
FEATURES

- Single-Chip FM Stereo Radio and Transmitter
- FM Stereo MPX [Receive (Rx), Transmit (Tx)]
- Frequency Range 76 MHz to 108 MHz (Rx, Tx)
- Low Supply Current
 - Rx: 11.5 mA (V_{CC} = 3 V, No RF Input)
 - Tx: 13 mA (V_{CC} = 3 V, No Audio Input, RTX = Open)
- 32.768-kHz Crystal
- I²C Interface
- MPX Output for RDS (Rx)
- Seek Tuning (Rx)
- RFAGC (Rx)
- RF Auto-Power Control (Tx)
- Pilot Cancel (Rx)
- Sixth-Order 15-kHz LPF (Tx)
- Programmable De/Pre-Emphasis (50/75 μs)

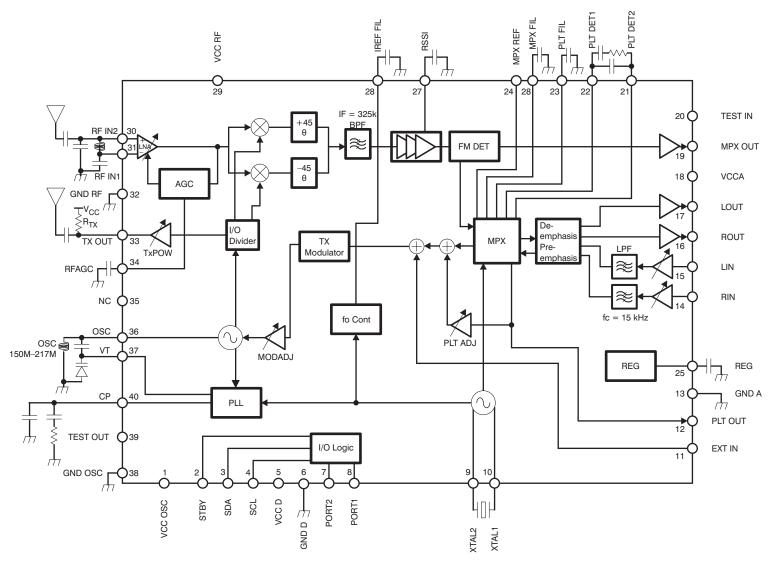
- Pilot Out (Tx)
- General-Purpose External Input (Tx)
- High Power Selectable RF Output (Tx) -7/-3/1/4 dBm
- High Cut Control (HCC), Stereo Noise Control (SNC) (Rx)
- Soft Mute (Rx)
- V_{CC} = 2.5 V to 4 V
- 40-Pin QFN Package

APPLICATIONS

- Portable Media Players
- MP3 Players
- Personal Navigation Devices

NC - No internal connection

DESCRIPTION


The SN761633 is an FM radio receiver and transmitter IC for portable audio players.

The circuit consists of a stereo FM radio receiver and FM transmitter, and is available in a small-outline package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

FUNCTIONAL BLOCK DIAGRAM

TERMINAL FUNCTIONS

TERMINAL		DESCRIPTION	COLIEMATIC
NAME NO.		DESCRIPTION	SCHEMATIC
СР	40	Charge-pump output	Figure 1
EXT IN	11	External signal input	Figure 2
GND A	13	Analog ground	
GND D	6	Digital ground	
GND OSC	38	Oscillator ground	
GND RF	32	RF ground	
IREF FIL	26	Reference current filter	Figure 3
LIN	15	Audio left input	Figure 4
LOUT	17	Audio left output	Figure 5
MPX FIL	28	MPX PLL filter	Figure 6
MPX REF	24	MPX reference voltage filter	Figure 7
MPX OUT	19	MPX output	Figure 8
NC	35	Not connected	
OSC	36	Oscillator input	Figure 9
PLT DET1, PLT DET2	22, 21	Pilot detector PLL loop filter	Figure 10
PLT FIL	23	Pilot level detector filter	Figure 11
PLT OUT	12	Pilot signal output	Figure 12
PORT1, PORT2	8, 7	Port output	Figure 13
REG	25	Regulator filter	Figure 14
RF AGC	34	RFAGC filter	Figure 15
RF IN1, RF IN2	31, 30	RF input	Figure 16
RIN	14	Audio right input	Figure 4
ROUT	16	Audio right output	Figure 5
RSSI	27	RSSI filter	Figure 17
SCL	4	I ² C clock input	Figure 18
SDA	3	I ² C data input/output	Figure 19
STBY	2	Standby control input	Figure 20
TEST IN	20	Test input	Figure 21
TEST OUT	39	Test output	Figure 22
Tx OUT	33	Transmitter output	Figure 23
VCC A	18	Analog power supply	
VCC D	5	Digital power supply	
VCC OSC	1	Oscillator power supply	
VCC RF	29	RF power supply	
VT	37	Tuning voltage output	Figure 1
XTAL1, XTAL2	10, 9	Crystal oscillator input/output	Figure 24

