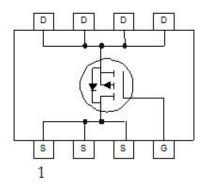


P-Channel Enhancement Mode MOSFET

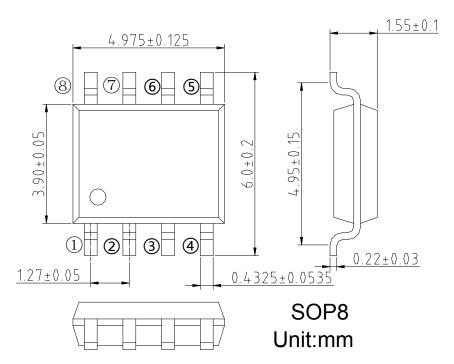
Features

VDS	VGS	RDSon TYP	ID
-30V	±20V	51mR@-10V	-5.4A
		68mR@-4V5	

General Description


This device is produced with high cell density, DMOS trench technology, which is especially used to minimize on-state resistance. This device is particularly suited for low voltage application such as portable equipment, power management and other battery powered circuits, and low in-line power loss are needed in a very small outline surface mount package.

Applications


- Load Switch
- DCDC conversion
- > TFT panel power switch

Pin configuration

Top View

Package Information

Absolute Maximum Ratings @T_A = 25 ℃ unless otherwise noted

Parameter		Symbol	Limit	Unit	
Drain-Source Voltage		V_{DSS}	-30	V	
Gate-Source Voltage		V_{GSS}	±20	V	
	Continuous T _A =25°C		-5.4	Α	
Drain Current (Note 1)	Pulsed (Note 2)	l _D	-20	A	
Total Power Dissipation (Note 1)		P _D	1.5	W	
Operating and Storage Junction Temperature Range		T _J , T _{STG}	-55 to +150	°C	

• Electrical Characteristics @TA = 25℃ unless otherwise noted

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit			
OFF CHARACTERISTICS									
Drain–Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = -250 μ A	-30			V			
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = -24 V, V _{GS} = 0 V			-1	μA			
Gate-Body Leakage Current	I _{GSS}	V _{GS} = ± 20 V, V _{DS} = 0 V			±100	nA			
ON CHARACTERISTICS									
Gate Threshold Voltage	V _{GS(TH)}	V _{DS} = V _{GS} , I _D =-250 μ A	-1	-1.46	-3	V			
Drain–Source On–State Resistance	R _{DS(ON)}	V _{GS} = -10 V, I _D = -4.6 A		51	60	mR			
		V _{GS} = -4.5 V, I _D = -2 A		68	96				
Forward Transconductance	G _{FS}	V _{DS} = -5 V, I _D = -6 A		12		S			
DYNAMIC CHARACTERISTICS									
Input Capacitance	C _{ISS}			550		pF			
Output Capacitance	Coss	$V_{DS} = -15 \text{ V}, V_{GS} = 0 \text{ V},$ -f = 1.0 MHz		60					
Reverse Transfer Capacitance	C _{RSS}	-1 - 1.0 WH12		50					
SWITCHING CHARACTERISTICS									
Turn-On Delay Time	T _{D(ON)}	V _{DS} = -15 V, R _L = 2.5R,		8.6		nS			
Turn-Off Delay Tim	$T_{D(OFF)}$	V _{GS} = -10V, R _{GEN} =3R		28.2					
DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS									
Diode Forward Voltage	V _{SD}	V _{GS} = 0 V, I _S = -1 A		-0.81	-1.6	V			

Note: 1. The value of P_D is measured with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design. The current rating is based on the DC thermal resistance rating.

2. Repetitive rating, pulse width limited by junction temperature.

Typical Performance Characteristics

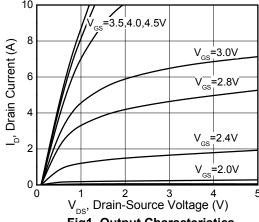
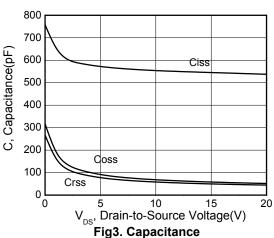



Fig1. Output Characteristics

1.5 V_{TH}, Gate-Source Threshold Voltage (V) 1.4 1.3 1.2 1.1 1.0 0.9 L -50 0 50 100 Tj, Junction Temperature (°C)

Fig5. Gate Threshold vs. Temperature

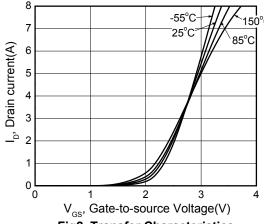


Fig2. Transfer Characteristics

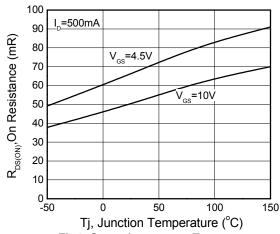
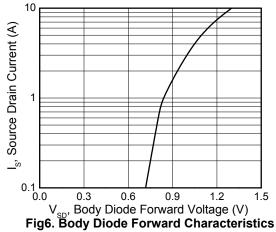



Fig4. On-resistance vs. Temperature

1.6

AF

SSC8033GS1

DISCLAIMER

SPIRIT-SEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. AFSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G., OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.