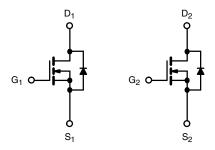


Vishay Siliconix

Automotive Dual N-Channel 40 V (D-S) 175 °C MOSFETs

PRODUCT SUMMARY	(
	N-CHANNEL 1	N-CHANNEL 2
V _{DS} (V)	40	40
$R_{DS(on)} (\Omega)$ at $V_{GS} = 10 V$	0.022	0.011
$R_{DS(on)}$ (Ω) at V_{GS} = 4.5 V	0.026	0.013
I _D (A)	15	45
Configuration	Dua	al N



FEATURES

- TrenchFET[®] Power MOSFET
- AEC-Q101 Qualified^d
- 100 % R_a and UIS Tested
- Material categorization: For definitions of compliance please see <u>www.vishay.com/doc?99912</u>

RoHS COMPLIANT HALOGEN FREE

N-Channel 1 MOSFET

N-Channel 2 MOSFET

ORDERING INFORMATION	
Package	PowerPAK SO-8L Dual Asymmetric
Lead (Pb)-free and Halogen-free	SQJ942EP-T1-GE3

ABSOLUTE MAXIMUM RATINGS ($T_{\rm C}$ =	= 25 °C, unless	otherwise r	oted)			
PARAMETER		SYMBOL	N-CHANNEL 1	N-CHANNEL 2	UNIT	
Drain-Source Voltage		V _{DS}	40	40	V	
Gate-Source Voltage		V _{GS}	± 20		v	
Continuous Drain Current ^a	T _C = 25 °C	1	15	45		
	T _C = 125 °C	I _D	15	32		
Continuous Source Current (Diode Conduction) ^a		IS	15	44	А	
Pulsed Drain Current ^b		I _{DM}	60	180		
Single Pulse Avalanche Current		I _{AS}	19	27		
Single Pulse Avalanche Energy L = 0.1 mH		E _{AS}	18.5	36.5	mJ	
Maximum Power Dissipation ^b	T _C = 25 °C	Pn	17	48	w	
	$T_{\rm C} = 125 ^{\circ}{\rm C}$		6 16		vv	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to	o + 175	℃	
Soldering Recommendations (Peak Temperature) ^{e, f}			20	60	C	

THERMAL RESISTANCE RATINGS					
PARAMETER		SYMBOL	N-CHANNEL 1	N-CHANNEL 2	UNIT
Junction-to-Ambient	PCB Mount ^c	R _{thJA}	75	70	°C/W
Junction-to-Case (Drain)		R _{thJC}	9	3.1	0/11

Notes

a. Package limited.

b. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %.

c. When mounted on 1" square PCB (FR4 material).

d. Parametric verification ongoing.

e. See solder profile (<u>www.vishay.com/doc?73257</u>). The PowerPAK SO-8L is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.

f. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components.

