 0C3H ;Flash address HIGH
IAP_ADDRL EQU 0C4H ;Flash address LOW

IAP_ CMD EQU 0CSH ;Flash command register
IAP_TRIG EQU 0C6H ;Flash command trigger
IAP_ CONTR EQU 0C7H ;Flash control register
;/*Define ISP/IAP/EEPROM command*/

CMD IDLE EQU 0 :Stand-By

CMD_READ EQU 1 :Byte-Read
CMD_PROGRAM EQU 2 ;Byte-Program
CMD_ERASE EQU 3 ;Sector-Erase

;/*Define ISP/IAP/EEPROM operation const for AP CONTR*/

;ENABLE IAP EQU 80H ;if SYSCLK<30MHz
;ENABLE IAP EQU 81H ;if SYSCLK<24MHz
ENABLE IAP EQU 82H ;if SYSCLK<20MHz
;ENABLE IAP EQU 83H ;if SYSCLK<12MHz
;ENABLE IAP EQU 84H ;if SYSCLK<6MHz
;ENABLE IAP EQU 85H ;if SYSCLK<3MHz
;ENABLE IAP EQU 86H ;if SYSCLK<2MHz
;ENABLE IAP EQU 87H ;if SYSCLK<IMHz

;//Start address for STC15F204EA series EEPROM
IAP_ADDRESS EQU 0000H

s

ORG 0000H
LIMP MAIN
ORG 0100H
MAIN:
MOV PI, #OFEH ;1111,1110 System Reset OK
LCALL DELAY ;Delay

STC MCU Limited website: www.STCMCU.com 193

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243
MOV DPTR, #IAP_ADDRESS ;Set ISP/IAP/EEPROM address
LCALL IAP ERASE ;Erase current sector
MOV DPTR, #IAP _ADDRESS ;Set ISP/IAP/EEPROM address
MOV RO, #0 ;Set counter (512)
MOV RI, #2
CHECKI: ;Check whether all sector data is FF
LCALL IAP READ ;Read Flash
CINE A, #0FFH, ERROR ;If error, break
INC DPTR ;Inc Flash address
DINZ RO, CHECKI1 ;Check next
DINZ RI, CHECK1 ;Check next
MOV PlI, #0FCH ;1111,1100 Erase successful
LCALL DELAY ;Delay
MOV DPTR, #IAP_ADDRESS ;Set ISP/IAP/EEPROM address
MOV RO, #0 ;Set counter (512)
MOV RI, #2
MOV R2, #0 ;Initial test data
NEXT: ;Program 512 bytes data into data flash
MOV A, R2 ;Ready IAP data
LCALL IAP_PROGRAM ;Program flash
INC DPTR ;Inc Flash address
INC R2 ;Modify test data
DINZ RO, NEXT ;Program next
DINZ RI, NEXT ;Program next
MOV Pl, #0F8H ;1111,1000 Program successful
LCALL DELAY ;Delay
MOV DPTR, #IAP _ADDRESS ;Set ISP/IAP/EEPROM address
MOV RO, #0 ;Set counter (512)
MOV RI, #2
MOV R2, #0
CHECK2: ;Verify 512 bytes data
LCALL IAP READ ;Read Flash
CINE A, 2, ERROR ;If error, break
INC DPTR ;Inc Flash address
INC R2 ;Modify verify data
DINZ RO, CHECK2 ;Check next
DINZ RI, CHECK2 ;Check next
MOV PlI, #0FOH ;1111,0000 Verify successful
SIMP §

194

STC MCU Limited.

website:

www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

ERROR:
MOV PO, RO
MOV P2, R1
MOV P3, R2
CLR P1.7 ;0xxx,xxxX [AP operation fail
SIMP §

*

;Software delay function

; */

DELAY:
CLR A
MOV RO, A
MOV RI, A
MOV R2, #20H

DELAY1:
DINZ RO, DELAY1
DINZ RI, DELAY1
DINZ R2, DELAY1
RET

/*

;Disable ISP/IAP/EEPROM function

;Make MCU in a safe state

; =

IAP_IDLE:
MOV IAP CONTR, #0 ;Close IAP function
MOV IAP_CMD, #0 ;Clear command to standby
MOV IAP_TRIG, #0 ;Clear trigger register
MOV IAP_ADDRH, #80H ;Data ptr point to non-EEPROM area
MOV IAP_ADDRL, #0 ;Clear IAP address to prevent misuse
RET

*

;Read one byte from ISP/IAP/EEPROM area
;Input: DPTR(ISP/IAP/EEPROM address)

;Output: ACC (Flash data)

; */

IAP_READ:
MOV IAP_CONTR, #ENABLE IAP ;Open IAP function, and set wait time
MOV IAP _CMD, #CMD_READ ;Set ISP/IAP/EEPROM READ command
MOV IAP ADDRL, DPL ;Set ISP/IAP/EEPROM address low
MOV IAP ADDRH, DPH ;Set ISP/IAP/EEPROM address high
MOV IAP_TRIG, #5AH ;Send trigger command1 (0x5a)
MOV IAP TRIG, #0ASH ;Send trigger command?2 (0xa5)
NOP ;MCU will hold here until ISP/IAP/EEPROM operation complete
MOV A, IAP_DATA ;Read ISP/IAP/EEPROM data
LCALL IAP IDLE ;Close ISP/IAP/EEPROM function
RET

STC MCU Limited website: www.STCMCU.com 195

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

o
;Program one byte to ISP/IAP/EEPROM area
;Input: DPAT(ISP/IAP/EEPROM address)
;ACC (ISP/IAP/EEPROM data)

;Output:-

; *

IAP_ PROGRAM:
MOV IAP_CONTR, #ENABLE IAP ;Open IAP function, and set wait time
MOV IAP _CMD, #CMD_PROGRAM ;Set ISP/IAP/EEPROM PROGRAM command
MOV IAP _ADDRL, DPL ;Set ISP/IAP/EEPROM address low
MOV IAP_ADDRH, DPH ;Set ISP/IAP/EEPROM address high
MOV IAP DATA, A ;Write ISP/IAP/EEPROM data
MOV IAP_TRIG, #5SAH ;Send trigger command1 (0x5a)
MOV IAP_TRIG, #0ASH ;Send trigger command?2 (0xa5)
NOP ;MCU will hold here until ISP/IAP/EEPROM operation complete
LCALL IAP IDLE ;Close ISP/IAP/EEPROM function

RET

i
;Erase one sector area
:Input: DPTR(ISP/IAP/EEPROM address)

;Output:-

; *

IAP_ERASE:
MOV IAP CONTR, #ENABLE IAP ;Open IAP function, and set wait time
MOV TAP CMD, #CMD_ERASE ;Set ISP/IAP/EEPROM ERASE command
MOV IAP _ADDRL, DPL ;Set ISP/IAP/EEPROM address low
MOV IAP_ADDRH, DPH ;Set ISP/IAP/EEPROM address high
MOV IAP_TRIG, #5SAH ;Send trigger command1 (0x5a)
MOV IAP_TRIG, #0ASH ;Send trigger command?2 (0xa5)
NOP ;MCU will hold here until ISP/IAP/EEPROM operation complete
LCALL IAP IDLE ;Close ISP/IAP/EEPROM function
RET
END

196 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

The following program is almost as same as the above except simulate UART has been used in it

% */
;/* --- STC MCU International Limited */
:/* - STC 15 Series MCU ISP/IAP/EEPROM Demo --------enmeemcemv %/
;/* --- Mobile: (86)13922805190 */
/¥ -—- Fax: 86-755-82944243 */
;/* -—- Tel: 86-755-82948412 */
/% -—- Web: www.STCMCU.com */

;/* If you want to use the program or the program referenced in the --*/
;/* article, please specify in which data and procedures from STC ~ --*/
% */

;define baudrate const
;BAUD = 65536 - FOSC/3/BAUDRATE/M (1T:M=1; 12T:M=12)
;NOTE: (FOSC/3/BAUDRATE) must be greater then 75, (RECOMMEND GREATER THEN 100)

;BAUD EQU 0F400H ; 1200bps @ 11.0592MHz
;BAUD EQU OFAOOH ; 2400bps @ 11.0592MHz
;BAUD EQU OFDOOH ; 4800bps @ 11.0592MHz
;BAUD EQU OFESOH ; 9600bps @ 11.0592MHz
;BAUD EQU OFF40H ;19200bps @ 11.0592MHz
;BAUD EQU OFFAOH ;38400bps @ 11.0592MHz
;BAUD EQU OFFCOH ;57600bps @ 11.0592MHz
;BAUD EQU O0ECO0H ; 1200bps @ 18.432MHz
;BAUD EQU 0F600H ; 2400bps @ 18.432MHz
;BAUD EQU OFBOOH ; 4800bps @ 18.432MHz
;BAUD EQU OFD80H ; 9600bps @ 18.432MHz
;BAUD EQU OFECOH ;19200bps @ 18.432MHz
;BAUD EQU OFF60H ;38400bps @ 18.432MHz
BAUD EQU OFF95H ;57600bps @ 18.432MHz
;BAUD EQU 0E800H ; 1200bps @ 22.1184MHz
;BAUD EQU 0F400H ; 2400bps @ 22.1184MHz
;BAUD EQU OFAOOH ; 4800bps @ 22.1184MHz
;BAUD EQU OFDOOH ; 9600bps @ 22.1184MHz
;BAUD EQU OFESOH ;19200bps @ 22.1184MHz
;BAUD EQU OFF40H ;38400bps @ 22.1184MHz
;BAUD EQU OFF80H ;57600bps @ 22.1184MHz
STC MCU Limited website: www.STCMCU.com 197

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412

Fax:86-755-82944243

;define UART TX/RX port

RXB BIT P3.0
TXB BIT P3.1

;define SFR
AUXR DATA SEH

;define UART module variable

TBUF DATA 08H ;(RO) ready send data buffer (USER WRITE ONLY)
RBUF DATA 09H ;(R1) received data buffer (UAER READ ONLY)
TDAT DATA 0AH ;(R2) sending data buffer ~(RESERVED FOR UART MODULE)
RDAT DATA OBH ;(R3) receiving data buffer (RESERVED FOR UART MODULE)
TCNT DATA OCH ;(R4) send baudrate counter (RESERVED FOR UART MODULE)
RCNT DATA ODH ;(R5) receive baudrate counter (RESERVED FOR UART MODULE)
TBIT DATA OEH ;(R6) send bit counter (RESERVED FOR UART MODULE)
RBIT DATA OFH ;(R7) receive bit counter (RESERVED FOR UART MODULE)
TING BIT 20H.0 ;sending flag
;(USER WRITE"1"TO TRIGGER SEND DATA, CLEAR BY MODULE)
RING BIT 20H.1 ; receiving flag (RESERVED FOR UART MODULE)
TEND BIT 20H.2 ;sent flag (SET BY MODULE AND SHOULD USER CLEAR)
REND BIT 20H.3 ; received flag (SET BY MODULE AND SHOULD USER CLEAR)
;/*Declare SFR associated with the AP */
IAP DATA EQU 0C2H ;Flash data register
IAP_ ADDRH EQU 0C3H ;Flash address HIGH
IAP_ADDRL EQU 0C4H ;Flash address LOW
IAP_CMD EQU 0CSH ;Flash command register
IAP_TRIG EQU 0C6H ;Flash command trigger
IAP_CONTR EQU 0C7H ;Flash control register
;/*Define ISP/IAP/EEPROM command*/
CMD _IDLE EQU 0 ;Stand-By
CMD READ EQU 1 :Byte-Read
CMD_PROGRAM EQU 2 ;Byte-Program
CMD_ERASE EQU 3 ;Sector-Erase
;/*Define ISP/IAP/EEPROM operation const for IAP_CONTR*/
;ENABLE TAPEQU 80H ;if SYSCLK<30MHz
;ENABLE TAPEQU 81H ;if SYSCLK<24MHz
ENABLE IAP EQU 82H ;if SYSCLK<20MHz
;ENABLE TAPEQU 83H ;if SYSCLK<12MHz
;ENABLE TAPEQU 84H ;if SYSCLK<6MHz
;ENABLE TAPEQU 85H ;if SYSCLK<3MHz
;ENABLE TAPEQU 86H ;if SYSCLK<2MHz
;ENABLE TAPEQU 87H ;if SYSCLK<1MHz

198 STC MCU Limited. website:

www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922805190

Tel:86-755-82948412 Fax:86-755-82944243

;//EEPROM Start address

IAP_ADDRESS

EQU 0800H

s

ORG
LIMP

0000H
MAIN

;TimerO interrupt routine for UART

ORG 000BH
PUSH ACC ;4 save ACC
PUSH PSW ;4 save PSW
MOV PSW, #08H ;3 using register group 1
L UARTSTART:
JB RING, L RING ;4 judge whether receiving
JB RXB, L REND ; check start signal
L RSTART:
SETB RING ; set start receive flag
MOV R35, #4 ; initial receive baudrate counter
MOV R7, #9 ; initial receive bit number (8 data bits + 1 stop bit)
SIMP L REND ; end this time slice
L _RING:
DINZ RS, L REND ;4 judge whether sending
MOV R35, #3 ;2 reset send baudrate counter
L RBIT:
MOV C, RXB ;3 read RX port data
MOV A, R3 ;1 and shift it to RX buffer
RRC A ;1
MOV R3, A 2
DINZ R7, L REND ;4 judge whether the data have receive completed
L _RSTOP:
RLC A ; shift out stop bit
MOV Rl, A ; save the data to RBUF
CLR RING ; stop receive
SETB REND ; set receive completed flag
L REND
L TING
DINZ R4, L TEND ;4 check send baudrate counter
MOV R4, #3 ;2 reset it
INB TING, L TEND ;4 judge whether sending
MOV A, R6 ;1 detect the sent bits
INZ L TBIT ;3 "0" means start bit not sent
STC MCU Limited website: www.STCMCU.com 199

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

L TSTART:
CLR TXB ; send start bit
MOV TDAT, RO ; load data from TBUF to TDAT
MOV Ro, #9 ; initial send bit number (8 data bits + 1 stop bit)
IMP L TEND ; end this time slice
L TBIT:
MOV A, R2 ;1 read data in TDAT
SETB C ;1 shift in stop bit
RRC A ;1 shift data to CY
MOV R2, A ;2 update TDAT
MOV TXB, C ;4 write CY to TX port
DINZ R, L TEND ;4 judge whether the data have send completed
L TSTOP:
CLR TING ; stop send
SETB TEND ; set send completed flag
L TEND
L UARTEND:
POP PSW ;3 restore PSW
POP ACC ;3 restore ACC
RETI ;4 (69)

>

;initial UART module variable

UART_INIT:
CLR TING
CLR RING
SETB TEND
CLR REND
CLR A

MOV TCNT, A
MOV RCNT, A

RET

;send UART data

UART SEND:
INB TEND, $§
CLR TEND
MOV TBUF, A
SETB TING
RET

200 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

s

ORG 0100H

MAIN:
MOV SP, #7FH
MOV TMOD, #00H ;timer0 in 16-bit auto reload mode
MOV AUXR, #80H ;timer0 working at 1T mode
MOV TLO, #LOW BAUD ;initial timer0 and
MOV THO, #HIGH BAUD ;set reload value
SETB TRO ;tiemr0 start running
SETB ETO ;enable timer(interrupt
SETB PTO ;improve timer0 interrupt priority
SETB EA ;open global interrupt switch
LCALL UART_INIT
MOV Pl, #0FEH ;1111,1110 System Reset OK
LCALL DELAY ;Delay
MOV DPTR, #IAP_ADDRESS ;Set ISP/IAP/EEPROM address
LCALL IAP ERASE ;Erase current sector
MOV DPTR, #IAP_ADDRESS ;Set ISP/IAP/EEPROM address
MOV RO, #0 ;Set counter (512)
MOV RI, #2

CHECKI: ;Check whether all sector data is FF
LCALL IAP READ ;Read Flash
LCALL UART SEND

1/ CINE A, #0FFH, ERROR ;If error, break
INC DPTR ;Inc Flash address
DINZ RO, CHECKI1 ;Check next
DINZ RI, CHECK1 ;Check next
MOV PlI, #0FCH ;1111,1100 Erase successful
LCALL DELAY ;Delay
MOV DPTR, #IAP_ADDRESS ;Set ISP/IAP/EEPROM address
MOV RO, #0 ;Set counter (512)
MOV RI, #2
MOV R2, #0 ;Initial test data

