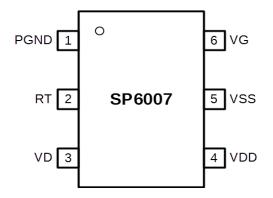
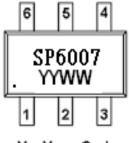
DESCRIPTION

The SP6007 is a low-drop diode emulator controller IC which when combined with an external MOS FET replaces Schottky diodes in high-efficiency flyback converters. The chip regulates the forward drop of an external MOS FET to about 40mV and switches it off as soon as the voltage becomes negative.

SP6007 is available in space saving SOT-23-6 package.

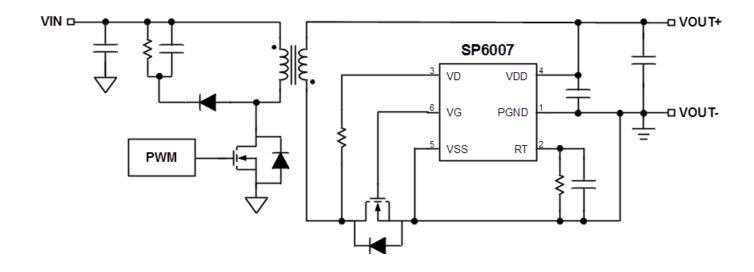

APPLICATIONS

- Industrial Power Systems
- Distributed Power Systems
- Battery Powered Systems
- Flyback Converters


FEATURES

- Works with 5V Logic Level FETS Less Than 100mW Standby Power
- Fast Turn-off Delay of 25ns
- 3.6V~5.5V VDD operating range
- Supports DCM and Quasi-Resonant Operation
- Supports High-side and Low-side Rectification
- Available in space saving SOT-23-6 Package

PIN CONFIGURATION (SOT-23-6L)

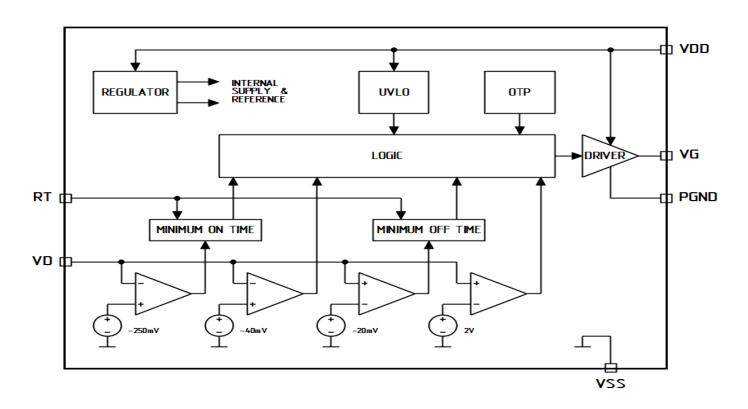


PART MARKING

Y: Year Code W: Week Code

TYPICAL APPLICATION CIRCUIT

PINDESCRIPTION


Pin No.	Pin Name	Description
1	PGND	Power Ground, return for gate driver
2	RT	Minimum On-time setting pin. A resistor connected between this pin and VSS
		defines minimum On-time
3	VD	External FET drain voltage sensing
4	Vdd	DC supply voltage.
5	VSS	Ground, also used as reference for VD
6	VG	Gate driver output

ORDERING INFORMATION

Part Number	Package	Part Marking		
SP6007S26RGB	SOT-23-6L	SP6007		

2020/06/24 Ver 2 Page 2

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS (TA=25°C, unless otherwise specified)

The following ratings designate persistent limits beyond which damage to the device may occur.