S13-0708-Rev. B, 01-Apr-13

Document Number: 62669

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

www.vishay.com

SQJ942EP

Vishay Siliconix

PARAMETER	SYMBOL			MIN.	TYP.	MAX.	UNIT		
Static	I						1		
	N	V _{GS} =	N-Ch 1	40	-	-			
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 V, I_D = 250 \mu A$ 1		N-Ch 2	40	-	-	V	
		V _{DS} =	- V _{GS} , I _D = 250 μΑ	N-Ch 1	1.3	1.8	2.3	v	
Gate-Source Threshold Voltage	V _{GS(th)}	V _{DS} =	- V _{GS} , I _D = 250 μΑ	N-Ch 2	1.3	1.8	2.3		
Cata Cauraa Laakara	1	N/	0.1/	N-Ch 1	-	-	± 100		
Gate-Source Leakage	I _{GSS}	v _{DS} =	0 V, $V_{GS} = \pm 20$ V	N-Ch 2	-	-	± 100	na	
		$V_{GS} = 0 V$	V _{DS} 40 V	N-Ch 1	-	-	1		
		$V_{GS} = 0 V$	V _{DS} = - 40 V	N-Ch 2	-	-	1		
Zaus Osta Valtana Dusia Osumant		$V_{GS} = 0 V$	$V_{DS} = 40 \text{ V}, \text{ T}_{J} = 125 ^{\circ}\text{C}$	N-Ch 1	-	-	50		
Zero Gate Voltage Drain Current	IDSS	$V_{GS} = 0 V$	$V_{DS} = 40 \text{ V}, \text{ T}_{J} = 125 ^{\circ}\text{C}$	N-Ch 2	-	-	50	μΑ	
		$V_{GS} = 0 V$	$V_{DS} = 40 \text{ V}, \text{ T}_{J} = 175 ^{\circ}\text{C}$	N-Ch 1	-	-	150		
		$V_{GS} = 0 V$	$V_{DS} = 40 \text{ V}, \text{ T}_{J} = 175 ^{\circ}\text{C}$	N-Ch 2	-	-	150		
		$V_{GS} = 10 V$	$V_{DS} \ge 5 V$	N-Ch 1	30	-	-	•	
On-State Drain Current ^a	I _{D(on)}	V _{GS} = 10 V	$V_{DS} \ge 5 V$	N-Ch 2	30	-	-	А	
		V _{GS} = 10 V	I _D = 7.8 A	N-Ch 1	-	0.018	0.022		
		V _{GS} = 10 V	I _D = 10.1 A	N-Ch 2	-	0.009	0.011		
		V _{GS} = 10 V	I _D = 7.8 A, T _J = 125 °C	N-Ch 1	-	-	0.032	0	
	_	V _{GS} = 10 V	I _D = 10.1 A, T _J = 125 °C	N-Ch 2	-	-	2.3 V 2.3 ± 100 nA ± 100 1 1 ± 100 1 1 50 150 1 150 150 1 0.022 0.011 0.032 0.017 0.038 0.020 0.026 0.013 - 5 - S 809 1451 131 222 53 85 19.7 33.8 - - nC -		
Drain-Source On-State Resistance ^a	$Resistance^{a} R_{DS(on)} = \frac{V_{GS} = 10 V}{V_{GS} = 10 V} = \frac{I_{D} = 7.8 \text{ A}, T_{J} = 125 \text{ °C}}{V_{GS} = 10 V} = \frac{I_{D} = 7.8 \text{ A}, T_{J} = 125 \text{ °C}}{V_{GS} = 10 V} = \frac{I_{D} = 7.8 \text{ A}, T_{J} = 125 \text{ °C}}{V_{GS} = 10 V} = \frac{I_{D} = 7.8 \text{ A}, T_{J} = 175 \text{ °C}}{V_{GS} = 10 V} = \frac{I_{D} = 7.8 \text{ A}, T_{J} = 175 \text{ °C}}{V_{GS} = 10 V} = \frac{I_{D} = 10.1 \text{ A}, T_{J} = 175 \text{ °C}}{V_{GS} = 10 V} = \frac{I_{D} = 10.1 \text{ A}, T_{J} = 175 \text{ °C}}{V_{GS} = 10 V} = \frac{I_{D} = 10.1 \text{ A}, T_{J} = 175 \text{ °C}}{V_{GS} = 10 V} = \frac{I_{D} = 10.1 \text{ A}, T_{J} = 175 \text{ °C}}{V_{GS} = 10 V} = \frac{I_{D} = 10.1 \text{ A}}{V_{GS} = 10 V} = \frac{I_{D} = 10.1 \text{ A}}{V_{S} = 10 \text{ V}} = \frac{I_{D} = 10.1 \text{ A}}{V_{S} = 10 \text{ A}} = \frac{I_{D} = 10.1 \text{ A}}{V_{S} = 10 \text{ A}} = \frac{I_{D} = 10.1 \text{ A}}{V_{S} = 1$	-	0.038	Ω					
		V _{GS} = 10 V	I _D = 10.1 A, T _J = 175 °C	N-Ch 2	-	-	0.020	-	
		V _{GS} = 4.5 V	I _D = 7.1 A	N-Ch 1	-	0.022	0.026		
		V _{GS} = 4.5 V	I _D = 9.3 A	N-Ch 2	-	0.011	0.013	-	
		V _{DS} =	= 15 V, I _D = 7.8 A	N-Ch 1	-	46	-		
Forward Transconductance ^b	9 _{fs}	V _{DS} =	= 15 V, I _D = 10.1 A	N-Ch 2	-	73	-	S	
Dynamic ^b		1		<u> </u>					
	_	V _{GS} = 0 V	V _{DS} = 20 V, f = 1 MHz	N-Ch 1	-	647	809		
Input Capacitance	C _{iss}	$V_{GS} = 0 V$	V _{DS} = 20 V, f = 1 MHz	N-Ch 2	-	1161	1451		
	<u> </u>	$V_{GS} = 0 V$	V _{DS} = 20 V, f = 1 MHz	N-Ch 1	-	105	131	_	
Output Capacitance	C _{oss}	V _{GS} = 0 V	V _{DS} = 20 V, f = 1 MHz	N-Ch 2	-	178	222	p⊦	
	-	$V_{GS} = 0 V$	V _{DS} = 20 V, f = 1 MHz	N-Ch 1	-	42	53		
Reverse Transfer Capacitance	C _{rss}	$V_{GS} = 0 V$	V _{DS} = 20 V, f = 1 MHz	N-Ch 2	-	68	85		
		V _{GS} = 10 V	V _{DS} = 20 V, I _D = 16 A	N-Ch 1	-	13.1	19.7		
Total Gate Charge ^c	Qg	V _{GS} = 10 V	V _{DS} = 20 V, I _D = 6 A	N-Ch 2	-	22.5	33.8		
		V _{GS} = 10 V	$V_{DS} = 20 \text{ V}, \text{ I}_{D} = 16 \text{ A}$	N-Ch 1	-	2.12	-	nC	
Gate-Source Charge ^c	Q _{gs}	V _{GS} = 10 V	$V_{DS} = 20 \text{ V}, \text{ I}_{D} = 6 \text{ A}$	N-Ch 2	-	3.35	-	1	
		V _{GS} = 10 V	$V_{DS} = 20 \text{ V}, \text{ I}_{D} = 16 \text{ A}$	N-Ch 1	-	1.84	-	1	
Gate-Drain Charge ^c	Q _{gd}	$V_{GS} = 10 V$ $V_{DS} = 20 V, I_D = 6 A$		N-Ch 2	-	3.14	-	1	
				N-Ch 1	1.5	3.02	5	+	
Gate Resistance	Rg		f = 1 MHz	N-Ch 2	2.05	4.11	7	Ω	