NEXT: ;Program 512 bytes data into data flash
MOV A, R2 ;Ready IAP data
LCALL IAP_PROGRAM ;Program flash
INC DPTR ;Inc Flash address
INC R2 ;Modify test data
DINZ RO, NEXT ;Program next
DINZ RI, NEXT ;Program next
MOV PlI, #0F8H ;1111,1000 Program successful
LCALL DELAY ;Delay

STC MCU Limited website: www.STCMCU.com 201

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

s

MOV DPTR, #IAP ADDRESS ;Set ISP/IAP/EEPROM address
MOV RO, #0 ;Set counter (512)
MOV R1, #2
MOV R2, #0
CHECK2: ;Verify 512 bytes data
LCALL IAP READ ;Read Flash
LCALL UART SEND
CINE A, 2, ERROR ;If error, break
INC DPTR ;Inc Flash address
INC R2 ;Modify verify data
DINZ RO, CHECK2 ;Check next
DINZ RI, CHECK2 ;Check next
MOV PlI, #0FOH ;1111,0000 Verify successful
SIMP $
ERROR:
MOV PO, RO
MOV P2, R1
MOV P3, R2
CLR P1.7 ;0xxx,xxxXx [AP operation fail
SIMP $
;/*
;Software delay function
; */
DELAY:
CLR A
MOV RO, A
MOV RI, A
MOV R2, #20H
DELAY1:
DINZ RO, DELAY1
DINZ RI1, DELAY1
DINZ R2, DELAY1
RET
;/*

;Disable ISP/IAP/EEPROM function
;Make MCU in a safe state

; */

IAP IDLE:
MOV IAP_CONTR, #0 ;:Close IAP function
MOV IAP_CMD, #0 ;Clear command to standby
MOV IAP TRIG, #0 ;Clear trigger register
MOV IAP _ADDRH, #80H ;Data ptr point to non-EEPROM area
MOV IAP_ADDRL, #0 ;Clear IAP address to prevent misuse
RET

202 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243
i/*
;Read one byte from ISP/IAP/EEPROM area
;Input: DPTR(ISP/IAP/EEPROM address)

;Output: ACC (Flash data)

; */

IAP_READ:
MOV IAP _CONTR, #ENABLE IAP ;Open AP function, and set wait time
MOV IAP_CMD, #CMD_READ ;Set ISP/IAP/EEPROM READ command
MOV TAP_ADDRL, DPL ;Set ISP/TAP/EEPROM address low
MOV IAP_ADDRH, DPH ;Set ISP/IAP/EEPROM address high
MOV IAP_TRIG, #5AH ;Send trigger command1 (0x5a)
MOV IAP_TRIG, #0ASH ;Send trigger command?2 (0xaS5)
NOP ;MCU will hold here until ISP/IAP/EEPROM operation complete
MOV A, IAP_DATA ;Read ISP/TAP/EEPROM data
LCALL IAP_IDLE ;Close ISP/IAP/EEPROM function
RET

S*

;Program one byte to ISP/IAP/EEPROM area
;Input: DPAT(ISP/IAP/EEPROM address)
; ACC (ISP/IAP/EEPROM data)

;Output:-

; */

IAP_PROGRAM:
MOV IAP_CONTR, #ENABLE IAP ;Open IAP function, and set wait time
MOV IAP_CMD, #CMD_PROGRAM ;Set ISP/IAP/EEPROM PROGRAM command
MOV IAP_ADDRL, DPL ;Set ISP/TAP/EEPROM address low
MOV IAP ADDRH, DPH ;Set ISP/IAP/EEPROM address high
MOV IAP DATA, A ;Write ISP/IAP/EEPROM data
MOV IAP_TRIG, #5AH ;Send trigger command]1 (0x5a)
MOV IAP_TRIG, #0ASH ;Send trigger command?2 (0xa5)
NOP ;MCU will hold here until ISP/IAP/EEPROM operation complete
LCALL IAP IDLE ;Close ISP/IAP/EEPROM function

RET

*
;Erase one sector area
;Input: DPTR(ISP/IAP/EEPROM address)

;Output:-

; */

IAP_ERASE:
MOV IAP_CONTR, #ENABLE IAP ;Open IAP function, and set wait time
MOV IAP_CMD, #CMD_ERASE ;Set ISP/IAP/EEPROM ERASE command
MOV TAP_ADDRL, DPL ;Set ISP/TAP/EEPROM address low
MOV IAP_ADDRH, DPH ;Set ISP/IAP/EEPROM address high
MOV IAP_TRIG, #5AH ;Send trigger command1 (0x5a)
MOV IAP_TRIG, #0ASH ;Send trigger command?2 (0xaS5)
NOP ;MCU will hold here until ISP/IAP/EEPROM operation complete
LCALL IAP _IDLE ;Close ISP/IAP/EEPROM function
RET
END

STC MCU Limited website: www.STCMCU.com 203

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

10.4 EEPROM Demo Program written in C Language

/* */
/* --- STC MCU International Limited */
/* --- STC 15 Series MCU ISP/TAP/EEPROM Demo ----------=--===------- */
/* --- Mobile: (86)13922805190 */
/* --- Fax: 86-755-82944243 */
/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */
/* If you want to use the program or the program referenced in the ------ */
/* article, please specify in which data and procedures from STC = ------- */
/* */

#include "reg51.h"
#include "intrins.h"

typedef unsigned char BYTE;
typedef unsigned int WORD;

/*Declare SFR associated with the IAP */

sfr JAP_ DATA = 0xC2; //Flash data register

sfr JAP ADDRH = 0xC3; //Flash address HIGH

sfr IAP_ ADDRL = 0xC4; //Flash address LOW

sfr IAP_CMD = 0xCs; //Flash command register
sfr IAP_TRIG = 0xCe6; //Flash command trigger
sfr JAP_ CONTR = 0xC7; //Flash control register

/*Define ISP/IAP/EEPROM command*/

#define CMD_IDLE 0 //Stand-By
#define CMD_READ 1 //Byte-Read
#define CMD_PROGRAM 2 //Byte-Program
#define CMD_ERASE 3 //Sector-Erase

/*Detfine ISP/IAP/EEPROM operation const for IAP_CONTR*/

/f#define ENABLE IAP 0x80 /1if SYSCLK<30MHz
/f#define ENABLE IAP 0x81 /lif SYSCLK<24MHz
#define ENABLE IAP 0x82 /1if SYSCLK<20MHz
/f#define ENABLE IAP 0x83 /lif SYSCLK<12MHz
/f#define ENABLE IAP 0x84 /1if SYSCLK<6MHz
/f#define ENABLE IAP 0x85 /1if SYSCLK<3MHz
/f#define ENABLE IAP 0x86 /1if SYSCLK<2MHz
/f#define ENABLE IAP 0x87 /1if SYSCLK<1MHz

//Start address for STC15F204EA series EEPROM
#define IAP_ADDRESS 0x0000

void Delay(BYTE n);
void Iapldle();
BYTE lapReadByte(WORD addr);

204 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412

Fax:86-755-82944243

void IapProgramByte(WORD addr, BYTE dat);
void lapEraseSector(WORD addr);

void main()

{
WORD i;
P1 = Oxfe; //1111,1110 System Reset OK
Delay(10); //Delay
lapEraseSector(IAP_ ADDRESS); //Erase current sector
for (1i=0; i<512; i++) //Check whether all sector data is FF
{
if (IapReadByte(IAP_ADDRESS+i) != 0xff)
goto Error; //1f error, break
i
P1 = Oxfc; //1111,1100 Erase successful
Delay(10); //Delay
for (i=0; i<512; i++) //Program 512 bytes data into data flash
{
lapProgramByte(IAP_ ADDRESS+i, (BYTE)i);
i
P1 = 0xf8; //1111,1000 Program successful
Delay(10); //Delay
for (i=0; i<512; i++) //Verify 512 bytes data
{
if (lapReadByte(IAP_ ADDRESS+i) != (BYTE)i)
goto Error; //1f error, break
i
P1 = 0x{0; //1111,0000 Verify successful
while (1);
Error:
P1 &= 0x7f; //0xxx,xxxx IAP operation fail
while (1);
H
/*
Software delay function
*/
void Delay(BYTE n)
{
WORD x;
while (n--)
{
x=0;
while (++x);
H
H
STC MCU Limited website: www.STCMCU.com 205

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

/*
Disable ISP/IAP/EEPROM function
Make MCU in a safe state
*/
void lapldle()
IAP_CONTR = 0; //Close IAP function
IAP_ CMD =0; //Clear command to standby
IAP_TRIG = 0; //Clear trigger register
IAP_ADDRH = 0x80; //Data ptr point to non-EEPROM area
IAP_ADDRL = 0; //Clear IAP address to prevent misuse
}
/*

Read one byte from ISP/IAP/EEPROM area
Input: addr (ISP/IAP/EEPROM address)

Output:Flash data
*/

BYTE IapReadByte(WORD addr)

{
BYTE dat; //Data buffer
IAP_CONTR = ENABLE IAP; //Open IAP function, and set wait time
IAP_CMD = CMD_READ; //Set ISP/IAP/EEPROM READ command
IAP_ADDRL = addr; //Set ISP/IAP/EEPROM address low
IAP_ADDRH = addr >> §; //Set ISP/IAP/EEPROM address high
IAP_TRIG = 0x5a; //Send trigger command]1 (0x5a)
IAP_TRIG = Oxa5; //Send trigger command?2 (0xa5)
nop(); //IMCU will hold here until ISP/IAP/EEPROM

//operation complete

dat=1AP DATA; //Read ISP/IAP/EEPROM data
Tapldle(); //Close ISP/IAP/EEPROM function
return dat; //Return Flash data

}

/*

Program one byte to ISP/IAP/EEPROM area
Input: addr (ISP/IAP/EEPROM address)
dat (ISP/IAP/EEPROM data)
Output:-
*/

206 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922805190

Tel:86-755-82948412 Fax:86-755-82944243

void lapProgramByte(WORD addr, BYTE dat)
{
TAP_CONTR = ENABLE IAP;
TIAP_CMD = CMD_PROGRAM;
TAP_ADDRL = addr;
IAP_ADDRH = addr >> §;
TAP_DATA = dat;
IAP_TRIG = 0x5a;
IAP_TRIG = Oxa5;
nop();

Tapldle();
H

/*
Erase one sector area

Input: addr (ISP/IAP/EEPROM address)
Output:-

*/
void lapEraseSector(WORD addr)
{

TIAP_CONTR = ENABLE_IAP;
TIAP_CMD = CMD_ERASE,;
IAP_ADDRL = addr;
IAP_ADDRH = addr >> §;
IAP_TRIG = 0x5a;

IAP_TRIG = Oxa5;

//Open IAP function, and set wait time

//Set ISP/IAP/EEPROM PROGRAM command
//Set ISP/IAP/EEPROM address low

//Set ISP/IAP/EEPROM address high

//Write ISP/IAP/EEPROM data

//Send trigger command1 (0x5a)

//Send trigger command?2 (0xa5)

//IMCU will hold here until ISP/IAP/EEPROM
//operation complete

//Open IAP function, and set wait time
//Set ISP/IAP/EEPROM ERASE command
//Set ISP/IAP/EEPROM address low

//Set ISP/IAP/EEPROM address high
//Send trigger command1 (0x5a)

//Send trigger command?2 (0xa5)

nop(); //IMCU will hold here until ISP/IAP/EEPROM
//operation complete
Tapldle();
H
STC MCU Limited website: www.STCMCU.com 207

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

The following C program is almost as same as the above, while simulate UART has been used in it.

/* */
/* --- STC MCU International Limited */
/* --- STC 15 Series MCU ISP/IAP/EEPROM Demo ----------=-=-----—- */
/* --- Mobile: (86)13922805190 */
/* --- Fax: 86-755-82944243 */
/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */
/* If you want to use the program or the program referenced in the ---*/
/* article, please specify in which data and procedures from STC ---*/
/* */

#include "reg51.h"
#include "intrins.h"

//define baudrate const
//BAUD = 256 - FOSC/3/BAUDRATE/M (1T:M=1; 12T:M=12)
//INOTE: (FOSC/3/BAUDRATE) must be greater then 98, (RECOMMEND GREATER THEN 110)

/l#tdefine BAUD 0xF400 // 1200bps @ 11.0592MHz
/f#tdefine BAUD 0xFA00 /1 2400bps @ 11.0592MHz
/f#tdefine BAUD 0xFD00 /1 4800bps @ 11.0592MHz
/l#tdefine BAUD OxFES80 //'9600bps @ 11.0592MHz
/l#tdefine BAUD 0xFF40 //19200bps @ 11.0592MHz
/l#tdefine BAUD OxFFAO0 //38400bps @ 11.0592MHz
/f#tdefine BAUD 0xEC00 //'1200bps @ 18.432MHz
/l#tdefine BAUD 0xF600 // 2400bps @ 18.432MHz
/f#tdefine BAUD 0xFBO00 // 4800bps @ 18.432MHz
/l#tdefine BAUD 0xFD80 //'9600bps @ 18.432MHz
//#tdefine BAUD OxFECO //19200bps @ 18.432MHz
#define BAUD 0xFF60 //38400bps @ 18.432MHz
/l#tdefine BAUD 0xE800 // 1200bps @ 22.1184MHz
/l#tdefine BAUD 0xF400 // 2400bps @ 22.1184MHz
/f#tdefine BAUD 0xFA00 /1 4800bps @ 22.1184MHz
/l#tdefine BAUD 0xFD00 //9600bps @ 22.1184MHz
/f#tdefine BAUD OxFES80 //19200bps @ 22.1184MHz
/l#tdefine BAUD 0xFF40 //38400bps @ 22.1184MHz
/l#tdefine BAUD O0xFF80 //57600bps @ 22.1184MHz

208 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412

Fax:86-755-82944243

sfr AUXR = 0x8E;
sbit RXB = P3"0; //define UART TX/RX port
sbit TXB = P3"1;

typedef bit BOOL;
typedef unsigned char BYTE;
typedef unsigned int WORD;

/*Declare SFR associated with the IAP */

sfr IAP_DATA = 0xC2; //Flash data register
sfrIAP_ADDRH = 0xC3; //Flash address HIGH

sfr IAP_ADDRL = 0xC4; //Flash address LOW

sfr IAP_CMD = 0xCS; //Flash command register
sfr IAP_TRIG = 0xCeo; //Flash command trigger
sfr IAP_CONTR = 0xC7; //Flash control register

/*Define ISP/IAP/EEPROM command*/

#define CMD_IDLE 0 //Stand-By
#define CMD_READ 1 //Byte-Read
#define CMD_PROGRAM 2 //Byte-Program
#define CMD_ERASE 3 //Sector-Erase

/*Detfine ISP/IAP/EEPROM operation const for IAP_ CONTR*/
/H#define ENABLE IAP 0x80 //if SYSCLK<30MHz

//#define ENABLE IAP 0x81 //if SYSCLK<24MHz
#define ENABLE IAP 0x82 //if SYSCLK<20MHz
//#define ENABLE IAP 0x83 //if SYSCLK<12MHz
/H#define ENABLE IAP 0x84 //if SYSCLK<6MHz
//#define ENABLE IAP 0x85 //if SYSCLK<3MHz
/H#define ENABLE IAP 0x86 //if SYSCLK<2MHz
//#define ENABLE IAP 0x87 //if SYSCLK<1MHz

//EEPROM Start address
#define IAP_ADDRESS 0x800

BYTE TBUF,RBUF;
BYTE TDAT,RDAT;
BYTE TCNT,RCNT;
BYTE TBIT,RBIT;
BOOL TING,RING;
BOOL TEND,REND;

void UART_INIT();
void UART_SEND(BYTE dat);

STC MCU Limited website: www.STCMCU.com

209

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412

Fax:86-755-82944243

void Delay(BYTE n);

void lapldle();

BYTE IapReadByte(WORD addr);

void lapProgramByte(WORD addr, BYTE dat);
void lapEraseSector(WORD addr);

void main()

{

/l
/l

WORD i;

BYTE j;

TMOD = 0x00; //timer0 in 16-bit auto reload mode
AUXR = 0x80; /timer0 working at 1T mode

TLO = BAUD;

THO = BAUD>>g; //initial timer0 and set reload value
TRO=1; /tiemr0 start running

ETO=1; //enable timer0 interrupt

PTO=1; //improve timer0 interrupt priority
EA=1; //open global interrupt switch

UART_INIT();

