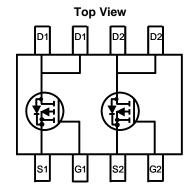


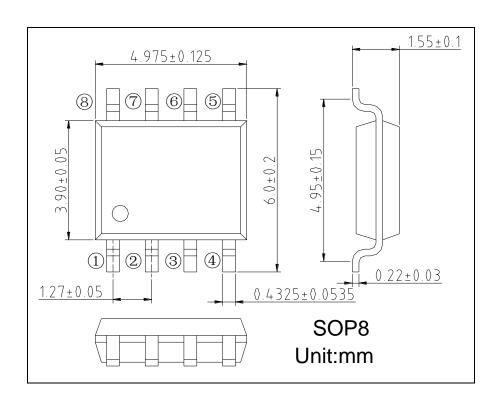
Dual P-Channel Enhancement Mode MOSFET

Features

VDS	VGS	RDSon TYP	ID	
-20V	±12V	13mR@-4V5V	-18A	
		16mR@-2V5	-10A	


General Description

This device is produced with high cell density, DMOS trench technology, which is especially used to minimize on-state resistance. This device is particularly suited for low voltage power management requiring a wild range of given voltage ratings(4.5V~25V) such as load switch and battery protection.


Applications

- Load Switch
- DCDC conversion
- ➢ NB battery

Pin configuration

Package Information

Absolute Maximum Ratings @T_A = 25℃ unless otherwise noted

Parameter		Symbol	Limit	Unit	
Drain-Source Voltage		V _{DSS}	-20	V	
Gate-Source Voltage		V _{GSS}	±12	V	
	Continuous T _A =25°C		-18	А	
Drain Current (Note 1)	Pulsed (Note 2)	l _D	-90	А	
Total Power Dissipation (Note 1)		P _D	3	W	
Operating and Storage Junction Temperature Range		T _J , T _{STG}	-55 to +150	°C	

● Electrical Characteristics @TA = 25°C unless otherwise noted

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit				
OFF CHARACTERISTICS										
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	$V_{GS} = 0 \text{ V}, I_{D} = -250 \text{uA}$	-20			V				
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}$			-1	uA				
Gate-Body Leakage Current	I _{GSS}	V _{GS} = ±12 V, V _{DS} = 0 V			±100	nA				
ON CHARACTERISTICS										
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS} = V_{GS}, I_{D} = -250uA$	-0.5		-1	V				
	R _{DS(ON)}	$V_{GS} = -4.5V, I_D = -10A$		13	15	mR				
Drain–Source On–State Resistance		V _{GS} = -2.5V, I _D = -7A		16	18					
Forward Transconductance	G _{FS}	V _{DS} = -5 V, I _D = -10 A		18		S				
DYNAMIC CHARACTERISTICS										
Input Capacitance	C _{ISS}			1020		pF				
Output Capacitance	Coss	$V_{DS} = -15V, V_{GS} = 0V,$ f = 1MHz		110						
Reverse Transfer Capacitance	C _{RSS}			90						
SWITCHING CHARACTERISTICS										
Turn-On Delay Time	$T_{D(ON)}$	VGS=-10V, VDS=-15V,		10.5		nS				
Turn-Off Delay Tim	$T_{D(OFF)}$	RL=1.5R, RGEN=3R		51						
DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS										
Diode Forward Voltage	V_{SD}	V _{GS} = 0 V, I _S = -2.3 A		-0.7	-1.3	V				

Note: 1. The value of P_D is measured with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design. The current rating is based on the DC thermal resistance rating.

2. Repetitive rating, pulse width limited by junction temperature.

• Typical Performance Characteristics

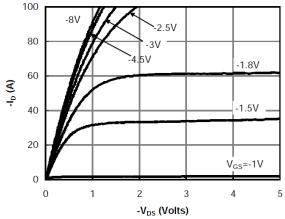
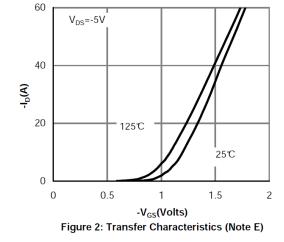



Fig 1: On-Region Characteristics (Note E)

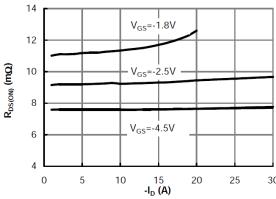


Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

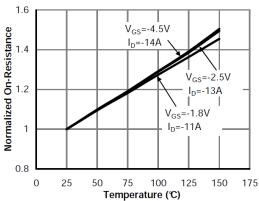


Figure 4: On-Resistance vs. Junction Temperature (Note E)

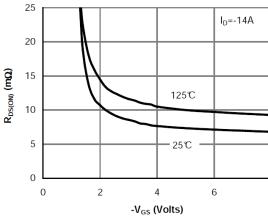


Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

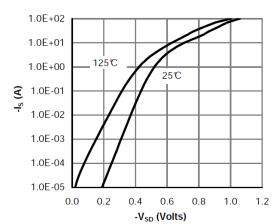


Figure 6: Body-Diode Characteristics (Note

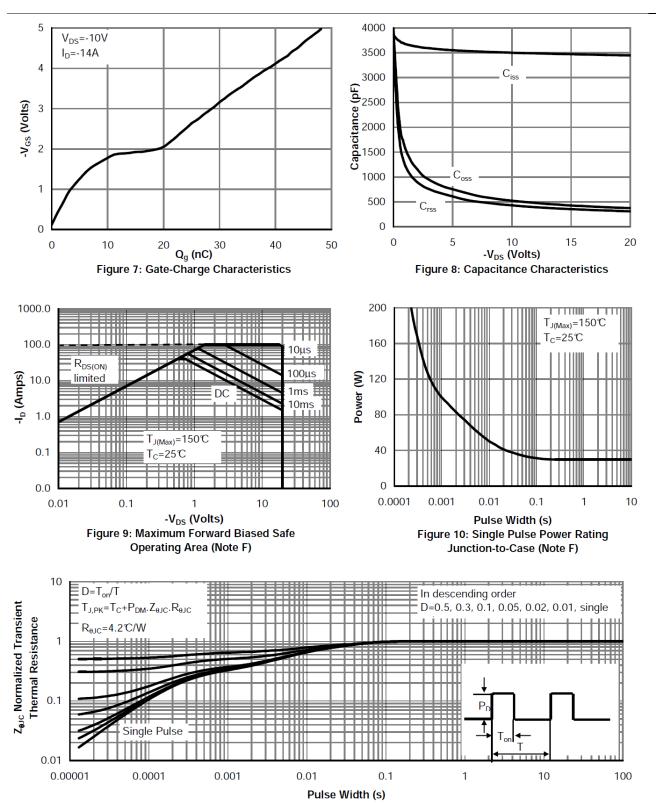


Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

DISCLAIMER

AFSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. AFSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G,. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.