Notes

a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %.

b. Guaranteed by design, not subject to production testing.

c. Independent of operating temperature.

2

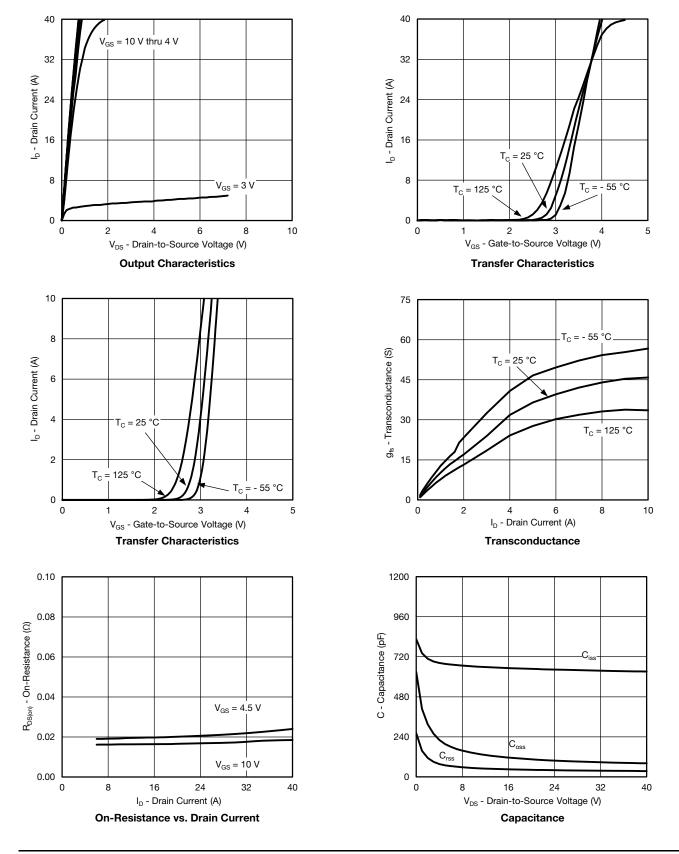
Vishay Siliconix

SPECIFICATIONS (T _C = 25	°C, unless o	otherwise noted)							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT		
		$\begin{array}{l} V_{DD} = \text{20 V, } R_{L} = \text{20 } \Omega \\ I_{D} \cong \text{1 A, } V_{GEN} = \text{10 V, } R_{g} = \text{1 } \Omega \end{array}$	N-Ch 1	-	33	50			
Turn-On Delay Time ^c	t _{d(on)}	$\begin{array}{l} V_{\text{DD}} = \text{20 V, } R_{\text{L}} = \text{20 } \Omega \\ I_{\text{D}} \cong \text{1 A, } V_{\text{GEN}} = \text{10 V, } R_{\text{g}} = \text{1 } \Omega \end{array}$	N-Ch 2	-	40	60			
Rise Time ^c	tr	$\begin{array}{l} V_{DD} = \text{20 V, } R_{L} = \text{20 } \Omega \\ I_{D} \cong \text{1 A, } V_{GEN} = \text{10 V, } R_{g} = \text{1 } \Omega \end{array}$	N-Ch 1	-	25	38	22		
		$\begin{array}{l} V_{\text{DD}} = \text{20 V, } R_{\text{L}} = \text{20 } \Omega \\ I_{\text{D}} \cong \text{1 A, } V_{\text{GEN}} = \text{10 V, } R_{\text{g}} = \text{1 } \Omega \end{array}$	N-Ch 2	-	31	46			
		$\begin{array}{l} V_{DD} = 20 \ V, \ R_{L} = 20 \ \Omega \\ I_{D} \cong 1 \ A, \ V_{GEN} = 10 \ V, \ R_{g} = 1 \ \Omega \end{array}$	N-Ch 1	-	29	43	ns		
Turn-Off Delay Time ^c	t _{d(off)}	$\begin{array}{l} V_{\text{DD}} = \text{20 V, } R_{\text{L}} = \text{20 } \Omega \\ I_{\text{D}} \cong \text{1 A, } V_{\text{GEN}} = \text{10 V, } R_{\text{g}} = \text{1 } \Omega \end{array}$	N-Ch 2	-	52	78			
Fall Time ^c	t _f	$\begin{array}{l} V_{DD} = 20 \ V, \ R_{L} = 20 \ \Omega \\ I_{D} \cong 1 \ A, \ V_{GEN} = 10 \ V, \ R_{g} = 1 \ \Omega \end{array}$	N-Ch 1	-	12	18			
		$\begin{array}{l} V_{\text{DD}} = \text{20 V, } R_{\text{L}} = \text{20 } \Omega \\ I_{\text{D}} \cong \text{1 A, } V_{\text{GEN}} = \text{10 V, } R_{\text{g}} = \text{1 } \Omega \end{array}$	N-Ch 2	-	16	24			
Source-Drain Diode Ratings and Characteristics ^b									
Pulsed Current ^a	I _{SM}		N-Ch 1	-	-	60	А		
			N-Ch 2	-	-	180	^		
Forward Voltage	V	I _S = 5.2 A	N-Ch 1	-	0.8	1.2	v		
i orward voltage	V _{SD}	I _S = 6.8 A	N-Ch 2	-	0.8	1.2	v		

Notes

a. Pulse test; pulse width $\leq 300~\mu\text{s},~\text{duty}~\text{cycle} \leq 2~\%.$

b. Guaranteed by design, not subject to production testing.


c. Independent of operating temperature.