P1 = Oxfe; //1111,1110 System Reset OK
Delay(10); //Delay
UART_SEND(0x5a);
UART_SEND(0xa5);
lapEraseSector(IAP_ ADDRESS); //Erase current sector
for (i=0; i<512; i++) //Check whether all sector data is FF
{
j =IlapReadByte(IAP_ ADDRESS+i);
UART_SEND());

if (j != 0xfY)

goto Error; //1f error, break
¥
P1 = Oxfc; //1111,1100 Erase successful
Delay(10); //Delay
for (i=0; i<512; i++) //Program 512 bytes data into data flash
{

lapProgramByte(IAP_ ADDRESS+i, (BYTE)i);
¥
P1 = 0xf8; //1111,1000 Program successful
Delay(10); //Delay

210

STC MCU Limited. website:

www.STCMCU.com

Mobile:(86)13922805190

Tel:86-755-82948412

Fax:86-755-82944243

//Verify 512 bytes data

j =lapReadByte(IAP_ ADDRESS+i);

www.STCMCU.com
for (i=0; i<512; i++)
{
UART SEND();
if § '=(BYTE)i)
goto Error;
§
P1 = 0xf0;
while (1);
Error:
P1 &= 0x7f;
while (1);
§
/*
Software delay function
*/
void Delay(BYTE n)
{
WORD x;
while (n--)
{
x=0;
while (++x);
§
§
/*
Disable ISP/IAP/EEPROM function
Make MCU in a safe state
*/
void lapldle()
{
IAP_CONTR =0;
IAP_ CMD =0;
IAP_TRIG=0;
IAP_ADDRH = 0x80;
IAP_ADDRL = 0;
§
/*

Read one byte from ISP/IAP/EEPROM area
Input: addr (ISP/IAP/EEPROM address)

Output:Flash data

*/

//If error, break

//1111,0000 Verify successful

//0xxx,xxxx IAP operation fail

//Close IAP function

//Clear command to standby

/IClear trigger register

//Data ptr point to non-EEPROM area
//Clear IAP address to prevent misuse

STC MCU Limited

website: www.STCMCU.com

211

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

BYTE lapReadByte(WORD addr)
{

BYTE dat; //Data buffer

IAP_CONTR = ENABLE IAP; //Open IAP function, and set wait time
IAP_CMD =CMD READ; //Set ISP/IAP/EEPROM READ command
IAP_ADDRL = addr; //Set ISP/IAP/EEPROM address low
IAP_ADDRH = addr >> §; //Set ISP/IAP/EEPROM address high
IAP_TRIG = 0x5a; //Send trigger command1 (0x5a)
IAP_TRIG = 0xa5; //Send trigger command?2 (0xa5)

nop(); //IMCU will hold here until ISP/IAP/EEPROM operation complete
dat =TAP_DATA; //Read ISP/IAP/EEPROM data

TapIdle(); //Close ISP/IAP/EEPROM function
return dat; //Return Flash data

}

/*
Program one byte to ISP/IAP/EEPROM area
Input: addr (ISP/IAP/EEPROM address)

dat (ISP/IAP/EEPROM data)

Output:-
*/

void IapProgramByte(WORD addr, BYTE dat)

{
IAP_CONTR = ENABLE IAP; //Open IAP function, and set wait time
IAP_ CMD = CMD _PROGRAM,; //Set ISP/IAP/EEPROM PROGRAM command
IAP_ADDRL = addr; //Set ISP/IAP/EEPROM address low
IAP_ADDRH = addr >> §; //Set ISP/IAP/EEPROM address high
IAP_DATA = dat; //Write ISP/IAP/EEPROM data
IAP_TRIG = 0x5a; //Send trigger command1 (0x5a)
IAP_TRIG = 0xa5; //Send trigger command?2 (0xa5)
nop(); //IMCU will hold here until ISP/IAP/EEPROM operation complete
TapIdle();

}

/*
Erase one sector area
Input: addr (ISP/IAP/EEPROM address)

Output:-
*/

void IapEraseSector(WORD addr)

{
IAP_CONTR = ENABLE IAP; //Open IAP function, and set wait time
IAP_ CMD =CMD_ERASE; //Set ISP/IAP/EEPROM ERASE command
IAP_ADDRL = addr; //Set ISP/IAP/EEPROM address low
IAP_ADDRH = addr >> §; //Set ISP/IAP/EEPROM address high
IAP_TRIG = 0x5a; //Send trigger command1 (0x5a)
IAP_TRIG = 0xa5; //Send trigger command?2 (0xa5)

212 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

nop(); //IMCU will hold here until ISP/IAP/EEPROM operation complete
Iapldle();

b
/1
//Timer interrupt routine for UART

void tm0() interrupt 1 using 1

{
if (RING)
{
if (--RCNT == 0)
{
RCNT = 3; //reset send baudrate counter
if (--RBIT == 0)
{
RBUF = RDAT; //save the data to RBUF
RING =0; //stop receive
REND = 1; //set receive completed flag
¥
else
{
RDAT >>= 1;
if (RXB) RDAT |= 0x80; //shift RX data to RX buffer
¥
}
}
else if ('RXB)
{
RING =1; //set start receive flag
RCNT =4, //initial receive baudrate counter
RBIT=9; //initial receive bit number (8 data bits + 1 stop bit)
}
if (--TCNT ==0)
{
TCNT =3; //reset send baudrate counter
if (TING) //judge whether sending
{
if (TBIT == 0)
{
TXB =0; //send start bit
TDAT = TBUF; //load data from TBUF to TDAT
TBIT=9; //initial send bit number (8 data bits + 1 stop bit)
}

STC MCU Limited website: www.STCMCU.com 213

www.STCMCU.com

Mobile:(86)13922805190

Tel:86-755-82948412

/]

else
{
TDAT >>= 1, //shift data to CY
if (--TBIT == 0)
{
TXB =1,
TING =0; //stop send
TEND = 1; //set send completed flag
H
else
{
TXB =CY; /Iwrite CY to TX port

//initial UART module variable

void UART _INIT()
{
TING =0;
RING =0;

TEND = 1;
REND = 0;
TCNT = 0;
RCNT = 0;

/]

//initial UART module variable
void UART_SEND(BYTE dat)

{

while (ITEND);
TEND = 0;
TBUF = dat;

TING = 1;

214

STC MCU Limited.

website: www.STCMCU.com

Fax:86-755-82944243

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

Chapter 11 STCI15Fxx series programming tools usage

11.1 In-System-Programming (ISP) principle

If need download code into STC15F204EA series, P3.2 and
P3.3 pin must be connected to GND

If you chose the "Next program code, P3.2/P3.3 need=0/0"
option, then the next time you need to re-download the
program, first of all must be connected P3.2 and P3.3 to
GND

Must be cold-reset (power-on reset),MCU will

MCU frist running ISP monitor code run from ISP monitor code, for any warm-reset
(include reset-pin, watchdog), MCU will run user

code directly.

Y

NO / Detect whether there ia a
legitimate ISP command

Wait ISP command for tens or hundreds
YES milliseconds, if no legitimate command, MCU
v will reset to AP area.

Download user program to AP area.

Y PC application must send command at
first then power on MCU

Reset to AP area running user code

STC MCU Limited website: www.STCMCU.com 215

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

11.2 STC15F204EA series application circuit for ISP

[]r26 ~ P2.5
System_Vcc/USB 45V [P24127] | This part of the circuit has
[]pr.oapco P23 nothing to do with the down-
[Z]proanc P22 load and is only to be observed
[]pr-2/apc2 P2.1 conveniently by oscilloscope
Vin [r1.3/aDC3 RSTOUT_LOW/P2.0
[r1.4/aDc4 INT3/P3.7 Vee
Power Onk§< [r1.5/aDCs INT2/P3.6
W o =] p1.e1apCs CLKOUTO/T1/P3.5
[r1.77apc7 CLKOUTI/TO/P3.4 2 Yt
Q Vee [T po.orRST/SYSCIKO INTI/P3.3 Y "
>———>— 17| Vee INTO/P3.2
IOuFl lOJuF | ER O p3.1[16} o
‘L—L-—T—E Gnd NT4/P3.0| 15]

USB+5V TlOIUT Rll INGND

5555

STC3232,STC232,MAX232,SP232 PC COM

=7

USB1 [L |Cl1+ Vee T > Vee
OIuF v+ Gnd [T3—T11Gnd
cl- TiouT [EFEERDCOM P
o= RiIN [E1LEC_TXDCOM Pind)
. R10UT [T MCURDP3.0)
MCU_TxD(P3.1
IH] v- TN [T} _TxD(P3.1)
T20UT T2IN
Er2iN R20UT[D] oluirio
O+ UI-PLI
OfMcCU-vCC
O+UL-P3.0
O+UlL-P3.1
O+1Gnd

On-chip high-reliability Reset, No need external Reset circuit
Internal high-precision RC oscillator with temperature drifting +1%(-40°C~+80°C), No need expensive
external cystal oscillator.

P0.0/RST/SYSclkO pin defaut to I/O port when leave factory, and it can be configured RESET pin in
STC ISP Writer/Programmer.

216 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190

Tel:86-755-82948412 Fax:86-755-82944243

11.3 PC side application usage

S STC-ISP Webowww. STCMCU.com Suppory

According to actual situation, the user selects the
appropriate maximum and minimum baud rate

113922805190 Verl.D

MCUType [STC1SF204€EA =] fen Code File

COM Part ICDM?
Open EEPROM File

Min Baud I 2400 X
Max Baud IAuto Baud 4 j Clean Buffer
—HM Option
v Trim

Frequency selector IZZ 1184 vl MHz
BGTrim |4 vI RGTrim I[J vI

[¥ Enable longer power-on-reset latency
[P0.0 play the part of RESET pin
able Low-Voltage reset

Low-Voltage detect level |4. 11V vl

ibit IAP operation under Low-Volta

| Hardware enable WDT after power-onreset
Watch-Dog-Timer prescaler IlZB vl

[v WDT stop count while MCU in idle mode

[~ watch-Dog-Timer{WDT) SFR write protect

[Erase all EEPROM data next time

[} Mext time can program only when P3.2 & P3.3 are LOW

Code Buffer | EEPROM Buffer Message

Connect to target MCU ...0K !
Firmware Version: v1.01

MCU Clock: 11.052MHz
BR[| — oK ! [3.5417]

Current Clock: 22, 139173MHz (D.094%)
Current Baud: 57&00

Connect again ... QK ! [0.5787]
Write Option ... OK! [0.0317]
Erasing MCU flash ... OK ! [0.2507
Programming ... OK ! [1.5447]

Low-Voltage detection Setting
in STC-ISP tool

/

Prts‘;ram |

\

Skop | Re-Program |
| ¢

FZ:‘,LJ5er5‘I,THINK\Deskbcp‘l,testhex‘l,twoball-‘lk. bin

In practice, if P3.0/P3.1 already
connected to a RS232/RS485 or
other equipment, it is recommend-

Press this button when
mass production

All new settings
are valid in the

ed that selection P3.2 / P3.3 = 0/0
can download options

next power-on.

STC MCU Limited

website: www.STCMCU.com

217

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

Step1 : Select MCU type (E.g. STC15F204EA series)

Step2 : Load user program code (*.bin or *.hex)

Setp3 : Select the serial port you are using

Setp4 : Config the hardware (H/W) option

Step5 : Press “ISP programming” or “Re-Programming” button to download user program

NOTE : Must press “ISP programming” or “Re-Programming” button first, then power on MCU, otherwise
will cannot download.

About hardware connection
1. MCU RXD (P3.0) ---- RS232 --—- PC COM port TXD (Pin3)
2. MCU TXD (P3.1) ---- RS232 ---- PC COM port RXD (Pin2)
3. MCU GNG------- PC COM port GND (Pin5)
4. RS232 : You can select STC232 / STC3232 / MAX232 / MAX3232/ ...

Using a demo board as a programmer
STC-ISP ver3.0A PCB can be welded into three kinds of circuits, respectively, support the STC's 16/20/28/32
pins MCU, the back plate of the download boards are affixed with labels,users need to pay special attention
to. All the download board is welded 40-pin socket, the socket’s 20-pin is ground line, all types of MCU
should be put on the socket according to the way of alignment with the ground. The method of programming
user code using download board as follow:
1. According to the type of MCU choose supply voltage,
A. For 5V MCU, using jumper JP1 to connect MCU-VCC to +5V pin
B. For 3V MCU, using jumper JP1 to connect MCU-VCC to +3.3V pin
2. Download cable (Provide by STC)
A. Connect DB serial connector to the computer's RS-232 serial interface
B. Plug the USB interface at the same side into your computer's USB port for power supply
C. Connect the USB interface at the other side into STC download board
. Other interfaces do not need to connect.
. In a non-pressed state to SW1, and MCU-VCC power LED off.
5. For SW3
P3.2/P3.3 = 1/1 when SW3 is non-pressed
P3.2/P3.3 = 0/0 when SW3 is pressed
If you have select the “Next program code, P3.2/P3.3 Need = 0/0” option, then SW3 must be in a pressed
state
6. Put target MCU into the U1 socket, and locking socket
7. Press the “Download” button in the PC side application
8. Press SW1 switch in the download board
9. Close the demo board power supply and remove the MCU after download successfully.

AW

218 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

11.4 Compiler / Assembler Programmer and Emulator

About Compiler/Assembler
Any traditional compiler / assembler and the popular Keil are suitable for STC MCU. For selection MCU
body, the traditional compiler / assembler, you can choose Intel's 8052 / 87C52 / 87C52 / 87C58 or Philips's
P87C52 / P87C54/P87C58 in the traditional environment, in Keil environment, you can choose the types in
front of the proposed or download the STC chips database file (STC.CDB) from the STC official website.

About Programmer
You can use the STC specific ISP programmer. (Can be purchased from the STC or apply for free sample).
Programmer can be used as demo board

About Emulator

We do not provite specific emulator now. If you have a traditional 8051 emulator, you can use it to simulate
STC MCU’s some 8052 basic functions.

11.5 Self-Defined ISP download Demo

/* */
/* --- STC MCU International Limited */
/* --- STC 1T Series MCU using software to custom download code Demo--------------------- */
/* --- Mobile: (86)13922805190 */
/* --- Fax: 86-755-82944243 */
/* --- Tel: 86-755-82948412 */
/* --- Web: www.STCMCU.com */
/* 1f you want to use the program or the program referenced in the */
/* article, please specify in which data and procedures from STC */
/* */

#include <reg51.h>
#include <instrins.h>

sfr IAP_CONTR = 0xc7;
sbit MCU_Start Led = P117;

#define Self Define ISP _Download Command 0x22

#define RELOAD COUNT 0xfb //18.432MHz,12T,SMOD=0,9600bps
//#define RELOAD COUNT 0xf6 //18.432MHz,12T,SMOD=0,4800bps
//#define RELOAD COUNT Oxec //18.432MHz,12T,SMOD=0,2400bps
//#define RELOAD COUNT 0xdS8 //18.432MHz,12T,SMOD=0,1200bps

void serial port_initial(void);

void send UART (unsigned char);
void UART Interrupt Receive(void);
void soft_reset to ISP_Monitor(void);
void delay(void);

void display MCU_Start Led(void);

STC MCU Limited website: www.STCMCU.com 219

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

void main(void)

{
unsigned char i = 0;
serial_port_initial(); //Initial UART
display MCU_Start_Led(); //Turn on the work LED
send UART(0x34); //Send UART test data
send UART(0xa7); /I Send UART test data
while (1);
H
void send_UART(unsigned char 1)
{
ES=0; //Disable serial interrupt
TI=0; /IClear TI flag
SBUF =1i; //send this data
while (!TD); //wait for the data is sent
TI=0; //clear TI flag
ES=1; /lenable serial interrupt
H
void UART _Interrupt Receive(void) interrupt 4 using 1
{
unsigned char k = 0;
if (RI)
{
RI=0;
k = SBUF;
if (k == Self Define ISP_Command) /Icheck the serial data
{
delay(); //delay 1s
delay(); //delay 1s
soft_reset_to ISP_Monitor();
H
§
if (TT)
{
TI=0;
H
H
void soft_reset to ISP_Monitor(void)
{
IAP_CONTR = 0x60; //0110,0000 soft reset system to run ISP monitor
H

220 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412

Fax:86-755-82944243

void delay(void)

{
unsigned int j = 0;
unsigned int g = 0;
for (j=0; j<5; j++)

{
for (g=0; g<60000; g++)
{
nop();
nop();
nop();
nop();
nop();
H
H
H
void display MCU_Start Led(void)
{
unsigned char i =0;
for (i=0; i<3; i++)
{
MCU_Start Led =0; //Turn on work LED
dejay();
MCU_Start Led =1; //Turn off work LED
dejay();
MCU_Start Led =0; //Turn on work LED
H
H

In addition, the PC-side application also need to make the following settings

options Self-Defined-ISF]nff—Line—ISP]Che.:k MCU Option| 41 %

Self-defined program command, not need a cold start reset.