SLES210-OCTOBER 2007

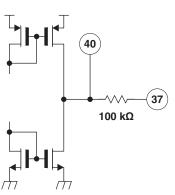
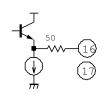



Figure 1. CP and VT

Figure 3. IREF FIL

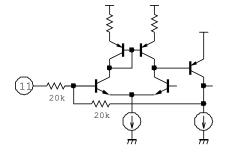


Figure 2. EXT IN

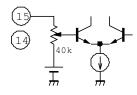


Figure 4. LIN and RIN

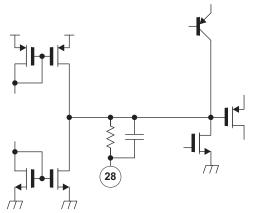
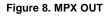



Figure 6. MPX FIL

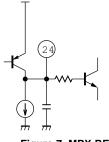


Figure 7. MPX REF

4

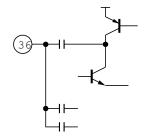
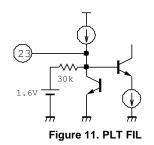
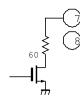
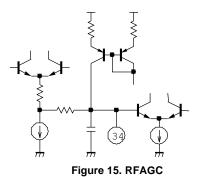





Figure 9. OSC

Figure 13. PORT1 and PORT2

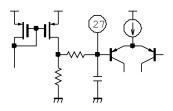


Figure 17. RSSI

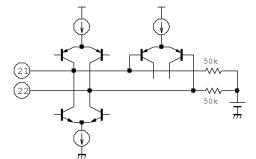


Figure 10. PLT DET1 and PLT DET2

Figure 12. PLT OUT

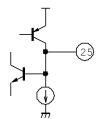
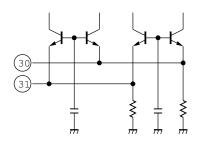
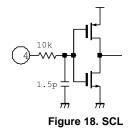
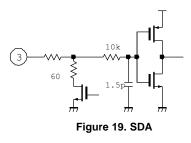
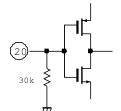


Figure 14. REG


Figure 16. RFIN1 and RFIN2

SN761633 FM STEREO RADIO WITH TRANSMITTER SLES210-OCTOBER 2007

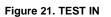
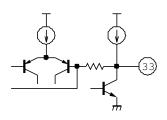



Figure 23. Tx OUT

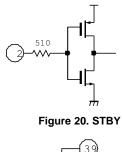


Figure 22. TEST OUT

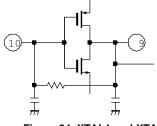


Figure 24. XTAL1 and XTAL2

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over recommended operating free-air temperature range (unless otherwise noted)

				MIN	MAX	UNIT
V _{CC}	Supply voltage range	VCCA, VCCD, VCC RF		-0.3	60	V
V _{IN}	Input voltage range	Other pins		-0.3	V_{CC}	V
T _A	T _A Operating free-air temperature range			-20	85	°C
T _{stg}	Storage temperature range			-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

			MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage	VCCA, VCCD, VCC RF, VCC OSC	2.5	3	4	V
T _A	Operating free-air temperature		-20		85	°C

6

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ELECTRICAL CHARACTERISTICS – TOTAL DEVICE

 $V_{CC} = 3 \text{ V}, \text{ T} = 25^{\circ}\text{C}$, measured in the circuit of Figure 26; RF input voltage (V_{RF}) = 60 dBµVemf; RF frequency (f_{RF}) = 98.1 MHz, Audio signal frequency (f_{AF}) = 1 kHz, Mono, FM = 22.5 kHzdev (30% at 75-kdev Ref.), BW = LPF 30k (unless otherwise noted)