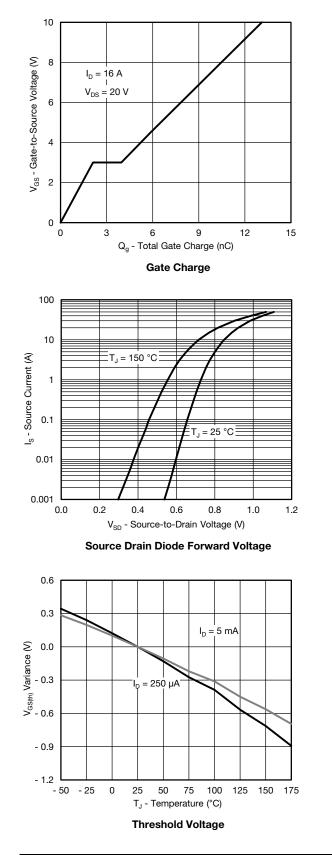
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

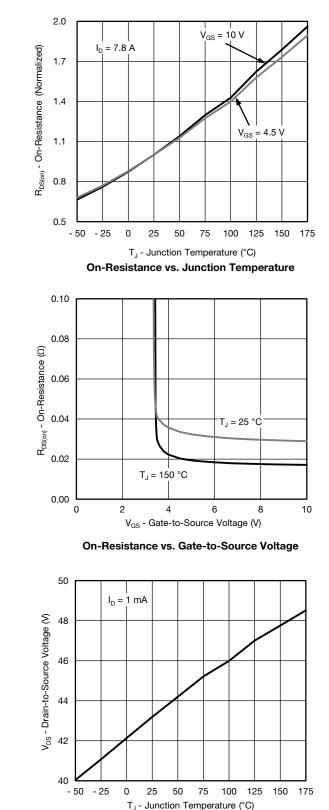
Vishay Siliconix

N-CHANNEL 1 TYPICAL CHARACTERISTICS ($T_A = 25$ °C, unless otherwise noted)

S13-0708-Rev. B, 01-Apr-13

4


Document Number: 62669


For technical questions, contact: <u>automostechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

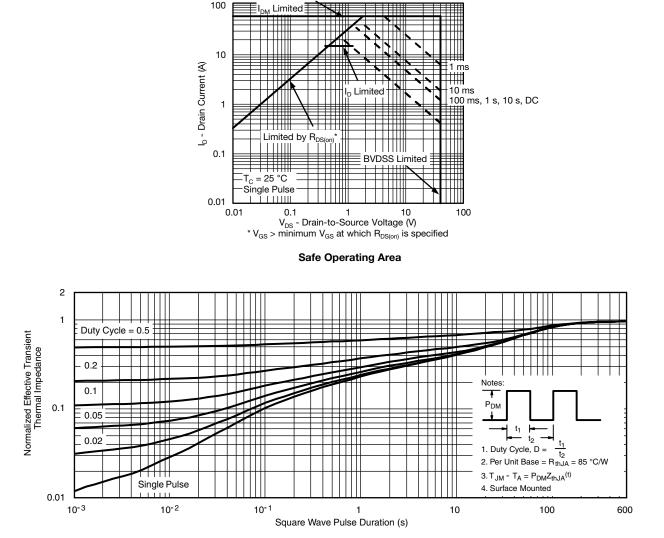
Vishay Siliconix

N-CHANNEL 1 TYPICAL CHARACTERISTICS ($T_A = 25 \text{ °C}$, unless otherwise noted)

