TECHNICAL DATA DATASHEET 4109, REV ENG-

Three-Phase IGBT BRIDGE, With Gate Driver and Optical Isolation

DESCRIPTION: A 1200 VOLT, 250 AMP, THREE PHASE IGBT BRIDGE

ELECTRICAL CHARACTERISTICS PER IGBT DEVICE		(Tj=25°C UNLESS OTHERWISE SPECIFIED)					
PARAMETER		SYMBOL	MIN	TYP	MAX	UNIT	
IGBT SPECIFICATIONS							
Collector to Emitter Breakdown Voltage		BV _{CES}	1200	-	-	V	
$I_{\rm C} = 250 \ \mu \text{A}, \ V_{\rm GE} = 0 \text{V}$							
Continuous Collector Current	$T_{c} = 25 \ ^{O}C$	I _C	-	-	250	А	
	$T_{c} = 90 {}^{O}C$				240		
Pulsed Collector Current, 1mS		I _{CM}	-	-	600	А	
Gate to Emitter Voltage		V _{GE}	-	-	+/-20	V	
Gate-Emitter Leakage Current , V_{GE} = +/-20V		I _{GES}	-	-	+/- 300	nA	
Gate Threshold Voltage, I _c =2mA		V _{GE(TH)}	3.0	-	6.0	V	
Zero Gate Voltage Collector Current		I _{CES}	-	-			
$V_{CE} = 1200 \text{ V}, V_{GE} = 0 \text{ V} \text{ T}_{i} = 25^{\circ} \text{C}$					5	mA	
$V_{CE} = 900 \text{ V}, V_{GE} = 0 \text{ V} \text{ T}_{i} = 125^{\circ}\text{C}$					40	mA	
Collector to Emitter Saturation Voltage, $I_{C} = 200A, V_{GE} = 15V,$	$T_c = 25$ °C	$V_{CE(SAT)}$	-	2.5	2.8	V	
Maximum Thermal Resistance		R _{eJC}	-	-	0.10	°C/W	
Brake IGBT					0.20	°C/W	
60A Maximum Current							
Brake IGBT SPECIFICATIONS							
Continuous Collector Current	$T_c = 25$ °C	I _C	-	-	150	А	
	$T_{c} = 90 {}^{O}C$				120		
Pulsed Collector Current, 0.5mS		I _{CM}	-	-	300	А	
Over-Temperature Shutdown							
Over-Temperature Shutdown		Tsd	100	110	120	°C	
Over-Temperature Shutdown Hysteresis				20		°C	
Over-Temperature Output		Tso		10		10mV/°C	

• 221 West Industry Court 🗉 Deer Park, NY 11729 🗉 (631) 586 7600 FAX (631) 242 9798 •

World Wide Web Site - http://www.sensitron.com • E-mail Address - sales@sensitron.com •

SENSITRON

TECHNICAL DATA DATASHEET 4109, REV ENG-

ULTRAFAST DIODES RATING AND CHARACTERISTICS						
Diode Peak Inverse Voltage	PIV	1200	-	-	V	
Continuous Forward Current, $T_c = 90$ °C	l _F	-	-	240	А	
Forward Surge Current, t _p = 10 msec	I _{FSM}	-	-	700	A	
Diode Forward Voltage, $I_F = 200A$	V _F	-	2.0	2.3	V	
Diode Reverse Recovery Time (I _F =200A, V _{RR} =600V , di/dt=200 A/ μ s)	t _{rr}	-	180	250	nsec	
Maximum Thermal Resistance	$R_{ ext{ heta}JC}$	-	-	0.15	°C/W	
Gate Driver						
Supply Voltage	VCC	10	15	20	V	
Input On Current	HIN, LIN	2		5.0	mA	
Opto-Isolator Logic High Input Threshold	l _{th}	-	1.6	-	mA	
Input Reverse Breakdown Voltage	BV _{in}	5.0	-	-	V	
Input Forward Voltage @ I _{in} = 5mA	V _F	-	1.5	1.7	V	
Under Voltage Lockout	VCCUV	7.0	-	9.7	V	
ITRIP Refernce Voltage (1)	Itrip-ref	1.45	1.5	1.55	V	
Desaturation Over-Current Protection Blanking time (2)		3	5	TBD	μsec	
Input-to-Output Turn On Delay	t _{ond}	-		800	nsec	
Output Turn On Rise Time	t _r	-		180		
Input-to-Output Turn Off Delay	t _{offd}	-		1000		
	t _f			160		
At VCC=300V, IC=50A, $T_c = 25$						
Input-Output Isolation Voltage	-	1000	-	-	V	
Hall Current Sensors Gain, at DC bus, Phase A, and Phase		TBD	TBD	TBD	V/A	

Maximum operating Junction Temperature	T _{jmax}	-40	-	150	°C
Maximum Storage Junction Temperature	T _{jmax}	-55	-	150	٥C

ITRIP Cycle-by cycle current limit is internally set to 200A peak. The set point can be lowered by connecting a resistor between ltrip-ref and Gnd. The set point can be increased by connecting a resistor between ltrip-ref and +5V ref

(2) Desaturation blanking maximum time is TBD and is only provided at the low-side IGBTs.

SENSITRON TECHNICAL DATA DATASHEET 4109, REV ENG-

Schematic Diagram:

World Wide Web Site - http://www.sensitron.com • E-mail Address - sales@sensitron.com •

SENSITRON TECHNICAL DATA DATASHEET 4109, REV ENG-

Package Drawing:

World Wide Web Site - http://www.sensitron.com • E-mail Address - sales@sensitron.com •

TECHNICAL DATA

DISCLAIMER:

1- The information given herein, including the specifications and dimensions, is subject to change without prior notice to improve product characteristics. Before ordering, purchasers are advised to contact the Sensitron Semiconductor sales department for the latest version of the datasheet(s).

2- In cases where extremely high reliability is required (such as use in nuclear power control, aerospace and aviation, traffic equipment, medical equipment, and safety equipment), safety should be ensured by using semiconductor devices that feature assured safety or by means of users' fail-safe precautions or other arrangement.

3- In no event shall Sensitron Semiconductor be liable for any damages that may result from an accident or any other cause during operation of the user's units according to the datasheet(s). Sensitron Semiconductor assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in the datasheets.
4- In no event shall Sensitron Semiconductor be liable for any failure in a semiconductor device or any secondary damage resulting from use at a value exceeding the absolute maximum rating.

5- No license is granted by the datasheet(s) under any patents or other rights of any third party or Sensitron Semiconductor.
6- The datasheet(s) may not be reproduced or duplicated, in any form, in whole or part, without the expressed written permission of Sensitron Semiconductor.

7- The products (technologies) described in the datasheet(s) are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety nor are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.