Baud |geon « | Yedify |Hone - Data |5 vl Stop |1 -

Commgnd 22

CHES : Send

v Reload the fide automaticlly 1f the file 15 changed and
zend the Commafid antomaticlly

Help

STC MCU Limited

website: www.STCMCU.com

221

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

Appendix A: Assembly Language Programming

INTRODUCTION

Assembly language is a computer language lying between the extremes of machine language and high-level
language like Pascal or C use words and statements that are easily understood by humans, although still a long
way from "natural" language.Machine language is the binary language of computers.A machine language program
is a series of binary bytes representing instructions the computer can execute.

Assembly language replaces the binary codes of machine language with easy to remember "mnemonics'"that
facilitate programming.For example, an addition instruction in machine language might be represented by the
code "10110011".It might be represented in assembly language by the mnemonic "ADD".Programming with
mnemonics is obviously preferable to programming with binary codes.

Of course, this is not the whole story. Instructions operate on data, and the location of the data is specified by
various "addressing modes" emmbeded in the binary code of the machine language instruction. So, there may be
several variations of the ADD instruction, depending on what is added. The rules for specifying these variations
are central to the theme of assembly language programming.

An assembly language program is not executable by a computer. Once written, the program must undergo
translation to machine language. In the example above, the mnemonic "ADD" must be translated to the binary
code "10110011". Depending on the complexity of the programming environment, this translation may involve
one or more steps before an executable machine language program results. As a minimum, a program called an
"assembler" is required to translate the instruction mnemonics to machine language binary codes. Afurther step
may require a "linker" to combine portions of program from separate files and to set the address in memory at
which th program may execute. We begin with a few definitions.

An assembly language program i a program written using labels, mnemonics, and so on, in which each
statement corresponds to a machine instruction. Assembly language programs, often called source code or
symbolic code, cannot be executed by a computer.

A machine language program is a program containing binary codes that represent instructions to a computer.
Machine language programs, often called object code, are executable by a computer.

A assembler is a program that translate an assembly language program into a machine language program.
The machine language program (object code) may be in "absolute" form or in "relocatable" form. In the latter
case, "linking" is required to set the absolute address for execution.

A linker is a program that combines relocatable object programs (modules) and produces an absolute object
program that is executable by a computer. A linker is sometimes called a "linker/locator" to reflect its separate
functions of combining relocatable modules (linking) and setting the address for execution (locating).

A segment is a unit of code or data memory. A segment may be relocatable or absolute. A relocatable
segment has a name, type, and other attributes that allow the linker to combine it with other paritial segments,
if required, and to correctly locate the segment. An absolute segment has no name and cannot be combined with
other segments.

A module contains one or more segments or partial segments. A module has a name assigned by the user. The
module definitions determine the scope of local symbols. An object file contains one or more modules. A module
may be thought of as a "file" in many instances.

A program consists of a single absolute module, merging all absolute and relocatable segments from all input
modules. A program contains only the binary codes for instructions (with address and data constants) that are
understood by a computer.

222 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243
ASSEMBLER OPERATION

There are many assembler programs and other support programs available to facilitate the development of
applications for the 8051 microcontroller. Intel's original MCS-51 family assembler, ASMS51, is no longer
available commercially. However, it set the standard to which the others are compared.

ASMS1 is a powerful assembler with all the bells and whistles. It is available on Intel development systems
and on the IBM PC family of microcomputers. Since these "host" computers contain a CPU chip other than the
8051, ASMSI is called a cross assembler. An 8051 source program may be written on the host computer (using
any text editor) and may be assembled to an object file and listing file (using ASM51), but the program may not
be executed. Since the host system's CPU chip is not an 8051, it does not understand the binary instruction in the
object file. Execution on the host computer requires either hardware emulation or software simulation of the target
CPU. A third possibility is to download the object program to an 8051-based target system for execution.

ASMS51 is invoked from the system prompt by

ASMSI1 source_file [assembler controls]

The source file is assembled and any assembler controls specified take effect. The assembler receives a source
file as input (e.g., PROGRAM.SRC) and generates an object file (PROGRAM.OBJ) and listing file (PROGRAM.
LST) as output. This is illustrated in Figure 1.

Since most assemblers scan the source program twice in performing the translation to machine language,
they are described as two-pass assemblers. The assembler uses a location counter as the address of instructions
and the values for labels. The action of each pass is described below.

PROGRAM.OBJ
PROGRAM.SRC
Legend PROGRAM.LST
O Utility program
[User file

Figure 1 Assembling a source program

Pass one

During the first pass, the source file is scanned line-by-line and a symbol table is built. The location counter
defaults to 0 or is set by the ORG (set origin) directive. As the file is scanned, the location counter is incremented
by the length of each instruction. Define data directives (DBs or DWs) increment the location counter by the
number of bytes defined. Reserve memory directives (DSs) increment the location counter by the number of bytes
reserved.

Each time a label is found at the beginning of a line, it is placed in the symbol table along with the current
value of the location counter. Symbols that are defined using equate directives (EQUs) are placed in the symbol
table along with the "equated" value. The symbol table is saved and then used during pass two.

Pass two

During pass two, the object and listing files are created. Mnemonics are converted to opcodes and placed in
the output files. Operands are evaluated and placed after the instruction opcodes. Where symbols appear in the
operand field, their values are retrieved from the symbol table (created during pass one) and used in calculating
the correct data or addresses for the instructions.

Since two passes are performed, the source program may use "forward references", that is, use a symbol
before it is defined. This would occur, for example, in branching ahead in a program.

STC MCU Limited website: www.STCMCU.com 223

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

The object file, if it is absolute, contains only the binary bytes (0OH-OFH) of the machine language program.
A relocatable object file will also contain a sysmbol table and other information required for linking and locating.
The listing file contains ASCII text codes (02H-7EH) for both the source program and the hexadecimal bytes in
the machine language program.

A good demonstration of the distinction between an object file and a listing file is to display each on the
host computer's CRT display (using, for example, the TYPE command on MS-DOS systems). The listing file
clearly displays, with each line of output containing an address, opcode, and perhaps data, followed by the
program statement from the source file. The listing file displays properly because it contains only ASCII text
codes. Displaying the object file is a problem, however. The output will appear as "garbage", since the object file
contains binary codes of an 8051 machine language program, rather than ASCII text codes.

ASSEMBLY LANGUAGE PROGRAM FORMAT

Assembly language programs contain the following:

* Machine instructions

» Assembler directives

» Assembler controls

* Comments

Machine instructions are the familiar mnemonics of executable instructions (e.g., ANL). Assembler directives
are instructions to the assembler program that define program structure, symbols, data, constants, and so on (e.g.,
ORG). Assembler controls set assembler modes and direct assembly flow (e.g., STITLE). Comments enhance the
readability of programs by explaining the purpose and operation of instruction sequences.

Those lines containing machine instructions or assembler directives must be written following specific rules
understood by the assembler. Each line is divided into "fields" separated by space or tab characters. The general
format for each line is as follows:

[label:] mnemonic [operand] [, operand] [...]1 [;commernt]

Only the mnemonic field is mandatory. Many assemblers require the label field, if present, to begin on the left in
column 1, and subsequent fields to be separated by space or tab charecters. With ASMS1, the label field needn't
begin in column 1 and the mnemonic field needn't be on the same line as the label field. The operand field must,
however, begin on the same line as the mnemonic field. The fields are described below.

Label Field

A label represents the address of the instruction (or data) that follows. When branching to this instruction, this
label is usded in the operand field of the branch or jump instruction (e.g., SIMP SKIP).

Whereas the term "label" always represents an address, the term "symbol" is more general. Labels are
one type of symbol and are identified by the requirement that they must terminate with a colon(:). Symbols
are assigned values or attributes, using directives such as EQU, SEGMENT, BIT, DATA, etc. Symbols may be
addresses, data constants, names of segments, or other constructs conceived by the programmer. Symbols do not
terminate with a colon. In the example below, PAR is a symbol and START is a label (which is a type of symbol).

PAR EQU 500 ;"PAR" IS A SYMBOL WHICH
;REPRESENTS THE VALUE 500
START: MOV A, #OFFH ;"START" IS A LABEL WHICH

;REPRESENTS THE ADDRESS OF
;THE MOV INSTRUCTION

A symbol (or label) must begin with a letter, question mark, or underscore (_); must be followed by letters,
digit, "?", or "_"; and can contain up to 31 characters. Symbols may use upper- or lowercase characters, but they
are treated the same. Reserved words (mnemonics, operators, predefined symbols, and directives) may not be
used.

224 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

Mnemonic Field

Intruction mnemonics or assembler directives go into mnemonic field, which follows the label field. Examples of
instruction mnemonics are ADD, MOV, DIV, or INC. Examples of assembler directives are ORG, EQU, or DB.

Operand Field

The operand field follows the mnemonic field. This field contains the address or data used by the instruction. A
label may be used to represent the address of the data, or a symbol may be used to represent a data constant. The
possibilities for the operand field are largely dependent on the operation. Some operations have no operand (e.g.,
the RET instruction), while others allow for multiple operands separated by commas. Indeed, the possibilties for
the operand field are numberous, and we shall elaborate on these at length. But first, the comment field.

Comment Field

Remarks to clarify the program go into comment field at the end of each line. Comments must begin with a
semicolon (;). Each lines may be comment lines by beginning them with a semicolon. Subroutines and large
sections of a program generally begin with a comment block—serveral lines of comments that explain the general
properties of the section of software that follows.

Special Assembler Symbols

Special assembler symbols are used for the register-specific addressing modes. These include A, RO through
R7, DPTR, PC, C and AB. In addition, a dollar sign ($) can be used to refer to the current value of the location
counter. Some examples follow.

SETB C
INC DPTR
INB 11,8

The last instruction above makes effective use of ASM51's location counter to avoid using a label. It could also be
written as
HERE: JNB TI, HERE

Indirect Address

For certain instructions, the operand field may specify a register that contains the address of the data. The
commercial "at" sign (@) indicates address indirection and may only be used with RO, R1, the DPTR, or the PC,
depending on the instruction. For example,

ADD A, @RO

MOVC A, @A+PC

The first instruction above retrieves a byte of data from internal RAM at the address specified in RO. The second
instruction retrieves a byte of data from external code memory at the address formed by adding the contents of
the accumulator to the program counter. Note that the value of the program counter, when the add takes place, is
the address of the instruction following MOVC. For both instruction above, the value retrieved is placed into the
accumulator.

Immediate Data

Instructions using immediate addressing provide data in the operand field that become part of the instruction.
Immediate data are preceded with a pound sign (#). For example,

STC MCU Limited website: www.STCMCU.com 225

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

CONSTANT EQU 100
MOV A, #OFEH
ORL 40H, #CONSTANT

All immediate data operations (except MOV DPTR . #data) require eight bits of data. The immediate data are
evaluated as a 16-bit constant, and then the low-byte is used. All bits in the high-byte must be the same (00H or
FFH) or the error message "value will not fit in a byte" is generated. For example, the following instructions are
syntactically correct:

MOV A, #0FFOOH

MOV A, #00FFH

But the following two instructions generate error messages:
MOV A, #OFEOOH
MOV A, #01FFH

If signed decimal notation is used, constants from -256 to +255 may also be used. For example, the following
two instructions are equivalent (and syntactically correct):
MOV A, #-256
MOV A, #0FFOOH

Both instructions above put 00H into accumulator A.

Data Address

Many instructions access memory locations using direct addressing and require an on-chip data memory address
(00H to 7FH) or an SFR address (80H to OFFH) in the operand field. Predefined symbols may be used for the
SFR addresses. For example,

MOV A, 45H
MOV A, SBUF ;SAME AS MOV A, 99H
Bit Address

One of the most powerful features of the 8051 is the ability to access individual bits without the need for masking
operations on bytes. Instructions accessing bit-addressable locations must provide a bit address in internal data
memory (00h to 7FH) or a bit address in the SFRs (80H to OFFH).

There are three ways to specify a bit address in an instruction: (a) explicitly by giving the address, (b) using
the dot operator between the byte address and the bit position, and (c) using a predefined assembler symbol. Some
examples follow.

SETB OE7H ;EXPLICIT BIT ADDRESS
SETB ACC.7 ;DOT OPERATOR (SAME AS ABOVE)
JNB TI, $;"TI" IS A PRE-DEFINED SYMBOL
JNB 99H, $:(SAME AS ABOVE)

Code Address

A code address is used in the operand field for jump instructions, including relative jumps (SJMP and conditional
jumps), absolute jumps and calls (ACALL, AJMP), and long jumps and calls (LJMP, LCALL).
The code address is usually given in the form of a label.

ASM51 will determine the correct code address and insert into the instruction the correct 8-bit signed offset,
11-bit page address, or 16-bit long address, as appropriate.

226 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

Generic Jumps and Calls

ASMS51 allows programmers to use a generic JMP or CALL mnemonic. "JMP" can be used instead of SIMP,
AJMP or LIMP; and "CALL" can be used instead of ACALL or LCALL. The assembler converts the generic
mnemonic to a "real" instruction following a few simple rules. The generic mnemonic converts to the short form
(for JMP only) if no forward references are used and the jump destination is within -128 locations, or to the
absolute form if no forward references are used and the instruction following the JMP or CALL instruction is in
the same 2K block as the destination instruction. If short or absolute forms cannot be used, the conversion is to
the long form.

The conversion is not necessarily the best programming choice. For example, if branching ahead a few
instrucions, the generic JMP will always convert to LIMP even though an SIMP is probably better. Consider the
following assembled instructions sequence using three generic jumps.

LOC OBJ LINE SOURCE

1234 1 ORG 1234H
1234 04 2 START: INC A
1235 80FD 3 IMP START ;ASSEMBLES AS SJIMP
12FC 4 ORG START + 200
12FC 4134 5 IMP START ;ASSEMBLES AS AJMP
12FE 021301 6 IMP FINISH ;ASSEMBLES AS LIMP
1301 04 7 FINISH: INC A

8 END

The first jump (line 3) assembles as SIMP because the destination is before the jump (i.e., no forward reference)
and the offset is less than -128. The ORG directive in line 4 creates a gap of 200 locations between the label
START and the second jump, so the conversion on line 5 is to AJMP because the offset is too great for SIMP.
Note also that the address following the second jump (12FEH) and the address of START (1234H) are within the
same 2K page, which, for this instruction sequence, is bounded by 1000H and 17FFH. This criterion must be met
for absolute addressing. The third jump assembles as LIMP because the destination (FINISH) is not yet defined
when the jump is assembled (i.e., a forward reference is used). The reader can verify that the conversion is as
stated by examining the object field for each jump instruction.

ASSEMBLE-TIME EXPRESSION EVALUATION

Values and constants in the operand field may be expressed three ways: (a) explicitly (e.g.,0EFH), (b) with a
predefined symbol (e.g., ACC), or (c) with an expression (e.g.,2 + 3). The use of expressions provides a powerful
technique for making assembly language programs more readable and more flexible. When an expression is used,
the assembler calculates a value and inserts it into the instruction.
All expression calculations are performed using 16-bit arithmetic; however, either § or 16 bits are inserted

into the instruction as needed. For example, the following two instructions are the same:

MOV DPTR, #04FFH+3

MOV DPTR, #0502H ;ENTIRE 16-BIT RESULT USED

If the same expression is used in a "MOV A #data" instruction, however, the error message "value will not fit in a
byte" is generated by ASMS51. An overview of the rules for evaluateing expressions follows.

STC MCU Limited website: www.STCMCU.com 227

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

Number Bases

The base for numeric constants is indicated in the usual way for Intel microprocessors. Constants must be
followed with "B" for binary, "O" or "Q" for octal, "D" or nothing for decimal, or "H" for hexadecimal. For
example, the following instructions are the same:

MOV A, #15H
MOV A, #1111B
MOV A, #0FH
MOV A, #17Q
MOV A, #15D

Note that a digit must be the first character for hexadecimal constants in order to differentiate them from labels (i.e.,
"0OASH" not "ASH").