Drain Source Breakdown vs. Junction Temperature

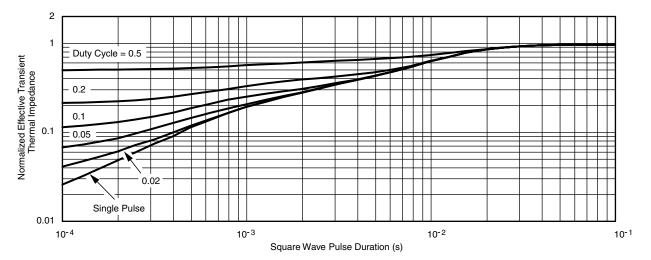
S13-0708-Rev. B, 01-Apr-13

5


Document Number: 62669

For technical questions, contact: <u>automostechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Siliconix


N-CHANNEL 1 TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Ambient

N-CHANNEL 1 TYPICAL CHARACTERISTICS ($T_A = 25$ °C, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Case

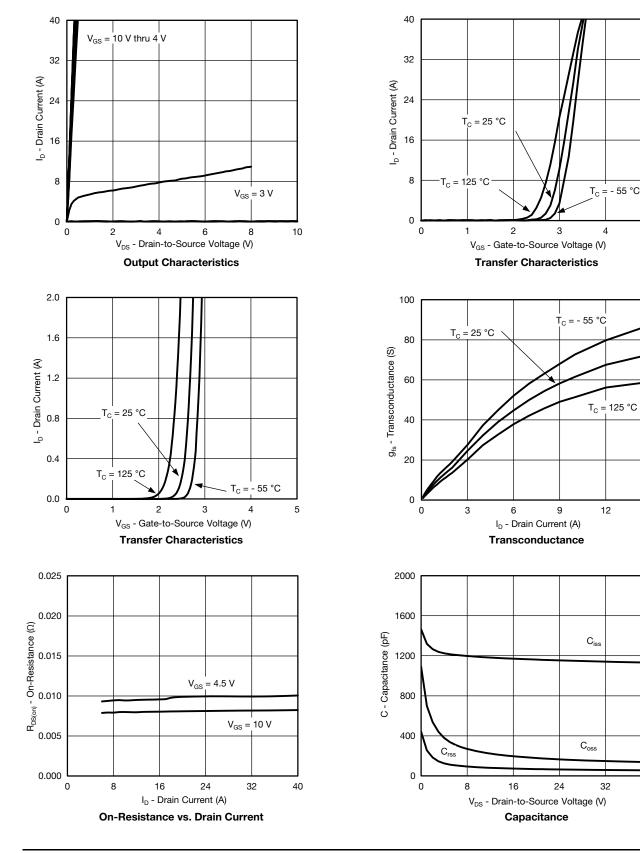
Note

The characteristics shown in the two graphs

- Normalized Transient Thermal Impedance Junction-to-Ambient (25 °C)

- Normalized Transient Thermal Impedance Junction-to-Case (25 °C)

are given for general guidelines only to enable the user to get a "ball park" indication of part capabilities. The data are extracted from single pulse transient thermal impedance characteristics which are developed from empirical measurements. The latter is valid for the part mounted on printed circuit board - FR4, size 1" x 1" x 0.062", double sided with 2 oz. copper, 100 % on both sides. The part capabilities can widely vary depending on actual application parameters and operating conditions.


