SST440 SERIES

N-Channel JFET Pairs

The SST440 Series are monolithic pairs of JFETs mounted in a single SO-8 package. The SST440 Series features high speed amplification (slew rate), high gain (typically > 6 mS), and low gate leakage (typically < 1 pA). This performance makes these devices perfect for use as wideband differential amplifiers in demanding test and measurement applications. Finally, its SO-8 package is available in tape and reel to support automated assembly. (See Section 8.)

For additional design information please see performance curves NNZ, which are located in Section 7.

PART NUMBER	V _(BR) GSS MIN (V)	g fs MIN (mS)	I _G MAX (pA)	V _{GS1} - V _{GS2} MAX (mV)
SST440	-25	4.5	-500	10
SST441	-25	4.5	-500	20

TOP VIEW

SIMILAR PRODUCTS

- TO-71, See U440 Series
- TO-78, See U443 Series
- Low Noise, See SST404 Series
- Chips, Order U44XCHP

PARAMETERS/TEST CONDITIONS		SYMBOL	LIMIT	UNITS	
Gate-Drain Voltage		V _{GD}	-25	v	
Gate-Source Voltage		V _{GS}	-25		
Forward Gate Current		۱ _G	50	mA	
Power Dissipation	Per Side Total	PD	300 500	mW	
Power Derating	Per Side Total		2.4 4	mW/°C	
Operating Junction Temperature		Tj	–55 to 150		
Storage Temperature		T _{stg}	–55 to 150	°C	
Lead Temperature (1/16" from case for 10 seconds)		ΤL	300		

ABSOLUTE MAXIMUM RATINGS ($T_A = 25 \degree C$ unless otherwise noted)

SST440 SERIES

ELECTRICAL CHARACTERISTICS ¹				LIMITS						
					SST440		SST441			
PARAMETER	SYMBOL	TEST CONDITIONS		TYP ²	MIN	мах	MIN	мах	UNIT	
STATIC										
Gate-Source Breakdown Voltage	V _{(BR)GSS}	I _G = -1μΑ, V _{DS} = 0 V		-35	-25		-25		v	
Gate-Source Cutoff Voltage	V _{GS(OFF)}	V _{DS} = 10 V, I _D = 1 nA		-3.5	-1	-6	-1	-6		
Saturation Drain Current ³	IDSS	V _{DS} = 10 V, V _{GS} = 0 V		15	6	30	6	30	mA	
Gate Reverse Current	IGSS	$V_{GS} = -15 V$ $V_{DO} = 0 V$	T 10500	-1		-500		-500	pА	
			1 _A =125°C	-0.2					nA	
Gate Operating Current	۱ _G	V _{DG} = 10 V I _D = 5 mA	T _A = 125°C	-1		-500		-500	pA nA	
Gate-Source Forward Voltage	V _{GS(F)}	I _G = 1 mA	, V _{DS} = 0 V	0.7					V	
DYNAMIC										
Common-Source Forward Transconductance	g _{fs}	V _{DG} = 10 V	√, I _D = 5 mA	6	4.5	9	4.5	9	mS	
Common-Source Output Conductance	g _{os}	f = 1 kHz		20		200		200	дs	
Common-Source Forward Transconductance	g _{fs}	V _{DG} = 10 V, I _D = 5 mA f = 100 MHz		5.5					mS	
Common-Source Output Conductance	g _{os}			30					дs	
Common-Source Input Capacitance	C _{iss}	V _{DG} = 10 V, I _D = 5 mA f = 1 MHz		3.5					рF	
Common-Source Reverse Transfer Capacitance	C _{rss}			1						
Equivalent Input Noise Voltage	ēn	V _{DG} = 10 V, I _D = 5 mA f = 10 kHz		4					nV √ _{Hz}	
MATCHING	•••••••••••••••••••••••••••••••••••••••	••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·							
Differential Gate-Source Voltage	$ V_{GS1} - V_{GS2} $	V _{DG} = 10 V, I _D = 5 mA		7		10		20	mV	
Gate-Source Voltage Differential Change with Temperature	$\frac{\Delta \left V_{GS1} - V_{GS2} \right }{\Delta T}$	$V_{DG} = 10 V$ T	$= -55 \text{ to } 25^{\circ}\text{C}$	10					щУ,	
Saturation Drain Current Ratio	I _{DSS1}	V _{DS} = 10 V	/, V _{GS} = 0 V	0.98						
Transconductance Ratio	<u>9 fs1</u> 9 fs2	V _{DG} = 10 V, I _D = 5 mA f = 1 kHz		0.98						
Common Mode Rejection Ratio	CMRR	V _{DD} = 5 to 10 V, I _D = 5 mA		90					dB	

NOTES: 1. $T_A = 25 \text{ °C}$ unless otherwise noted. 2. For design aid only, not subject to production testing. 3. Pulse test; PW = 300 μ s, duty cycle $\leq 3\%$.