Supply Voltages and Currents

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{CC}	Supply voltage	VCCA, VCCD, VCC RF, and VCC OSC are the same voltage	2.5	3	4	V
I _{CC Rx}	Rx-mode supply current	No RF signal input		11.5		mA
I _{CC Tx1}	Tx-mode supply current 1	No LIN/RIN input, TxPOW[1:0] = 00, R_{Tx} = open		13		mA
I _{CC Tx2}	Tx-mode supply current 2	No LIN/RIN input, TxPOW[1:0] = 00, R_{Tx} = open, DIS_AFLPF = 1		12		mA
I _{CC Tx3}	Tx-mode supply current 3	External input only mode, EN_EXTIN = 1, DIS_LRIN = 1, DIS_AFLPF = 1, TxPOW[1:0] = 00, R_{Tx} = open		11.5		mA
I _{CC Tx4}	Tx-mode supply current 4	No LIN/RIN input, TxPOW[1:0] = 10, R_{Tx} = 300 Ω		18		mA
I _{CC Tx5}	Tx-mode supply current 5	No LIN/RIN input, TxPOW[1:0] = 11, R_{Tx} = 150 Ω		24		mA
I _{CC STBY1}	Standby supply current 1	STBY (bit) = 1		0.1	10	μA
I _{CC STBY2}	Standby supply current 2	STBY (2 pin) = GND		0.1	10	μA

Crystal Oscillator

PARAMETER		TEST CONDITIONS	TYP	UNIT
f _{XTAL}	Crystal oscillator frequency	Crystal $C_L = 12.5 \text{ pF}$	32.768	kHz

Voltage-Controlled Oscillator

PARAMETER		MIN	MAX	UNIT
f _{OSC}	Oscillator frequency range	150	217	MHz

Synthesizer

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
Ν	Programmable counter	14 bit			16383	
f _{REF}	Reference frequency for phase detector			16.384		kHz
f _{STEP}	Tuning frequency step			8.192		kHz
f _{RANGE US} l			10707		13237	dec
	US/EU band range for search stop	$LOC_HL = 1$	87.387		108.113	MHz
			10628		13157	dec
		$LOC_HL = 0$	87.390	10628 13 87.390 108. 9304 110 75.893 90.	108.107	7 MHz
		LOC_HL = 1	9304		11039	dec
1			75.893		90.107	MHz
f _{RANGE} JPN	Japan band range for search stop		87.387 10628 87.390 9304 75.893 9224 75.888		10960	dec
		$LOC_HL = 0$	75.888	16.384 8.192 7 7 8 0 4 3 4	90.109	MHz
		CP[1:0] = 00		0.6		
	Charge nump surrent	CP[1:0] = 01		1.25	1.25	
I _{CP}	Charge-pump current	CP[1:0] = 10		2.5		μA
		CP[1:0] = 11		5		

7

SLES210-OCTOBER 2007

I²C Interface

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
V _{IH}	High-level input voltage (SCL, SDA)		$0.7 imes V_{CC}$		V
V _{IL}	Low-level input voltage (SCL, SDA)			$0.3 \times V_{CC}$	V
V _{OL}	Low-level ouput voltage (SDA)	$V_{CC} = 3 \text{ V}, \text{ I}_{OL} = 500 \mu\text{A}$		0.4	V
f _{SCL}	Clock frequency (SCL)			400	kHz

ELECTRICAL CHARACTERISTICS – Rx BLOCK

 $V_{CC} = 3 \text{ V}, T_A = 25^{\circ}\text{C}$, measured in the circuit of Figure 26; RF input voltage (V_{RF}) = 60 dBµVemf, RF frequency (f_{RF}) = 98.1 MHz, Audio signal frequency (f_{AF}) = 1kHz, Mono, FM = 22.5 kHzdev (30% at 75-kdev Ref.), BW = LPF 30 k (unless otherwise noted)

RF Signal Input

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{TU RANGE}	Tuning frequency range		76		108	MHz
V _{Rx}	Sensitivity input voltage	(S+N)/N = 26 dB, 22.5-kHz dev, De-emphasis = 75 μs		10		dBµVemf
R _{RFIN}	Input resistance	RF IN at 100 MHz, No RF signal input		120		Ω
C _{RFIN}	Input capacitance	RF IN at 100 MHz, No RF signal input		1.5		pF
IR _{Rx}	Image rejection ratio			30		dB