Symbol	Parameter	Value	Unit
Vdd	DC Supply Voltage	-0.3 ~ 7.0	V
PGND	Power Ground, return for gate driver	-0.3 ~ 0.3	V
VD	External FET drain voltage sensing	-1.0 ~ 60	V
P _D	Power Dissipation @ T _A =85°C (*)	0.3	W
T_{J}	Junction temperature	-40 ~ 150	$^{\circ}\mathrm{C}$
T_{STG}	Storage temperature	-40 ~ 150	$^{\circ}\!\mathrm{C}$
T_{LEAD}	Lead soldering temperature for 5 sec	260	$^{\circ}\!\mathrm{C}$

THERMAL RESISTANCE

Symbol	Parameter	Value	Unit
Rөja	Thermal Resistance Junction –to Ambient (*1)	220	°C/W
Rөjc	Thermal Resistance Junction –to Case (*2)	110	°C/W

^(*1) θJA is measured in natural convection (still air) at TA = 25°C with the component mounted on a low effective thermal conductivity test board of JEDEC 51-3 thermal measurement standard.

^(*2) The power dissipation and thermal resistance are evaluated under copper board mounted with free air conditions

ELECTRICAL CHARACTERISTICS

 $(T_A=25$ °C, $V_{DD}=5V$, $R_{RT}=100k\Omega$, unless otherwise specified)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Supply Sect	tion					
Vdd	Supply voltage		3.6		5.5	V
Vdd on	Vdd UVLO rising				3.6	V
Vdd	Vdd UVLO hysteresis		0.2			V
hysteresis						
I_{CC}	Operating current	C _{LOAD} =5nF, F _S w=100kHz			10	mA
Iq	Quiescent current	V_{SS} - V_{D} =0.5 V			3	mA
	Shutdown current	$V_{DD}=3V$			100	uA
	Thermal shutdown			150		°C
	Thermal shutdown hysteresis			30		°C
Control Cir	cuitry Section					
$V_{\rm fwd}$	VSS-VD forward voltage			40		mV
	VSS-VD turn-off threshold			20		mV
T_{Don}	Turn-on delay	C _{LOAD} =5nF		100		nS
		C _{LOAD} =10nF		150		nS
	Input bias current on VD pin	$V_D=60V$			1	uA
T_{MIN}	Minimum on-time	C _{LOAD} =5nF		1.6		uS
V_{Boff}	Turn-off blanking V _{DS}			2		V
V _{ON-DS}	Turn-on V _{DS} threshold			-250		mV
Gate Driver	r Section					
V_{G-L}	Gate output low voltage	I _{LOAD} =1mA			0.1	V
V_{G-H}	Gate output high voltage	V _{DD} =5V	4.5			V
	Turn-off propagation delay	$V_D = V_{SS}$		25		nS
$T_{ m Doff}$	Turn-off total delay	$V_D=V_{SS}, C_{LOAD}=5nF,$		35		nS
		$R_{GATE}=0\Omega, V_{GS}=2V$				
		$V_D=V_{SS}, C_{LOAD}=10nF,$		45		nS
		$R_{GATE}=0\Omega, V_{GS}=2V$				
	Maximum source current (*)	-		0.5		A
	Maximum sink current (*)		2			A
	Pull down impedance			1		Ω

Notes:

(*) Guaranteed by design and characterization

2020/06/24 Ver 2 Page 4

Information provided is alleged to be exact and consistent. SYNC Power Corporation presumes no responsibility for the penalties of use of such information or for any violation of patents or other rights of third parties which may result from its use. No license is granted by allegation or otherwise under any patent or patent rights of SYNC Power Corporation. Conditions mentioned in this publication are subject to change without notice. This publication surpasses and replaces all information previously supplied. SYNC Power Corporation products are not authorized for use as critical components in life support devices or systems without express written approval of SYNC Power Corporation.

© The SYNC Power logo is a registered trademark of SYNC Power Corporation
© 2020 SYNC Power Corporation – Printed in Taiwan – All Rights Reserved
SYNC Power Corporation
7F-2, No.3-1, Park Street
NanKang District (NKSP), Taipei, Taiwan, 115, R.O.C
Phone: 886-2-2655-8178

Fax: 886-2-2655-8468 http://www.syncpower.com

2020/06/24 Ver 2 Page 5