Charater Strings

Strings using one or two characters may be used as operands in expressions. The ASCII codes are converted to the
binary equivalent by the assembler. Character constants are enclosed in single quotes ('). Some examples follow.
CINE A, #'Q,AGAIN

SUBB A, #'0' ;CONVERT ASCII DIGIT TO BINARY DIGIT
MOV DPTR, #'AB'
MOV DPTR, #4142H ;SAME AS ABOVE

Arithmetic Operators
The arithmetic operators are

+ addition

- subtraction

* multiplication
/ division

MOD modulo (remainder after division)

For example, the following two instructions are same:
MOV A, 10+10H
MOV A, #lAH

The following two instructions are also the same:
MOV A, #25MOD7
MOV A, #4

Since the MOD operator could be confused with a symbol, it must be seperated from its operands by at least one
space or tab character, or the operands must be enclosed in parentheses. The same applies for the other operators
composed of letters.

Logical Operators

The logical operators are
OR logical OR
AND logical AND
XOR logical Exclusive OR
NOT logical NOT (complement)

228 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

The operation is applied on the corresponding bits in each operand. The operator must be separated from the
operands by space or tab characters. For example, the following two instructions are the same:

MOV A #'9 AND OFH

MOV A, #9

The NOT operator only takes one operand. The following three MOV instructions are the same:

THREE EQU 3
MINUS_THREE EQU -3
MOV A, # (NOT THREE) + 1
MOV A, #MINUS_THREE
MOV A, #11111101B

Special Operators

The sepcial operators are
SHR shift right
SHL shift left
HIGH high-byte
LOW low-byte
0 evaluate first

For example, the following two instructions are the same:
MOV A, #8 SHL 1
MOV A, #10H

The following two instructions are also the same:
MOV A, #HIGH 1234H
MOV A, #12H

Relational Operators

When a relational operator is used between two operands, the result is alwalys false (0000H) or true (FFFFH).
The operators are

EQ = equals

NE <> not equals

LT < less than

LE <= less than or equal to
GT > greater than

GE >= greater than or equal to

Note that for each operator, two forms are acceptable (e.g., "EQ" or "="). In the following examples, all relational
tests are "true":

MOV A, #5=5

MOV A#5NE4

MOV A#X' LT 'Z

MOV A#X' >='X'

MOV A#$>0

MOV A#100 GE 50

STC MCU Limited website: www.STCMCU.com 229

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

So, the assembled instructions are equal to
MOV A, #0FFH

Even though expressions evaluate to 16-bit results (i.e., OFFFFH), in the examples above only the low-order
eight bits are used, since the instruction is a move byte operation. The result is not considered too big in this case,
because as signed numbers the 16-bit value FFFFH and the 8-bit value FFH are the same (-1).

Expression Examples
The following are examples of expressions and the values that result:

Expression Result
'B'-'A’ 0001H
8/3 0002H
155 MOD 2 0001H
4%*4 0010H
8 AND 7 0000H
NOT 1 FFFEH
'A' SHL 8 4100H
LOW 65535 00FFH
@B+1)*2 0012H
SEQ4 0000H
'A' LT 'B' FFFFH
3 <=3 FFFFHss

A practical example that illustrates a common operation for timer initialization follows: Put -500 into Timer 1
registers TH1 and TL1. In using the HIGH and LOW operators, a good approach is
VALUE EQU -500
MOV THI1,#HIGH VALUE
MOV TLI1,#LOW VALUE
The assembler converts -500 to the corresponding 16-bit value (FEOCH); then the HIGH and LOW operators
extract the high (FEH) and low (OCH) bytes. as appropriate for each MOV instruction.

Operator Precedence

The precedence of expression operators from highest to lowest is
0
HIGH LOW
* / MOD SHL SHR
+-
EQ NE LT LE GT GE = <> < <= > >=
NOT
AND
OR XOR

When operators of the same precedence are used, they are evaluated left to right.

Examples:
Expression Value
HIGH ('A' SHL 8) 0041H
HIGH 'A'SHL 8 0000H
NOT 'A'- 1 FFBFH
'A' OR 'A'SHL 8 4141H

230 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243
ASSEMBLER DIRECTIVES

Assembler directives are instructions to the assembler program. They are not assembly language instructions
executable by the target microprocessor. However, they are placed in the mnemonic field of the program. With the
exception of DB and DW, they have no direct effect on the contents of memory.

ASMS1 provides several catagories of directives:

* Assembler state control (ORG, END, USING)

» Symbol definition (SEGMENT, EQU, SET, DATA, IDATA, XDATA, BIT, CODE)
» Storage initialization/reservation (DS, DBIT, DB, DW)

* Program linkage (PUBLIC, EXTRN,NAME)

» Segment selection (RSEG, CSEG, DSEG, ISEG, ESEG, XSEG)

Each assembler directive is presented below, ordered by catagory.

Assembler State Control
ORG (Set Origin) The format for the ORG (set origin) directive is
ORG expression
The ORG directive alters the location counter to set a new program origin for statements that follow. A label is
not permitted. Two examples follow.

ORG 100H ;SET LOCATION COUNTER TO 100H
ORG ($ +1000H) AND OF00H ;SET TO NEXT 4K BOUNDARY

The ORG directive can be used in any segment type. If the current segment is absolute, the value will be an
absolute address in the current segment. If a relocatable segment is active, the value of the ORG expression is
treated as an offset from the base address of the current instance of the segment.

End The format of the END directive is
END

END should be the last statement in the source file. No label is permitted and nothing beyond the END statement
is processed by the assembler.

Using The format of the END directive is
USING expression

This directive informs ASMS51 of the currently active register bank. Subsequent uses of the predefined symbolic
register addresses ARO to AR7 will convert to the appropriate direct address for the active register bank. Consider
the following sequence:

USING 3
PUSH AR7
USING 1
PUSH AR7

The first push above assembles to PUSH 1FH (R7 in bank 3), whereas the second push assembles to PUSH OFH
(R7 in bank 1).

Note that USING does not actually switch register banks; it only informs ASMS51 of the active bank.
Executing 8051 instructions is the only way to switch register banks. This is illustrated by modifying the example
above as follows:

STC MCU Limited website: www.STCMCU.com 231

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

MOV PSW, #00011000B ;SELECT REGISTER BANK 3

USING 3

PUSH AR7 ;ASSEMBLE TO PUSH 1FH

MOV PSW, #00001000B ;SELECT REGISTER BANK 1

USING 1

PUSH AR7 ;ASSEMBLE TO PUSH 0FH
Symbol Definition

The symbol definition directives create symbols that represent segment, registers, numbers, and addresses. None
of these directives may be preceded by a label. Symbols defined by these directives may not have been previously
defined and may not be redefined by any means. The SET directive is the only exception. Symbol definiton
directives are described below.

Segment The format for the SEGMENT directive is shown below.
symbol SEGMENT segment_type

The symbol is the name of a relocatable segment. In the use of segments, ASM51 is more complex than
conventional assemblers, which generally support only "code" and "data" segment types. However, ASMS51
defines additional segment types to accommodate the diverse memory spaces in the 8051. The following are the
defined 8051 segment types (memory spaces):

* CODE (the code segment)

* XDATA (the external data space)

» DATA (the internal data space accessible by direct addressing, 00H-07H)

» IDATA (the entire internal data space accessible by indirect addressing, 00H-07H)
» BIT (the bit space; overlapping byte locations 20H—2FH of the internal data space)

For example, the statement

EPROM SEGMENT CODE

declares the symbol EPROM to be a SEGMENT of type CODE. Note that this statement simply declares what
EPROM is. To actually begin using this segment, the RSEG directive is used (see below).

EQU (Equate) The format for the EQU directive is
Symbol EQU expression

The EQU directive assigns a numeric value to a specified symbol name. The symbol must be a valid symbol
name, and the expression must conform to the rules described earlier.
The following are examples of the EQU directive:

N27 EQU 27 ;SET N27 TO THE VALUE 27
HERE EQU $;SET "HERE" TO THE VALUE OF
;THE LOCATION COUNTER
CR EQU ODH ;SET CR (CARRIAGE RETURN) TO 0DH
MESSAGE: DB 'This is a message'
LENGTH EQU $ - MESSAGE ;"LENGTH" EQUALS LENGTH OF "MESSAGE"
Other Symbol Definition Directives The SET directive is similar to the EQU directive except the

symbol may be redefined later, using another SET directive.

232 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

The DATA, IDATA, XDATA, BIT, and CODE directives assign addresses of the corresponding segment
type to a symbol. These directives are not essential. A similar effect can be achieved using the EQU directive; if
used, however, they evoke powerful type-checking by ASMS51. Consider the following two directives and four
instructions:

FLAGI EQU 05H
FLAG2 BIT 05H
SETB FLAGI

SETB FLAG2
MOV FLAGI, #0
MOV FLAG2, #0

The use of FLAG2 in the last instruction in this sequence will generate a "data segment address expected" error
message from ASMS51. Since FLAG2 is defined as a bit address (using the BIT directive), it can be used in a set
bit instruction, but it cannot be used in a move byte instruction. Hence, the error. Even though FLAGI represents
the same value (05H), it was defined using EQU and does not have an associated address space. This is not an
advantage of EQU, but rather, a disadvantage. By properly defining address symbols for use in a specific memory
space (using the directives BIT, DATA, XDATA,ect.), the programmer takes advantage of ASM51's powerful
type-checking and avoids bugs from the misuse of symbols.

Storage Initialization/Reservation

The storage initialization and reservation directives initialize and reserve space in either word, byte, or bit units.
The space reserved starts at the location indicated by the current value of the location counter in the currently
active segment. These directives may be preceded by a label. The storage initialization/reservation directives are
described below.

DS (Define Storage) The format for the DS (define storage) directive is
[label:] DS expression

The DS directive reserves space in byte units. It can be used in any segment type except BIT. The expression
must be a valid assemble-time expression with no forward references and no relocatable or external references.
When a DS statement is encountered in a program, the location counter of the current segment is incremented by
the value of the expression. The sum of the location counter and the specified expression should not exceed the
limitations of the current address space.

The following statement create a 40-byte buffer in the internal data segment:

DSEG AT 30H ;PUT IN DATA SEGMENT (ABSOLUTE, INTERNAL)
LENGTH EQU 40
BUFFER: DS LENGRH ;40 BYTES RESERVED

The label BUFFER represents the address of the first location of reserved memory. For this example, the buffer
begins at address 30H because "AT 30H" is specified with DSEG. The buffer could be cleared using the following
instruction sequence:

MOV R7, #LENGTH

MOV RO, #BUFFER
LOOP: MOV @RO, #0

DINZ R7, LOOP

(continue)

STC MCU Limited website: www.STCMCU.com 233

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

To create a 1000-byte buffer in external RAM starting at 4000H, the following directives could be used:

XSTART EQU 4000H
XLENGTH EQU 1000

XSEG AT XSTART
XBUFFER: DS XLENGTH

This buffer could be cleared with the following instruction sequence:
MOV DPTR, #XBUFFER

LOOP: CLR A
MOVX @DPTR, A

INC DPTR

MOV A, DPL

CINE A, #LOW (XBUFFER + XLENGTH + 1), LOOP
MOV A, DPH

CINE A, #HIGH (XBUFFER + XLENGTH + 1), LOOP
(continue)

This is an excellent example of a powerful use of ASMS51's operators and assemble-time expressions. Since an
instruction does not exist to compare the data pointer with an immediate value, the operation must be fabricated
from available instructions. Two compares are required, one each for the high- and low-bytes of the DPTR.
Furthermore, the compare-and-jump-if-not-equal instruction works only with the accumulator or a register, so
the data pointer bytes must be moved into the accumulator before the CINE instruction. The loop terminates only
when the data pointer has reached XBUFFER + LENGTH + 1. (The "+1" is needed because the data pointer is
incremented after the last MOV X instruction.)

DBIT The format for the DBIT (define bit) directive is,
[label:] DBIT expression

The DBIT directive reserves space in bit units. It can be used only in a BIT segment. The expression must be
a valid assemble-time expression with no forward references. When the DBIT statement is encountered in a
program, the location counter of the current (BIT) segment is incremented by the value of the expression. Note
that in a BIT segment, the basic unit of the location counter is bits rather than bytes. The following directives
creat three flags in a absolute bit segment:

BSEG ;BIT SEGMENT (ABSOLUTE)
KEFLAG: DBIT 1 ;KEYBOARD STATUS
PRFLAG: DBIT 1 ;PRINTER STATUS
DKFLAG: DBIT 1 ;DISK STATUS

Since an address is not specified with BSEG in the example above, the address of the flags defined by DBIT could
be determined (if one wishes to to so) by examining the symbol table in the .LST or .M51 files. If the definitions
above were the first use of BSEG, then KBFLAG would be at bit address 00H (bit 0 of byte address 20H). If other
bits were defined previously using BSEG, then the definitions above would follow the last bit defined.

DB (Define Byte) The format for the DB (define byte) directive is,
[label:] DB expression [, expression] [...]

The DB directive initializes code memory with byte values. Since it is used to actually place data constants in
code memory, a CODE segment must be active. The expression list is a series of one or more byte values (each of
which may be an expression) separated by commas.

234 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

The DB directive permits character strings (enclosed in single quotes) longer than two characters as long as they
are not part of an expression. Each character in the string is converted to the corresponding ASCII code. If a label
is used, it is assigned the address of th first byte. For example, the following statements

CSEG AT 0100H
SQUARES: DB 0,1,4,9, 16,25 ;SQUARES OF NUMBERS 0-5
MESSAGE: DB 'Login:', 0 ;NULL-TERMINATED CHARACTER STRING
When assembled, result in the following hexadecimal memory assignments for external code memory:
Address Contents
0100 00
0101 01
0102 04
0103 09
0104 10
0105 19
0106 4C
0107 6F
0108 67
0109 69
010A 6E
010B 3A
010C 00

DW (Define Word) The format for the DW (define word) directive is
[label:] DW expression [, expression] [...]

The DW directive is the same as the DB directive except two memory locations (16 bits) are assigned for each
data item. For example, the statements

CSEG AT 200H
DW $,'A', 1234H, 2, 'BC'

result in the following hexadecimal memory assignments:

Address Contents
0200 02
0201 00
0202 00
0203 41
0204 12
0205 34
0206 00
0207 02
0208 42
0209 43

Program Linkage

Program linkage directives allow the separately assembled modules (files) to communicate by permitting
intermodule references and the naming of modules. In the following discussion, a "module" can be considered a
"file." (In fact, a module may encompass more than one file.)

STC MCU Limited website: www.STCMCU.com 235

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

Public The format for the PUBLIC (public symbol) directive is
PUBLIC symbol [, symbol] [...]

The PUBLIC directive allows the list of specified symbols to known and used outside the currently assembled
module. A symbol declared PUBLIC must be defined in the current module. Declaring it PUBLIC allows it to be
referenced in another module. For example,

PUBLIC INCHAR, OUTCHR, INLINE, OUTSTR

Extrn The format for the EXTRN (external symbol) directive is
EXTRN segment_type (symbol [, symbol] [...],...)

The EXTRN directive lists symbols to be referenced in the current module that are defined in other modules. The
list of external symbols must have a segment type associated with each symbol in the list. (The segment types
are CODE, XDATA, DATA, IDATA, BIT, and NUMBER. NUMBER s a type-less symbol defined by EQU.)
The segment type indicates the way a symbol may be used. The information is important at link-time to ensure
symbols are used properly in different modules.

The PUBLIC and EXTRN directives work together. Consider the two files, MAIN.SRC and MESSAGES.
SRC. The subroutines HELLO and GOOD_BYE are defined in the module MESSAGES but are made available
to other modules using the PUBLIC directive. The subroutines are called in the module MAIN even though they
are not defined there. The EXTRN directive declares that these symbols are defined in another module.

MAIN.SRC:

EXTRN CODE (HELLO, GOOD_BYE)

éALL HELLO

éALL GOOD BYE

END
MESSAGES.SRC:

PUBLIC HELLO, GOOD BYE
HELLO: &l.).egin subroutine)

RET

GOOD_BYE: (begin subroutine)
RET
END
Neither MAIN.SRC nor MESSAGES.SRC is a complete program; they must be assembled separately and
linked together to form an executable program. During linking, the external references are resolved with correct

addresses inserted as the destination for the CALL instructions.

Name The format for the NAME directive is
NAME module name

236 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

All the usual rules for symbol names apply to module names. If a name is not provided, the module takes on
the file name (without a drive or subdirectory specifier and without an extension). In the absence of any use
of the NAME directive, a program will contain one module for each file. The concept of "modules," therefore,
is somewhat cumbersome, at least for relatively small programming problems. Even programs of moderate
size (encompassing, for example, several files complete with relocatable segments) needn't use the NAME
directive and needn't pay any special attention to the concept of "modules." For this reason, it was mentioned in
the definition that a module may be considered a "file," to simplify learning ASMS51. However, for very large
programs (several thousand lines of code, or more), it makes sense to partition the problem into modules, where,
for example, each module may encompass several files containing routines having a common purpose.