IF Band-Pass Filter

PARAMETER		TEST CONDITIONS	TYP	UNIT
f _{IF}	IF center frequency	Peak frequency, Test mode	325	kHz
B _{IF}	IF bandwidth	-3 dB, Test mode	130	kHz
S ₊₂₀₀	Selectivity high side (200 kHz)	325 kHz + 200 kHz, Test mode	25	dB
S_200	Selectivity low side (200 kHz)	325 kHz – 200 kHz, Test mode	30	dB
S ₊₁₀₀	Selectivity high side (100 kHz)	325 kHz + 100 kHz, Test mode	8	dB
S_100	Selectivity low side (100 kHz)	325 kHz – 100 kHz, Test mode	7	dB

FM Demodulator MPX OUT

PARAMETER		TEST CONDITIONS		UNIT
V _{MPXOUT}	MPX OUT output level	22.5 kHz dev, f _{AF} = 1 kHz, EN_MPXOUT = 1	75	mVrms

Soft Mute

8

PARAMETER		TEST CONDITIONS		UNIT
V _{S MUTE}	Soft mute start point	S_MUTE = 1, -3 dB	11	dBµVemf
ATT _{S MUTE}	Soft mute attenuation	V_{RF} = 60 dBµVemf, S_MUTE = 0 to 1, 0 V applied to RSSI pin externally as pseudo condition of no RF signal input	18	dB

ELECTRICAL CHARACTERISTICS – Rx BLOCK (CONTINUED)

 $V_{CC} = 3 \text{ V}, T_A = 25^{\circ}\text{C}$, measured in the circuit of Figure 26; RF input voltage (V_{RF}) = 60 dBµVemf, RF frequency (f_{RF}) = 98.1 MHz, audio signal frequency (f_{AF}) = 1kHz, Mono, FM = 22.5 kHzdev (30% at 75 kdev Ref.), BW = LPF 30 k (unless otherwise noted)

High Cut Control

	PARAMETER	TEST CONDITIONS		TYP	UNIT
TC _{DE EM}	De-emphasis time constant	$V_{\rm e} = 60 d P_{\rm e} V_{\rm e}$	EMTC = 0	50	
	De-emphasis time constant	$V_{RF} = 60 \text{ dB}\mu\text{Vemf},$	EMTC = 1	75	μs
		$V_{RF} = 60 \text{ dB}\mu\text{Vemf},$	EMTC = 0	150	
TC _{DE EM HCC}	De-emphasis time constant on HCC applied	V _{RF} = 60 dBµVemf, 0 V applied to RSSI pin externally as pseudo condition of no RF signal input	EMTC = 1	225	μs

MPX Decoder

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{O MONO}	Mono output level	Mono, 22.5 kHzdev, f _{AF} =1 kHz, De-emphasis = 75 µs		75		mVrms
V _{O ST}	Stereo output level	L = R, 22.5 kHzdev, f_{AF} =1 kHz, De-emphasis = 75 μ s, Pilot = 7.5 kHzdev (10%)		75		mVrms
V _{DIFF}	LOUT- and ROUT-level difference	L = R, 22.5 kHzdev, f_{AF} = 1 kHz, De-emphasis = 75 µs, Pilot = 7.5 kHzdev (10%) LOUT-level ref.	-1		1	dB
ATT _{MUTE}	MUTE attenuation	MUTE = 1	60			dB
ATT _{L MUTE}	LOUT MUTE attenuation	MUTE_L = 1	60			dB
ATT _{R MUTE}	ROUT MUTE attenuation	MUTE_R = 1	60			dB
f _{ODD}	Overdrive deviation margin frequency	f _{AF} = 1 kHz, De-emphasis = 75 s THD < 3%		150		kHz
S/N _{MONO}	Mono signal-to-noise ratio	75 kHzdev (100%)., f _{AF} = 1 kHz, De-emphasis = 75 μs		60		dB
THD _{MONO}	Mono total harmonic distortion	22.5 kHzdev, f _{AF} = 1 kHz, De-emphasis = 75 μs		0.3		%
S/N _{ST}	Stereo signal-to-noise ratio	67.5 kHzdev (90%)., f _{AF} = 1 kHz, De-emphasis = 75 μs, Pilot = 7.5 kHzdev (10%)		50		dB
THD _{ST}	Stereo total harmonic distortion	22.5 kHzdev, $f_{AF} = 1$ kHz, De-emphasis = 75 μ s, Pilot = 7.5 kHzdev (10%)		1		%
SEP _{ST}	Stereo separation	22.5 kHzdev, f _{AF} = 1 kHz, De-emphasis = 75 µs, Pilot = 7.5 kHzdev (10%)		33		dB
DEV _{PLT DET}	Pilot detect deviation	ST_IND 0 to 1 at I ² C read mode		5		%
HYS _{PLT DET}	Pilot detect deviation hysteresis			2		dB
V _{SWMST}	Mono-to-stereo switch level	22.5 kHzdev, $f_{AF} = 1$ kHz, De-emphasis = 75 μ s, Pilot = 7.5 kHzdev (10%), SNC = 0		33		dBµVemf
HYS _{SWMST}	Mono-to-stereo switch-level hysteresis	22.5 kHzdev, f _{AF} = 1 kHz, De-emphasis = 75 μs, Pilot = 7.5 kHzdev (10%), SNC = 0		2		dB