5

15

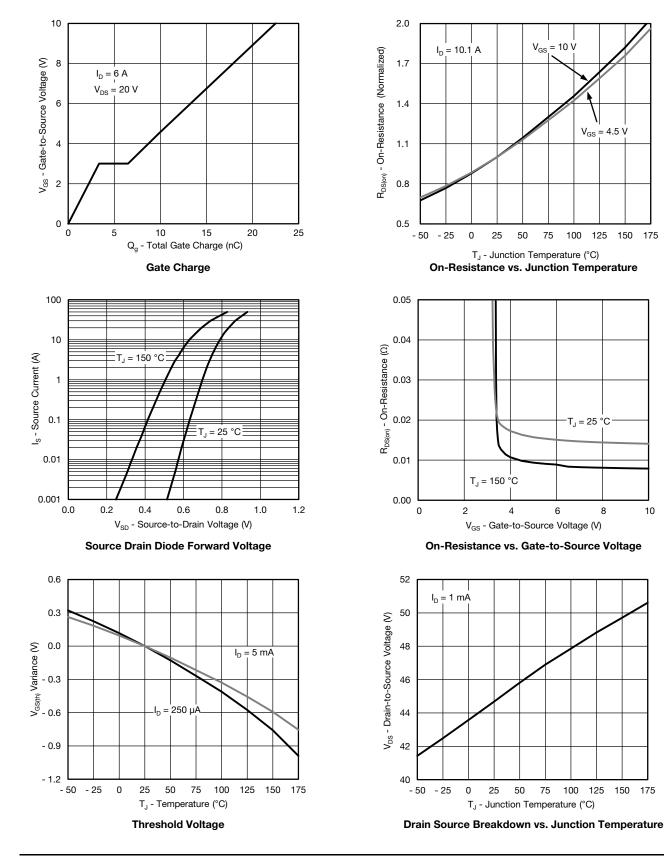
Vishay Siliconix

N-CHANNEL 2 TYPICAL CHARACTERISTICS ($T_A = 25$ °C, unless otherwise noted)

S13-0708-Rev. B, 01-Apr-13

8

Document Number: 62669


40

For technical questions, contact: <u>automostechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

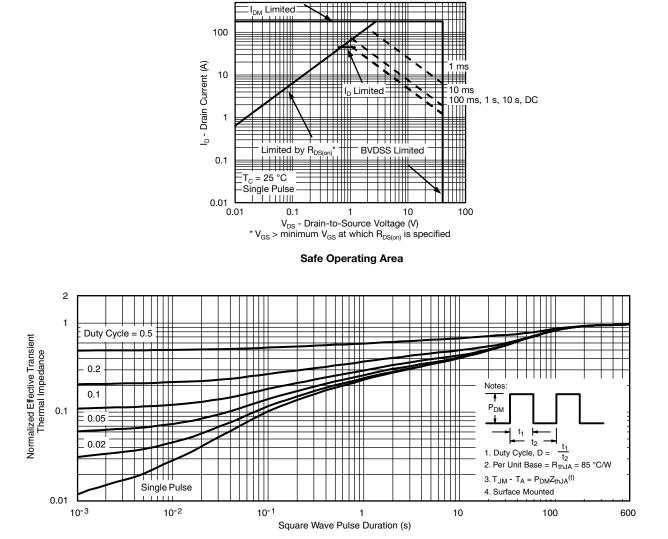
Vishay Siliconix

N-CHANNEL 2 TYPICAL CHARACTERISTICS ($T_A = 25$ °C, unless otherwise noted)

S13-0708-Rev. B, 01-Apr-13

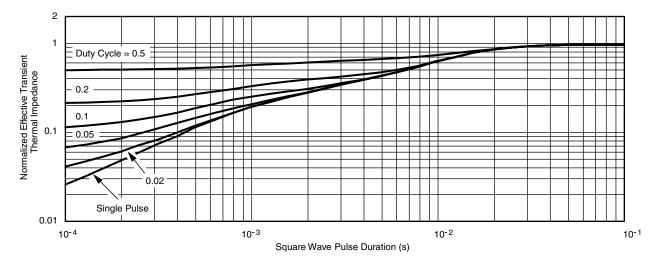
9

Document Number: 62669


10

For technical questions, contact: automostechsupport@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Siliconix


N-CHANNEL 2 TYPICAL CHARACTERISTICS (T_A = 25 °C, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Ambient

N-CHANNEL 2 TYPICAL CHARACTERISTICS ($T_A = 25$ °C, unless otherwise noted)