Segment Selection Directives

When the assembler encounters a segment selection directive, it diverts the following code or data into the
selected segment until another segment is selected by a segment selection directive. The directive may select may
select a previously defined relocatable segment or optionally create and select absolute segments.

RSEG (Relocatable Segment) The format for the RSEG (relocatable segment) directive is
RSEG segment_name

Where "segment name" is the name of a relocatable segment previously defined with the SEGMENT directive.
RSEG is a "segment selection" directive that diverts subsequent code or data into the named segment until another
segment selection directive is encountered.

Selecting Absolute Segments RSEG selects a relocatable segment. An "absolute" segment, on the other
hand, is selected using one of the directives:

CSEG (AT address)
DSEG (AT address)
ISEG (AT address)
BSEG (AT address)
XSEG (AT address)

These directives select an absolute segment within the code, internal data, indirect internal data, bit, or external
data address spaces, respectively. If an absolute address is provided (by indicating "AT address"), the assembler
terminates the last absolute address segment, if any, of the specified segment type and creates a new absolute
segment starting at that address. If an absolute address is not specified, the last absolute segment of the specified
type is continuted. If no absolute segment of this type was previously selected and the absolute address is omitted,
a new segment is created starting at location 0. Forward references are not allowed and start addresses must be
absolute.

Each segment has its own location counter, which is always set to 0 initially. The default segment is an
absolute code segment; therefore, the initial state of the assembler is location 0000H in the absolute code segment.
When another segment is chosen for the first time, the location counter of the former segment retains the last
active value. When that former segment is reselected, the location counter picks up at the last active value. The
ORG directive may be used to change the location counter within the currently selected segment.

ASSEMBLER CONTROLS

Assembler controls establish the format of the listing and object files by regulating the actions of ASM51. For the
most part, assembler controls affect the look of the listing file, without having any affect on the program itself.
They can be entered on the invocation line when a program is assembled, or they can be placed in the source file.
Assembler controls appearing in the source file must be preceded with a dollor sign and must begin in column 1.

STC MCU Limited website: www.STCMCU.com 237

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

There are two categories of assembler controls: primary and general. Primary controls can be placed in the
invocation line or at the beginnig of the source program. Only other primary controls may precede a primary
control. General controls may be placed anywhere in the source program.

LINKER OPERATION

In developing large application programs, it is common to divide tasks into subprograms or modules containing
sections of code (usually subroutines) that can be written separately from the overall program. The term "modular
programming" refers to this programming strategy. Generally, modules are relocatable, meaning they are not
intended for a specific address in the code or data space. A linking and locating program is needed to combine the
modules into one absolute object module that can be executed.

Intel's RL51 is a typical linker/locator. It processes a series of relocatable object modules as input and creates
an executable machine language program (PROGRAM, perhaps) and a listing file containing a memory map and
symbol table (PROGRAM.M51). This is illustrated in following figure.

FILE3.0OBJ PROGRAM.ABS
FILE2.0BJ
FILE1.OBJ

PROGRAM.MAP
Legend

O Utility program
[] User file

Linker operation

As relocatable modules are combined, all values for external symbols are resolved with values inserted into
the output file. The linker is invoked from the system prompt by

RL51 input_list [TO output file] [location_controls]

The input_list is a list of relocatable object modules (files) separated by commas. The output_list is the name
of the output absolute object module. If none is supplied, it defaults to the name of the first input file without any
suffix. The location_controls set start addresses for the named segments.

For example, suppose three modules or files (MAIN.OBJ, MESSAGES.OBJ, and SUBROUTINES.OBJ) are
to be combined into an executable program (EXAMPLE), and that these modules each contain two relocatable
segments, one called EPROM of type CODE, and the other called ONCHIP of type DATA. Suppose further that
the code segment is to be executable at address 4000H and the data segment is to reside starting at address 30H (in
internal RAM). The following linker invocation could be used:

RS51 MAIN.OBJ, MESSAGES.OBJ, SUBROUTINES.OBJ TO EXAMPLE & CODE
(EPROM (4000H) DATA (ONCHIP (30H))

Note that the ampersand character "&" is used as the line continuaton character.

If the program begins at the label START, and this is the first instruction in the MAIN module, then
execution begins at address 4000H. If the MAIN module was not linked first, or if the label START is not at the
beginning of MAIN, then the program's entry point can be determined by examining the symbol table in the
listing file EXAMPLE.M51 created by RL51. By default, EXAMPLE.M51 will contain only the link map. If
a symbol table is desired, then each source program must have used the SDEBUG control. The following table
shows the assembler controls supported by ASMS51.

238 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922805190

Tel:86-755-82948412 Fax:86-755-82944243

Assembler controls supported by ASMS1
PRIMARY/
NAME GENERAL DEFAULT ABBREV. MEANING
DATE (date) P DATE() DA [Place string in header (9 char. max.)
DEBUG P NODEBUG DB [Outputs debug symbol information to object file
EJECT G not applicable EJ Continue listing on next page
ERRORPRINT P NOERRORPRINT EP Designates a file to receive error messages in addition to the
(file) listing file (defauts to console)
NOERRORPRINT P NOERRORPRINT NOEP |Designates that error messages will be printed in listing file
only
GEN G GENONLY GO List only the fully expanded source as if all lines generated
by a macro call were already in the source file
GENONLY G GENONLY NOGE |List only the original source text in the listing file
INCLUED(file) G not applicable 1IC Designates a file to be included as part of the program
LIST G LIST LI Print subsequent lines of source code in listing file
NOLIST G LIST NOLI |Do not print subsequent lines of source code in lisitng file
MACRO P MACRO(50) MR [Evaluate and expand all macro calls. Allocate percentage of]
(men_precent) free memory for macro processing
NOMACRO P MACRO(50) NOMR |Do not evalutate macro calls
MODS51 P MODS51 MO |Recognize the 8051-specific predefined special function
registers
NOMODS1 P MODS1 NOMO [Do not recognize the 8051-specific predefined special
function registers
OBJECT(file) P OBJECT(source.OBJ) (02) Designates file to receive object code
NOOBJECT P OBJECT(source.OBJ)| NOOJ |Designates that no object file will be created
PAGING P PAGING PI Designates that listing file be broken into pages and each
will have a header
NOPAGING P PAGING NOPI |Designates that listing file will contain no page breaks
PAGELENGTH P PAGELENGT(60) PL Sets maximun number of lines in each page of listing file
N) (range=10 to 65536)
PAGE WIDTH (N) P PAGEWIDTH(120) PW |Set maximum number of characters in each line of listing
file (range = 72 to 132)
PRINT(file) P PRINT(source.LST) PR Designates file to receive source listing
NOPRINT P PRINT(source.LST) | NOPR |Designates that no listing file will be created
SAVE G not applicable SA [Stores current control settings from SAVE stack
RESTORE G not applicable RS Restores control settings from SAVE stack
REGISTERBANK P REGISTERBANK(0) RB Indicates one or more banks used in program module
(1b,...)
NOREGISTER- P REGISTERBANK(0)[NORB [Indicates that no register banks are used
BANK
SYMBOLS P SYMBOLS SB Creates a formatted table of all symbols used in program
NOSYMBOLS P SYMBOLS NOSB [Designates that no symbol table is created
TITLE(string) G TITLE() TT Places a string in all subsequent page headers (max.60
characters)
WORKFILES P same as source WEF |Designates alternate path for temporay workfiles
(path)
XREF P NOXREF XR [Creates a cross reference listing of all symbols used in
program
NOXREF P NOXREF NOXR |Designates that no cross reference list is created
STC MCU Limited website: www.STCMCU.com 239

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

MACROS

The macro processing facility (MPL) of ASMS51 is a "string replacement" facility. Macros allow frequently used
sections of code be defined once using a simple mnemonic and used anywhere in the program by inserting the
mnemonic. Programming using macros is a powerful extension of the techniques described thus far. Macros can
be defined anywhere in a source program and subsequently used like any other instruction. The syntax for macro
definition is

%*DEFINE (call_pattern) (macro_body)

Once defined, the call pattern is like a mnemonic; it may be used like any assembly language instruction by
placing it in the mnemonic field of a program. Macros are made distinct from "real" instructions by preceding
them with a percent sign, "%". When the source program is assembled, everything within the macro-body, on
a character-by-character basis, is substituted for the call-pattern. The mystique of macros is largely unfounded.
They provide a simple means for replacing cumbersome instruction patterns with primitive, easy-to-remember
mnemonics. The substitution, we reiterate, is on a character-by-character basis—nothing more, nothing less.

For example, if the following macro definition appears at the beginning of a source file,

%*DEFINE (PUSH_DPTR)
(PUSH DPH
PUSH DPL
)

then the statement
%PUSH_DPTR
will appear in the .LST file as

PUSH DPH
PUSH DPL

The example above is a typical macro. Since the 8051 stack instructions operate only on direct addresses,
pushing the data pointer requires two PUSH instructions. A similar macro can be created to POP the data pointer.
There are several distinct advantages in using macros:

A source program using macros is more readable, since the macro mnemonic is generally more indicative
of the intended operation than the equivalent assembler instructions.

* The source program is shorter and requires less typing.

* Using macros reduces bugs

* Using macros frees the programmer from dealing with low-level details.

The last two points above are related. Once a macro is written and debugged, it is used freely without the worry
of bugs. In the PUSH DPTR example above, if PUSH and POP instructions are used rather than push and pop
macros, the programmer may inadvertently reverse the order of the pushes or pops. (Was it the high-byte or low-
byte that was pushed first?) This would create a bug. Using macros, however, the details are worked out once—
when the macro is written—and the macro is used freely thereafter, without the worry of bugs.

Since the replacement is on a character-by-character basis, the macro definition should be carefully
constructed with carriage returns, tabs, ect., to ensure proper alignment of the macro statements with the rest of
the assembly language program. Some trial and error is required.

There are advanced features of ASM51's macro-processing facility that allow for parameter passing, local
labels, repeat operations, assembly flow control, and so on. These are discussed below.

240 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

Parameter Passing

A macro with parameters passed from the main program has the following modified format:

%*DEFINE (macro_name (parameter list)) (macro_body)
For example, if the following macro is defined,
%*DEFINE (CMPA# (VALUE))
(CINE A, #%VALUE, $ +3
)

then the macro call
%CMPA# (20H)

will expand to the following instruction in the .LST file:
CINE A,#20H,$+3

Although the 8051 does not have a "compare accumulator” instruction, one is easily created using the CINE
instruction with "$+3" (the next instruction) as the destination for the conditional jump. The CMPA# mnemonic
may be easier to remember for many programmers. Besides, use of the macro unburdens the programmer from
remembering notational details, such as "$+3."

Let's develop another example. It would be nice if the 8051 had instructions such as

JUMP IF ACCUMULATOR GREATER THAN X

JUMP IF ACCUMULATOR GREATER THAN OR EQUAL TO X
JUMP IF ACCUMULATOR LESS THAN X

JUMP IF ACCUMULATOR LESS THAN OR EQUAL TO X

but it does not. These operations can be created using CINE followed by JC or JNC, but the details are tricky.
Suppose, for example, it is desired to jump to the label GREATER _THAN if the accumulator contains an ASCII
code greater than "Z" (5AH). The following instruction sequence would work:

CINE A, #5BH, $+3

INC GREATER THAN
The CJINE instruction subtracts 5BH (i.e., "Z" + 1) from the content of A and sets or clears the carry flag
accordingly. CINE leaves C=1 for accumulator values 00H up to and including SAH. (Note: 5SAH-5BH<O0,
therefore C=1; but SBH-5BH=0, therefore C=0.) Jumping to GREATER_THAN on the condition "not carry"
correctly jumps for accumulator values 5BH, SCH, 5DH, and so on, up to FFH. Once details such as these are
worked out, they can be simplified by inventing an appropriate mnemonic, defining a macro, and using the macro
instead of the corresponding instruction sequence. Here's the definition for a "jump if greater than" macro:

%*DEFINE (JGT (VALUE, LABEL))
(CINE A, #%VALUE+1, $+3 :JGT
JNC %LABEL
)

To test if the accumulator contains an ASCII code greater than "Z," as just discussed,the macro would be called as
%JGT ('Z', GREATER THAN)
ASMS51 would expand this into

CINE A, #5BH, $+3 JGT
JNC GREATER THAN

The JGT macro is an excellent example of a relevant and powerful use of macros. By using macros, the
programmer benefits by using a meaningful mnemonic and avoiding messy and potentially bug-ridden details.

STC MCU Limited website: www.STCMCU.com 241

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

Local Labels
Local labels may be used within a macro using the following format:
%*DEFINE (macro_name [(parameter list)])

[LOCAL list of local labels] (macro_body)
For example, the following macro definition

%*DEFINE (DEC_DPTR) LOCAL SKIP

(DEC DPL :DECREMENT DATA POINTER
MOV A, DPL
CINE A, #OFFH, %SKIP
DEC DPL
%SKIP:)

would be called as
%DEC _DPTR
and would be expanded by ASM51 into

DEC DPL ;DECREMENT DATA POINTER
MOV A, DPL

CINE A, #OFFH, SKIPOO

DEC DPH

SKIP0O:

Note that a local label generally will not conflict with the same label used elsewhere in the source program, since
ASMS51 appends a numeric code to the local label when the macro is expanded. Furthermore, the next use of the
same local label receives the next numeric code, and so on.

The macro above has a potential "side effect." The accumulator is used as a temporary holding place for
DPL. If the macro is used within a section of code that uses A for another purpose, the value in A would be lost.
This side effect probably represents a bug in the program. The macro definition could guard against this by saving
A on the stack. Here's an alternate definition for the DEC_DPTR macro:

%*DEFINE (DEC_DPTR) LOCAL SKIP
(PUSHACC

DEC DPL ;DECREMENT DATA POINTER
MOV A, DPL
CINE A, #OFFH, %SKIP
DEC DPH

%SKIP: POP ACC
)

Repeat Operations

This is one of several built-in (predefined) macros. The format is
%REPEAT (expression) (text)
For example, to fill a block of memory with 100 NOP instructions,

%REPEAT (100)
(NOP

)

242 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

Control Flow Operations
The conditional assembly of section of code is provided by ASM51's control flow macro definition. The format is

%IF (expression) THEN (balanced text)
[ELSE (balanced text)] FI

For example,

INTRENAL EQU 1 ;1 =8051 SERIAL I/0 DRIVERS
;0 =8251 SERIAL I/O DRIVERS

%IF (INTERNAL) THEN

(INCHAR: . ;8051 DRIVERS
OUTCHR:

) ELSE
(INCHAR: . ;8251 DRIVERS
OUTCHR:

)

In this example, the symbol INTERNAL is given the value 1 to select I/O subroutines for the 8051's serial port,
or the value 0 to select I/O subroutines for an external UART, in this case the 8251. The IF macro causes ASM51
to assemble one set of drivers and skip over the other. Elsewhere in the program, the INCHAR and OUTCHR
subroutines are used without consideration for the particular hardware configuration. As long as the program as
assembled with the correct value for INTERNAL, the correct subroutine is executed.

STC MCU Limited website: www.STCMCU.com 243

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

Appendix B: 8051 C Programming
ADVANTAGES AND DISADVANTAGES OF 8051 C

The advantages of programming the 8051 in C as compared to assembly are:

» Offers all the benefits of high-level, structured programming languages such as C, including the ease of
writing subroutines

» Often relieves the programmer of the hardware details that the complier handles on behalf of the
programmer

» Easier to write, especially for large and complex programs

* Produces more readable program source codes

Nevertheless, 8051 C, being very similar to the conventional C language, also suffers from the following
disadvantages:

» Processes the disadvantages of high-level, structured programming languages.
» Generally generates larger machine codes
* Programmer has less control and less ability to directly interact with hardware

To compare between 8051 C and assembly language, consider the solutions to the Example—Write a program
using Timer O to create a 1KHz square wave on P1.0.
A solution written below in 8051 C language:

sbit portbit = P1"0; /*Use variable portbit to refer to P1.0*/
main ()
{
TMOD = 1;
while (1)
{
THO = OxFE;
TLO = 0xC;
TRO=1;
while (TFO !=1);
TRO=0;
TFO0 = 0;
portbit = !(P1.70);
b
b
A solution written below in assembly language:
ORG 8100H
MOV TMOD, #01H ;16-bit timer mode
LOOP: MOV THO, #OFEH ;-500 (high byte)
MOV TLO, #0CH ;-500 (low byte)
SETB TRO ;start timer
WAIT: JNB TFO, WAIT ;wait for overflow
CLR TRO ;stop timer
CLR TFO ;clear timer overflow flag
CPL P1.0 ;toggle port bit
SIMP LOOP ;repeat
END

244 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

Notice that both the assembly and C language solutions for the above example require almost the same number
of lines. However, the difference lies in the readability of these programs. The C version seems more human than
assembly, and is hence more readable. This often helps facilitate the human programmer's efforts to write even
very complex programs. The assembly language version is more closely related to the machine code, and though
less readable, often results in more compact machine code. As with this example, the resultant machine code from
the assembly version takes 83 bytes while that of the C version requires 149 bytes, an increase of 79.5%!