ELECTRICAL CHARACTERISTICS – Rx BLOCK (CONTINUED)

 $V_{CC} = 3 \text{ V}, T_A = 25^{\circ}\text{C}$, measured in the circuit of Figure 26; RF input voltage (V_{RF}) = 60 dBµVemf, RF frequency (f_{RF}) = 98.1 MHz, Audio signal frequency (f_{AF}) = 1kHz, Mono, FM = 22.5 kHzdev (30% at 75-kdev ref.), BW = LPF 30 k (unless otherwise noted)

Stereo Noise Control

PARAMETER		TEST CONDITIONS	TYP	UNIT
V _{SNC} SN		22.5 kHzdev, f _{AF} = 1 kHz, Pilot = 7.5 kHzdev (10%), SNC = 1, Separation = 20 dB	36	dBµVemf

RSSI

	PARAMETER	TEST CONDITIONS	TYP	UNIT
V _{RSSI MIN}	RSSI minimum input level	RSSI[3:0] 0 to1 (dec) at I ² C read mode	9	dBµVemf
RES _{RSSI}	RSSI resolution		2	dB

IF Counter

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{I IFCC}	RF input level for correct IF count	0 to 127		9		dBµVemf
BIT _{IFC}	Counter length			7		Bit
D _{IFC}	Prescaler ratio			64		
t _{IFC GATE}	Gate time	1/(32.768 kHz/400)		12.207		ms
RESIFC	Resolution	64×32.768 kHz/400		5.24288		kHz
N _{IFC CNT}	Count center	325k/64/32.768 kHz × 400		62		Dec
NIFC STOP	IF counter result for search stop		57		67	Dec

ELECTRICAL CHARACTERISTICS – Tx BLOCK

 $V_{CC} = 3 \text{ V}, T_A = 25^{\circ}\text{C}$, measured in the circuit of Figure 26; RF frequency $f_{RF} = 98.1 \text{ MHz}$, BAND = 0 (USEU), MODADJ[3:0] = +6 dB (for 98.1 MHz), Audio signal frequency $f_{AF} = 1 \text{ kHz}, 100\%$ means FM 75 kdev, BW = LPF 30 k, TxPOW[1:0] = -7 dBm measured with typical home hi-fi tuner (unless otherwise noted)