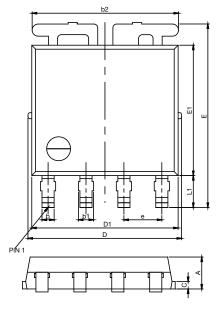
Normalized Thermal Transient Impedance, Junction-to-Case

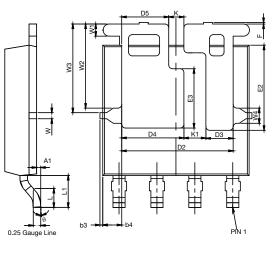
Note

The characteristics shown in the two graphs

- Normalized Transient Thermal Impedance Junction-to-Ambient (25 °C)

- Normalized Transient Thermal Impedance Junction-to-Case (25 °C)

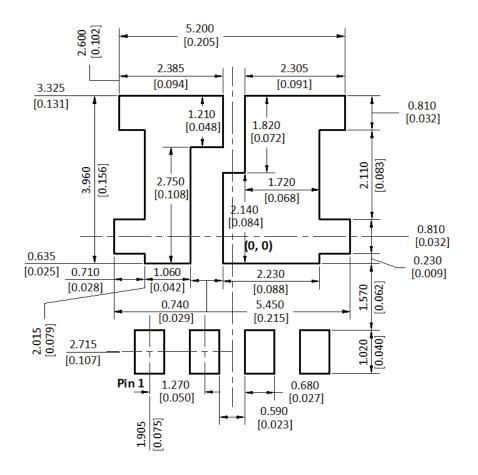

are given for general guidelines only to enable the user to get a "ball park" indication of part capabilities. The data are extracted from single pulse transient thermal impedance characteristics which are developed from empirical measurements. The latter is valid for the part mounted on printed circuit board - FR4, size 1" x 1" x 0.062", double sided with 2 oz. copper, 100 % on both sides. The part capabilities can widely vary depending on actual application parameters and operating conditions.


Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?62669.

11

DIM.		MILLIMETERS		INCHES			
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
А	1.00	1.07	1.14	0.039	0.042	0.045	
A1	0.00	-	0.127	0.00	-	0.005	
b	0.33	0.41	0.48	0.013	0.016	0.019	
b1	0.44	0.51	0.58	0.017	0.020	0.023	
b2	4.80	4.90	5.00	0.189	0.193	0.197	
b3		0.094 typ.			0.004 typ.		
b4		0.64 typ.			0.025 typ		
С	0.20	0.25	0.30	0.008	0.010	0.012	
D	5.00	5.13	5.25	0.197	0.202	0.207	
D1	4.80	4.90	5.00	0.189	0.193	0.197	
D2	3.63	3.73	3.83	0.142	0.146	0.150	
D3	0.81	0.91	1.01	0.032	0.036	0.040	
D4	1.98	2.08	2.18	0.078	0.082	0.086	
D5	1.47	1.57	1.67	0.058	0.062	0.066	
е		1.27 BSC		0.050 BSC			
E	6.05	6.15	6.25	0.238	0.242	0.246	
E1	4.27	4.37	4.47	0.168	0.172	0.176	
E2	2.75	2.85	2.95	0.108	0.112	0.116	
E3	1.89	1.99	2.09	0.074	0.078	0.082	
F	-	-	0.15	-	-	0.006	
L	0.62	0.72	0.82	0.024	0.028	0.032	
L1	0.92	1.07	1.22	0.036	0.042	0.048	
К		0.51 typ.			0.020 typ.		
K1		0.74 typ.			0.029 typ.		
W		0.23 typ.			0.009 typ.		
W1		0.41 typ.			0.016 typ.		
W2		2.82 typ.			0.111 typ.		
W3	2.96 typ.				0.117 typ.		
W4		0.51 typ.			0.020 typ.		
θ	0°	-	10°	0°	-	10°	

Note


Millimeters will gover

Revision: 12-Nov-12

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

RECOMMENDED MINIMUM PADs FOR PowerPAK® SO-8L DUAL ASYMMETRIC

Recommended Minimum Pads Dimensions in mm [inches]

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.