The human programmer's choice of either high-level C language or assembly language for talking to the
8051, whose language is machine language, presents an interesting picture, as shown in following figure.

Human language » C (high-level) language
Eg. English, Malay, Chinese — Eg. for (x=0; x<9; x++)...
\
Complier
| Assembly language

A

Eg. MOV, ADD, SUB

Machine language
Eg. 10011101 0101010101 | 4 Assembler | I

Conversion between human, high-level, assembly, and machine language
8051 C COMPILERS

We saw in the above figure that a complier is needed to convert programs written in 8051 C language into
machine language, just as an assembler is needed in the case of programs written in assembly language. A
complier basically acts just like an assembler, except that it is more complex since the difference between C and
machine language is far greater than that between assembly and machine language. Hence the complier faces a
greater task to bridge that difference.

Currently, there exist various 8051 C complier, which offer almost similar functions. All our examples
and programs have been compiled and tested with Keil's p Vision 2 IDE by Keil Software, an integrated 8051
program development envrionment that includes its C51 cross compiler for C. A cross compiler is a compiler that
normally runs on a platform such as IBM compatible PCs but is meant to compile programs into codes to be run
on other platforms such as the 8051.

DATA TYPES

8051 C is very much like the conventional C language, except that several extensions and adaptations have been
made to make it suitable for the 8051 programming environment. The first concern for the 8051 C programmer is
the data types. Recall that a data type is something we use to store data. Readers will be familiar with the basic C
data types such as int, char, and float, which are used to create variables to store integers, characters, or floating-
points. In 8051 C, all the basic C data types are supported, plus a few additional data types meant to be used
specifically with the 8051.

The following table gives a list of the common data types used in 8051 C. The ones in bold are the specific
8051 extensions. The data type bit can be used to declare variables that reside in the 8051's bit-addressable
locations (namely byte locations 20H to 2FH or bit locations 00H to 7FH). Obviously, these bit variables can only
store bit values of either 0 or 1. As an example, the following C statement:

bit flag=0;

declares a bit variable called flag and initializes it to 0.

STC MCU Limited website: www.STCMCU.com 245

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

Data types used in 8051 C language

Data Type Bits | Bytes |Value Range

bit 1 0to 1

signed char 8 1 |-128 to +127

unsigned char 8 1]0to255

enum 16 2 [-32768 to +32767

signed short 16 2 [-32768 to +32767

unsigned short 16 2 |0to 65535

signed int 16 2 |-32768 to +32767

unsigned int 16 2 |0to 65535

signed long 32 4 |-2,147,483,648 to +2,147,483,647
unsigned long 32 4 10 t04,294,967,295

float 32 4 |£1.175494E-38 to +3.402823E+38
sbit 1 0to 1

sfr 8 1 |0to 255

sfr16 16 2 |0to 65535

The data type sbit is somewhat similar to the bit data type, except that it is normally used to declare 1-bit
variables that reside in special function registes (SFRs). For example:

sbit P=0xDO0;

declares the sbit variable P and specifies that it refers to bit address DOH, which is really the LSB of the PSW
SFR. Notice the difference here in the usage of the assignment ("=") operator. In the context of sbit declarations,
it indicatess what address the sbit variable resides in, while in bit declarations, it is used to specify the initial
value of the bit variable.

Besides directly assigning a bit address to an sbit variable, we could also use a previously defined sfr
variable as the base address and assign our sbit variable to refer to a certain bit within that sfr. For example:

sfr PSW = 0xDO0;
sbit P=PSW"0;
This declares an sfr variable called PSW that refers to the byte address DOH and then uses it as the base address
to refer to its LSB (bit 0). This is then assigned to an sbit variable, P. For this purpose, the carat symbol (") is used
to specify bit position 0 of the PSW.
A third alternative uses a constant byte address as the base address within which a certain bit is referred. As
an illustration, the previous two statements can be replaced with the following:

sbit P=0xD0 " 0;
Meanwhile, the sfr data type is used to declare byte (8-bit) variables that are associated with SFRs. The
statement:
sfr 1IE = 0xAS;
declares an sfr variable IE that resides at byte address ASH. Recall that this address is where the Interrupt Enable
(IE) SFR is located; therefore, the sfr data type is just a means to enable us to assign names for SFRs so that it is
easier to remember.

The sfr16 data type is very similar to sfr but, while the sfr data type is used for 8-bit SFRs, sfr16 is used for
16-bit SFRs. For example, the following statement:

sfr16 DPTR = 0x82;

246 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

declares a 16-bit variable DPTR whose lower-byte address is at 82H. Checking through the 8051 architecture,
we find that this is the address of the DPL SFR, so again, the sfr16 data type makes it easier for us to refer to
the SFRs by name rather than address. There's just one thing left to mention. When declaring sbit, sfr, or sfr16
variables, remember to do so outside main, otherwise you will get an error.

In actual fact though, all the SFRs in the 8051, including the individual flag, status, and control bits in the
bit-addressable SFRs have already been declared in an include file, called reg51.h, which comes packaged with
most 8051 C compilers. By using regS1.h, we can refer for instance to the interrupt enable register as simply IE
rather than having to specify the address A8H, and to the data pointer as DPTR rather than 82H. All this makes
8051 C programs more human-readable and manageable. The contents of reg51.h are listed below.

/*
REG51.H
Header file for generic 8051 microcontroller.

*/
/* BYTE Register */ sbit 1IE1 = 0x8B;
sfr PO = 0x80; sbit IT1 = 0x8A;
sfr P1 = 0x90; sbit 1EO = 0x89;
sfr P2 = 0xAO; sbit 1TO = 0x88;
sfr P3 = 0xBO; /*1E */
sfr PSW = 0xDO; sbit EA = 0xAF;
sfr ACC = 0xEOQ; sbit ES = 0xAC;
sfr B = 0xFO; sbit ET1 = 0xAB;
sfr SP = 0x81; sbit EX1 = 0xAA;
sfr DPL = 0x82; sbit ETO = 0xA9;
sfr DPH = 0x83; sbit EXO0 = 0xAS,;
sfr PCON = 0x87; /*1P */
sfr TCON = 0x88; sbit PS = 0xBC;
sfr TMOD = 0x89; sbit PT1 = 0xBB;
sfr TLO = 0x8A; sbit PX1 = 0xBA;
sfr TL1 = 0x8B; sbit PTO = 0xB9;
sfr THO = 0x8C; sbit PX0 = 0xBS;
sfr THI1 = 0x8D; /* P3 */
sfr 1IE = 0xAS; sbit RD = 0xB7;
sfr 1P = 0xBS; sbit WR = 0xB6;
sfr SCON = 0x98; sbit T1 = 0xBS5;
sfr SBUF = 0x99; sbit TO = 0xB4;
/* BIT Register */ sbit INT1 = 0xB3;
/* PSW */ sbit INTO = 0xB2;
sbit CY = 0xD7; sbit TXD = 0xBI;
sbit AC = 0xDo; sbit RXD = 0xBO0;
sbit FO = 0xDS3; /* SCON */
sbit RS1 = 0xD4; sbit SMO = 0x9F;
sbit RSO = 0xD3; sbit SM1 = 0x9E;
sbit oV = 0xD2; sbit SM2 = 0x9D;
sbit P = 0xDO; sbit REN = 0x9C;
/* TCON */ sbit TBS8 = 0x9B;
sbit TF1 = 0x8F; sbit RB8 = 0x9A;
sbit TR1 = 0x8E; sbit TI = 0x99;
sbit TFO = 0x8D; sbit RI = 0x98;
sbit TRO = 0x8C;

STC MCU Limited website: www.STCMCU.com 247

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243
MEMORY TYPES AND MODELS

The 8051 has various types of memory space, including internal and external code and data memory. When
declaring variables, it is hence reasonable to wonder in which type of memory those variables would reside. For
this purpose, several memory type specifiers are available for use, as shown in following table.

Memory types used in 8051 C language
Memory Type Description (Size)
code Code memory (64 Kbytes)
data Directly addressable internal data memory (128 bytes)
idata Indirectly addressable internal data memory (256 bytes)
bdata Bit-addressable internal data memory (16 bytes)
xdata External data memory (64 Kbytes)
pdata Paged external data memory (256 bytes)

The first memory type specifier given in above table is code. This is used to specify that a variable is to reside in
code memory, which has a range of up to 64 Kbytes. For example:

char code errormsg[] ="An error occurred" ;

declares a char array called errormsg that resides in code memory.

If you want to put a variable into data memory, then use either of the remaining five data memory specifiers
in above table. Though the choice rests on you, bear in mind that each type of data memory affect the speed of
access and the size of available data memory. For instance, consider the following declarations:

signed int data numl;
bit bdata numbit;
unsigned int xdata num?2;

The first statement creates a signed int variable numl that resides in inernal data memory (00H to 7FH). The next
line declares a bit variable numbit that is to reside in the bit-addressable memory locations (byte addresses 20H
to 2FH), also known as bdata. Finally, the last line declares an unsigned int variable called num?2 that resides in
external data memory, xdata. Having a variable located in the directly addressable internal data memory speeds
up access considerably; hence, for programs that are time-critical, the variables should be of type data. For other
variants such as 8052 with internal data memory up to 256 bytes, the idata specifier may be used. Note however
that this is slower than data since it must use indirect addressing. Meanwhile, if you would rather have your
variables reside in external memory, you have the choice of declaring them as pdata or xdata. A variable declared
to be in pdata resides in the first 256 bytes (a page) of external memory, while if more storage is required, xdata
should be used, which allows for accessing up to 64 Kbytes of external data memory.

What if when declaring a variable you forget to explicitly specify what type of memory it should reside in, or
you wish that all variables are assigned a default memory type without having to specify them one by one? In this
case, we make use of memory models. The following table lists the various memory models that you can use.

Memory models used in 8051 C language
Memory Model Description
Small Variables default to the internal data memory (data)
Compact Variables default to the first 256 bytes of external data memory (pdata)
Large Variables default to external data memory (xdata)

248 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

A program is explicitly selected to be in a certain memory model by using the C directive, #pragma. Otherwise,
the default memory model is small. It is recommended that programs use the small memory model as it allows for
the fastest possible access by defaulting all variables to reside in internal data memory.

The compact memory model causes all variables to default to the first page of external data memory while
the large memory model causes all variables to default to the full external data memory range of up to 64 Kbytes.

ARRAYS

Often, a group of variables used to store data of the same type need to be grouped together for better readability.
For example, the ASCII table for decimal digits would be as shown below.

ASCII table for decimal digits
Decimal Digit ASCII Code In Hex
0 30H
31H
32H
33H
34H
35H
36H
37H
38H
39H

Ol [A|N|n]|H|W|N|—

To store such a table in an 8051 C program, an array could be used. An array is a group of variables of the same
data type, all of which could be accessed by using the name of the arrary along with an appropriate index.
The array to store the decimal ASCII table is:

int table [10] =
{0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39};

Notice that all the elements of an array are separated by commas. To access an individul element, an index
starting from 0 is used. For instance, table[0] refers to the first element while table[9] refers to the last element in
this ASCII table.

STRUCTURES

Sometime it is also desired that variables of different data types but which are related to each other in some way
be grouped together. For example, the name, age, and date of birth of a person would be stored in different types
of variables, but all refer to the person's personal details. In such a case, a structure can be declared. A structure is
a group of related variables that could be of different data types. Such a structure is declared by:

struct person {
char name;
int age;
long DOB;
15
Once such a structure has been declared, it can be used like a data type specifier to create structure variables that
have the member's name, age, and DOB. For example:

struct person grace = {"Grace", 22, 01311980};

STC MCU Limited website: www.STCMCU.com 249

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

would create a structure variable grace to store the name, age, and data of birth of a person called Grace. Then in
order to access the specific members within the person structure variable, use the variable name followed by the
dot operator (.) and the member name. Therefore, grace.name, grace.age, grace. DOB would refer to Grace's name,
age, and data of birth, respectively.

POINTERS

When programming the 8051 in assembly, sometimes register such as RO, R1, and DPTR are used to store
the addresses of some data in a certain memory location. When data is accessed via these registers, indirect
addressing is used. In this case, we say that RO, R1, or DPTR are used to point to the data, so they are essentially
pointers.

Correspondingly in C, indirect access of data can be done through specially defined pointer variables. Point-
ers are simply just special types of variables, but whereas normal variables are used to directly store data, pointer
variables are used to store the addresses of the data. Just bear in mind that whether you use normal variables or
pointer variables, you still get to access the data in the end. It is just whether you go directly to where it is stored
and get the data, as in the case of normal variables, or first consult a directory to check the location of that data
before going there to get it, as in the case of pointer variables.

Declaring a pointer follows the format:

data_type *pointer name;

where
data_type refers to which type of data that the pointer is pointing to
* denotes that this is a pointer variable
pointer name is the name of the pointer

As an example, the following declarations:

int * numPtr
int num;
numPtr = #

first declares a pointer variable called numPtr that will be used to point to data of type int. The second declaration
declares a normal variable and is put there for comparison. The third line assigns the address of the num variable
to the numPtr pointer. The address of any variable can be obtained by using the address operator, &, as is used in
this example. Bear in mind that once assigned, the numPtr pointer contains the address of the num variable, not
the value of its data.

The above example could also be rewritten such that the pointer is straightaway initialized with an address
when it is first declared:

int num;
int * numPtr = #

In order to further illustrate the difference between normal variables and pointer variables, consider the
following, which is not a full C program but simply a fragment to illustrate our point:

int num=7,

int * numPtr = #
printf ("%d\n", num);
printf ("%d\n", numPtr);
printf ("%d\n", &num);
printf ("%d\n", *numPtr);

250 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

The first line declare a normal variable, num, which is initialized to contain the data 7. Next, a pointer variable,
numPtr, is declared, which is initialized to point to the address of num. The next four lines use the printf()
function, which causes some data to be printed to some display terminal connected to the serial port. The first
such line displays the contents of the num variable, which is in this case the value 7. The next displays the
contents of the numPtr pointer, which is really some weird-looking number that is the address of the num variable.
The third such line also displays the addresss of the num variable because the address operator is used to obtain
num's address. The last line displays the actual data to which the numPtr pointer is pointing, which is 7. The *
symbol is called the indirection operator, and when used with a pointer, indirectly obtains the data whose address
is pointed to by the pointer. Therefore, the output display on the terminal would show:

7

13452 (or some other weird-looking number)

13452 (or some other weird-looking number)

7

A Pointer's Memory Type

Recall that pointers are also variables, so the question arises where they should be stored. When declaring
pointers, we can specify different types of memory areas that these pointers should be in, for example:

int * xdata numPtr = & num;
This is the same as our previous pointer examples. We declare a pointer numPtr, which points to data of type int
stored in the num variable. The difference here is the use of the memory type specifier xdata after the *. This is
specifies that pointer numPtr should reside in external data memory (xdata), and we say that the pointer's memory
type is xdata.

Typed Pointers

We can go even further when declaring pointers. Consider the example:
int data * xdata numPtr = #

The above statement declares the same pointer numPtr to reside in external data memory (xdata), and this pointer
points to data of type int that is itself stored in the variable num in internal data memory (data). The memory type
specifier, data, before the * specifies the data memory type while the memory type specifier, xdata, after the *
specifies the pointer memory type.

Pointer declarations where the data memory types are explicitly specified are called typed pointers. Typed
pointers have the property that you specify in your code where the data pointed by pointers should reside. The
size of typed pointers depends on the data memory type and could be one or two bytes.

Untyped Pointers

When we do not explicitly state the data memory type when declaring pointers, we get untyped pointers, which
are generic pointers that can point to data residing in any type of memory. Untyped pointers have the advantage
that they can be used to point to any data independent of the type of memory in which the data is stored. All
untyped pointers consist of 3 bytes, and are hence larger than typed pointers. Untyped pointers are also generally
slower because the data memory type is not determined or known until the complied program is run at runtime.
The first byte of untyped pointers refers to the data memory type, which is simply a number according to the
following table. The second and third bytes are,respectively,the higher-order and lower-order bytes of the address
being pointed to.
An untyped pointer is declared just like normal C, where:
int * xdata numPtr = &num,;
does not explicitly specify the memory type of the data pointed to by the pointer. In this case, we are using
untyped pointers.

STC MCU Limited website: www.STCMCU.com 251

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

Data memory type values stored in first byte of untyped pointers
Value Data Memory Type

1 idata

2 xdata

3 pdata

4 data/bdata

5 code

FUNCTIONS

In programming the 8051 in assembly, we learnt the advantages of using subroutines to group together common
and frequently used instructions. The same concept appears in 8051 C, but instead of calling them subroutines, we
call them functions. As in conventional C, a function must be declared and defined. A function definition includes
a list of the number and types of inputs, and the type of the output (return type), puls a description of the internal
contents, or what is to be done within that function.

The format of a typical function definition is as follows:

return_type function name (arguments) [memory] [reentrant] [interrupt] [using]

{
§

where
return_type refers to the data type of the return (output) value
function_name is any name that you wish to call the function as
arguments is the list of the type and number of input (argument) values
memory refers to an explicit memory model (small, compact or large)
reentrant refers to whether the function is reentrant (recursive)
interrupt indicates that the function is acctually an ISR
using explicitly specifies which register bank to use

Consider a typical example, a function to calculate the sum of two numbers:

int sum (int a, int b)

{
H

This function is called sum and takes in two arguments, both of type int. The return type is also int, meaning that
the output (return value) would be an int. Within the body of the function, delimited by braces, we see that the
return value is basically the sum of the two agruments. In our example above, we omitted explicitly specifying the
options: memory, reentrant, interrupt, and using. This means that the arguments passed to the function would be
using the default small memory model, meaning that they would be stored in internal data memory. This function
is also by default non-recursive and a normal function, not an ISR. Meanwhile, the default register bank is bank 0.

return a + b;

Parameter Passing

In 8051 C, parameters are passed to and from functions and used as function arguments (inputs). Nevertheless, the
technical details of where and how these parameters are stored are transparent to the programmer, who does not
need to worry about these techinalities. In 8051 C, parameters are passed through the register or through memory.
Passing parameters through registers is faster and is the default way in which things are done. The registers used
and their purpose are described in more detail below.

252 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922805190

Tel:86-755-82948412

Fax:86-755-82944243

Registers used in parameter passing

Number of Argument |Char / 1-Byte Pointer| INT / 2-Byte Pointer | Long/Float | Generic Pointer
1 R7 R6 & R7 R4-R7 RI1-R3
2 R5 R4 &RS5 R4-R7
3 R3 R2 & R3

Since there are only eight registers in the 8051, there may be situations where we do not have enough regist-
ers for parameter passing. When this happens, the remaining parameters can be passed through fixed memory
loacations. To specify that all parameters will be passed via memory, the NOREGPARMSs control directive is
used. To specify the reverse, use the REGPARMs control directive.

Return Values

Unlike parameters, which can be passed by using either registers or memory locations, output values must be
returned from functions via registers. The following table shows the registers used in returning different types of

values from functions.

Registers used in returning values from functions

Return Type

Register

Description

bit

Carry Flag (C)

char/unsigned char/1-byte pointer

R7

int/unsigned int/2-byte pointer |R6 & R7 MSB in R6, LSB in R7

long/unsigned long R4-R7 MSB in R4, LSB in R7

float R4-R7 32-bit IEEE format

generic pointer R1-R3 Memory type in R3, MSB in R2, LSB in R1

STC MCU Limited

website: www.STCMCU.com

253

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

Appendix C: STC15F204EA series MCU Electrical Characteristics

Absolute Maximum Ratings

Parameter Symbol Min Max Unit
Srotage temperature TST -55 +125 C
Operating temperature (I) TA -40 +85 C
Operating temperature (C) TA 0 +70 C
DC power supply (5V) VDD - VSS -0.3 +5.5 \
DC power supply (3V) VDD - VSS -0.3 +3.6 \
Voltage on any pin - -0.3 VCC+0.3 \%

DC Specification (5V MCU)

Sym | Parameter E/Ei(flﬁc%};? Max. | Unit Test Condition
VDD | Operating Voltage 3.3 5.0 5.5 \%
IPD Power Down Current - <0.1 | - uA 5V
IIDL | Idle Current - 3.0 - mA | 5V
ICC Operating Current - 4 20 mA | 5V
VIL1 | Input Low (P0,P1,P2.,P3) - - 0.8 \% 5V
VIHI | Input High (P0,P1,P2,P3) 2.0 - - \Y 5V
VIH2 | Input High (RESET) 2.2 - - \% 5V
IOL1 | Sink Current for output low (P0,P1,P2,P3) - 20 - mA | 5V@Vpin=0.45V
OH1 Sourci.ng Current for output high (P0,P1,P2,P3) 200 270) UA sV
(Quasi-output)
Sourcing Current for output high (P0,P1,P2,P3) .
IOH2 (Push-Pull, Strong-output) - 20 - mA | 5V@Vpin=2.4V
1IL Logic 0 input current (P0,P1,P2,P3) - - 50 uA Vpin=0V
ITL Logic 1 to 0 transition current (P0,P1,P2,P3) 100 270 600 uA Vpin=2.0V

DC Specification (3V MCU)

Sym | Parameter iﬁ?lﬁc%;gn Max. T Unit Test Condition

VDD | Operating Voltage 2.4 3.3 3.6 \

IPD Power Down Current - <0.1 | - uA 3.3V

IIDL | Idle Current - 2.0 - mA | 3.3V

ICC Operating Current - 4 10 mA | 3.3V

VIL1 | Input Low (PO,P1,P2,P3) - - 0.8 \Y 3.3V

VIH1 | Input High (P0,P1,P2,P3) 2.0 - - \Y 3.3V

VIH2 | Input High (RESET) 2.2 - - \Y 3.3V

IOL1 | Sink Current for output low (P0,P1,P2,P3) - 20 - mA | 3.3V@Vpin=0.45V

OH1 Sourci.ng Current for output high (P0,P1,P2,P3) 140 170 | - UA 33V
(Quasi-output)

IOH2 Sourcing Current for output high (PO,P1,P2,P3) | 20) mA | 33V
(Push-Pull)

1IL Logic 0 input current (P0,P1,P2,P3) - 8 50 uA Vpin=0V

ITL Logic 1 to 0 transition current (P0O,P1,P2,P3) - 110 600 uA Vpin=2.0V

254 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243
Appendix D: STC15F204EA series to replace standard 8051 Notes

STC15F204EA series MCU Timer0/Timer1 is fully compatible with the traditional 8051 MCU.After power
on reset, the default input clock source is the divider 12 of system clock frequency. STC15Fxx MCU instruction
execution speed is faster than the traditional 8051 MCU 8 ~ 12 times in the same working environment,so
software delay programs need to be adjusted.

ALE
Traditional 8051's ALE pin output signal on divide 6 the system clock frequency can be externally provided
clock, while STC15Fxx series MCU has no ALE pin, you can get clock source from CLKOUT1/P3.4,
CLKOUTO0/P3.5 or SYSclk(P0.0 pin).
ALE pin is an disturbance source when traditional 8051's system clock frequency is too high. STC89xx
series MCU add ALEOFFF bit in AUXR register. While STC15Fxx series MCU has no ALE pin and can
remove ALE disturbance thoroughly. Please compare the following two registers.

AUXR register of STC89xx series

Mnemonic | Add Name Bit7 | Bit6 | Bit5 | Bit4 | Bir3 | Bit2 Bitl Bit0 Reset Value
AUXR 8EH | Auxiliary register 0 - - - - - V EXTRAM | ALEOFF | xxxx,xx00

AUXR register of STC15F204EA series
Mnemonic| Add Name Bit7 | Bit6 | Bit5 | Bit4 | Bir3 Bit2 Bitl Bit0 [Reset Value

AUXR |8EH |Auxiliary register| TOx12|T1x12 - - - - 00xX,XXXX
PSEN
Traditional 8051 execute external program through the PSEN signal, STC15F204EA series have no PSEN
signal.

General Qusi-Bidirectional I/0
Traditional 8051 access I/O (signal transition or read status) timing is 12 clocks, STC15F204EA series
MCU is 4 clocks. When you need to read an external signal, if internal output a rising edge signal, for the
traditional 8051, this process is 12 clocks, you can read at once, but for STC15F204EA series MCU, this
process is 4 clocks, when internal instructions is complete but external signal is not ready, so you must delay
1~2 nop operation.

Port drive capability
STCI15F204EA series 1/O port sink drive current is 20mA, has a strong drive capability, the port is not burn
out when drive high current generally. STC89 series I/O port sink drive current is only 6mA, is not enough to
drive high current. For the high current drive applications, it is strongly recommended to use STC15F204EA
series MCU.

WatchDog
STC15F204EA series MCU’s watch dog timer control register (WDT_CONTR) is location at C1H, add
watch dog reset flag.

STC15F204EA series WDT CONTR (C1H)
Mnemonic |Add Name Bit7 Bit6| Bit5 Bit4 Bir3 Bit2|Bitl |BitO[Reset Value]

WDT _CONTR |Clh| Wact-Dog-Timer lgp g oGl |EN WDT|CLR WDT|IDL WDT|PS2|PS1 [PS0|xx00,0000
- Control register - — — _

STC MCU Limited website: www.STCMCU.com 255

www.STCMCU.com Mobile:(86)13922805190 Tel:86-755-82948412 Fax:86-755-82944243

STC89 series WDT CONTR (E1H)
Mnemonic |Add Name Bit7|Bit6| Bit5 Bit4 Bir3 |Bit2|Bitl |BitO|Reset Value
'WDT CONTR| Elh [Wact-Dog-Timer Control register| - - |EN_WDT|CLR_WDT|IDL WDT|PS2 | PS1 |PS0| xx00,0000

STC15F204EA series MCU auto enable watch dog timer after ISP upgrade, but not in STC89 series, so
STC15F204EA series’s watch dog is more reliable.

EEPROM
SFR associated with EEPROM

Mnemonic STCI SFZXd dre!SSSTC89XX Description
IAP_DATA C2H E2H ISP/IAP Flash data register
IAP_ADDRH C3H E3G ISP/IAP Flash HIGH address register
IAP_ADDRL C4H E4H ISP/IAP Flash LOW address register
IAP_CMD C5H ESH ISP/IAP Flash command register
IAP_TRIG C6H E6H ISP/TAP command trigger register
IAP_CONTR C7H E7H ISP/IAP control register

STC15F204EA series write SAH and ASH sequential to trigger EEPROM flash command, and STC89 series
write 46H and B9H sequential to trigger EEPROM flash command.
STC15F204EA series EEPROM start address all location at 0000H, but STC89 series is not.

Power consumption
Power consumption consists of two parts: crystal oscillator amplifier circuits and digital circuits.
STC15F204EA series have no crystal oscillator amplifier circuits, so its consumption is lower than STC89
series. For digital circuits, the higher clock frequency, the greater the power consumption. STC15F204EA
series MCU instruction execution speed is faster than the STC89 series MCU 3~24 times in the same
working environment, so if you need to achieve the same efficiency, STC15F204EA series required
frequency is lower than STC89 series MCU.

PowerDown Wakeup
STC15F204EA series MCU wake-up support for rising edge or falling edge depend on the external interrupt
mode, but STC89 series only support for low level.

About reset circuit
For STC89 series, if the system frequency is below 12MHz, the external reset circuit is not required. Reset
pin can be connected to ground through the 1K resistor or can be connected directly to ground. The proposal
to create PCB to retain RC reset circuit.
While STC15F204EA series has an internal high-reliability reset circuit and does not need external reset
circuit.

About Clock oscillator
For STC89 series, if you need to use internal RC oscillator, XTAL1 pin and XTAL2 pin must be floating. If
you use a external active crystal oscillator, clock signal input from XTAL1 pin and XTAL2 pin floating.
While STC15F204EA series only has an high-precision RC oscillator with temperature dirfting +1% and has
removed expensive external crystal oscillator.

About power
Power at both ends need to add a 47uF electrolytic capacitor and a 0.1uF capacitor, to remove the coupling
and filtering

256 STC MCU Limited. website: www.STCMCU.com

www.STCMCU.com

Mobile:(86)13922805190

Tel:86-755-82948412

Fax:86-755-82944243

Appendix E: STC15F204EA series Selection Table

Fls|T Internal | External | Special | Package of 28-pin
. Internal | Reset | interrupts |timer for| (26 I/O ports)
Type Operating| 1 [R | I W| EEP . .)
a low threshold | which can | waking Price (RMB ¥)
1T 8051 MCU Vo(l:;a)ge S ICI 1:;[A/D]”l)" R((l;])w voltage | voltage wake up power
(]l;) B | R interrupt| canbe |powerdown| down |SOP-28|SKDIP-28
(B) configured mode mode
STCI5F201A | 5.5~3.8 | IK [256]2 | 10-bit| Y| - Y Y 5 N
STCI15F201EA| 5.5~3.8 | 1K |256| 2 [10-bit| Y| 2K Y Y 5 N ¥2.35 ¥2.55
STCI5F202A | 5.5~3.8 | 2K [256] 2 [10-bit|Y | - Y Y 5 N
STCI15F202EA| 5.5~3.8 | 2K [256[2 | 10-bit| Y| 2K Y Y 5 N ¥2.40 ¥2.60
STC15F203A | 5.5~3.8 | 3K [256]2 | 10-bit|Y| - Y Y 5 N
STC1ISF203EA| 5.5~3.8 | 3K |256| 2 [10-bit|Y | 2K Y Y 5 N ¥2.45 ¥2.65
STC15F204A | 5.5~3.8 | 4K [256]2 | 10-bit|Y| - Y Y 5 N
STCISF204EA| 5.5~3.8 | 4K |256]| 2 |[10-bit| Y| IK Y Y 5 N ¥2.50 ¥2.70
STC15F205A | 5.5~3.8 | SK [256]2 | 10-bit|Y| - Y Y 5 N
STCI15F205EA| 5.5~3.8 | 5K [256[2 | 10-bit| Y| 1K Y Y 5 N ¥2.55 ¥2.75
TIAP15F206A | 5.5~3.8 | 6K [256| 2 | 10-bit| Y | IAP Y Y 5 N
Fls|T Internal | External | Special | Package of 28-pin
. Internal | Reset | interrupts |timer for| (26 I/O ports)
Type Operating| | | R [I W| EEP . . .
a low threshold | which can | waking Price (RMB ¥)
TRSIMCU voltage | 3| & M| A DIROM g | T ke | o
) (]l;) e ®) |interrupt| canbe |powerdown| down |SOP-28|SKDIP-28
(B) configured mode mode
STCI5L201A | 3.6~2.4 | 1K |256| 2 | 10-bit|Y | - Y Y 5 N
STCI5L201EA| 3.6~2.4 | 1K |256] 2 | 10-bit|Y | 2K Y Y 5 N ¥2.35 ¥2.55
STCI15L202A | 3.6~2.4 | 2K |256| 2 | 10-bit|Y | - Y Y 5 N
STCISL202EA| 3.6~2.4 | 2K (2562 | 10-bit| Y| 2K Y Y 5 N ¥2.40 ¥2.60
STCISL203A | 3.6~2.4 | 3K [256(2 | 10-bit|Y| - Y Y 5 N
STCISL203EA| 3.6~2.4 | 3K (2562 | 10-bit| Y| 2K Y Y 5 N ¥2.45 ¥2.65
STC15L204A | 3.6~2.4 | 4K |256| 2 | 10-bit|Y | - Y Y 5 N
STCI5L204EA| 3.6~2.4 | 4K |256]|2 [10-bit|Y | IK Y Y 5 N ¥2.50 ¥2.70
STCI15L205A | 3.6~2.4 | 5K |256]| 2 | 10-bit| Y| - Y Y 5 N
STCI15L205EA| 3.6~2.4 | 5K |256|2 [10-bit|Y | IK Y Y 5 N ¥2.55 ¥2.75
TAPI15L206A | 3.6~2.4 | 6K |256|2 | 10-bit|Y | IAP Y Y 5 N
STC MCU Limited website: www.STCMCU.com 257