AF

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
		AFADJ [2:0] = 000	-9		
		AFADJ [2:0] = 001	-6		
		AFADJ [2:0] = 010	-3		
MODD	AE modulation adjust ratio	AFADJ [2:0] = 011 (Ref.)	0		dB
MODR _{AF ADJ}	AF modulation adjust ratio	AFADJ [2:0] = 100	3		uБ
		AFADJ [2:0] = 101	6		
		AFADJ [2:0] = 110	9		
		AFADJ [2:0] = 111	12		
	AF maximum input level	AFADJ = 0 dB, EMTC = 0, fs = 400 Hz, L = R each channel		1000	
V _{IMAX 50}	(pre-emphasis 50 µs)	AFADJ = 0 dB, EMTC = 0, fs = 10 kHz, L = R each channel		330	mVpp
N/	AF maximum input level	AFADJ = 0 dB, EMTC = 1, fs = 400 Hz, L = R each channel		1000	m) (nn
V _{IMAX 75}	(pre-emphasis 75 μs)	AFADJ = 0 dB, EMTC = 1, fs = 10 kHz, L = R each channel		200	mVpp
V _{IAF}	AF yypical input level for 100% dev	$AFADJ = 0 dB$, fs = 400 Hz, $DIS_EM = 0$, L = R each channel	250		mVrms
f _{IAFR}	Input frequency range		20	15 k	Hz
R _{IAF}	AF input impedance		40		kΩ
	Pre-emphasis	EMTC bit = 0	50		μs
t _{PRE}	rie-empilasis	EMTC bit = 1	75	μ3	
f _{LPF}	AFLPF frequency response	DIS_AFLPF = 0, -3 dB	15		kHz

Mono Mode

	PARAMETER	TEST CONDITIONS	TYP	MAX	UNIT	
f _{O MONO}	Output frequency response	CP = 1.25 µA	20		15 k	Hz
S/N _{MONO98}	Mono signal-to-noise ratio at 98.1 MHz (100% modulation)	$ \begin{array}{l} L=R=250 \text{ mVrms}, \ensuremath{f_{AF}}=1 \text{ kHz}, \ensuremath{AFADJ}=0 \text{ dB},\\ MODADJ=5 \text{ dB}, \ensuremath{PLTADJ}=\text{off}, \ensuremath{MONO}\xspace ST=1,\\ RF=98.1 \text{ MHz}, \ensuremath{BAND}=0 \end{array} $		55		dB
THD _{MONO98}	Mono total harmonic distortion at 98.1 MHz (30% modulation)	$eq:linear_line$		1		%
S/N _{MONO83}	Mono signal-to-noise ratio at 83 MHz (100% modulation)	L = R = 250 mVrms, f_{AF} = 1kHz, AFADJ = 0 dB, MODADJ = 11 dB, PLTADJ = off, MONO_ST = 1, RF = 83 MHz, BAND = 1		55		dB
THD _{MONO83}	Mono total harmonic distortion at 83 MHz (30% modulation)	$\label{eq:L} \begin{array}{l} L = R = 75 \text{ mVrms}, \ f_{AF} = 1 \text{ kHz}, \ AFADJ = 0 \text{ dB}, \\ MODADJ = 11 \text{ dB PLTADJ} = off, \ MONO_ST = 1, \\ RF = 83 \text{ MHz}, \ BAND = 1 \end{array}$	0.5			%
ATT _{MT} MONO	MUTE attenuation	MUTE bit = 1	50			dB

SLES210-OCTOBER 2007

ELECTRICAL CHARACTERISTICS – Tx BLOCK (CONTINUED)

 $V_{CC} = 3 \text{ V}, T_A = 25^{\circ}\text{C}$, measured in the circuit of Figure 26; RF frequency $f_{RF} = 98.1 \text{ MHz}$, BAND = 0 (US/EU), MODADJ[3:0] = +6 dB (for 98.1 MHz), Audio signal frequency $f_{AF} = 1 \text{ kHz}$, 100% means FM 75kdev, BW = LPF 30 k, TxPOW[1:0] = -7 dBm measured with typical home hi-fi tuner (unless otherwise noted)

Stereo Mode

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
S/N _{ST98} Stereo signal-to-noise ratio at 98.1 MHz Main + Sub = 90%, Pilot = 10%		L = R = 225 mVrms, f_{AF} = 1 kHz, AFADJ = 0 dB, MODADJ = 5 dB, PLTADJ = 0 dB, f_{RF} = 98.1 MHz, BAND = 0	55		dB	
SEP _{ST98}	Stereo separation at 98.1 MHz Main + Sub = 30%, Pilot = 10%	L or R = 75 mVrms, $f_{AF} = 1 \text{ kHz}$, AFADJ = 0 dB, MODADJ = 5 dB, PLTADJ = 0 dB, $f_{RF} = 98.1 \text{ MHz}$, BAND = 0	25			dB
THD _{ST98}	Stereo total harmonic distortion at 98.1 MHz Main + Sub = 30%, Pilot = 10%	L or R = 75 mVrms, $f_{AF} = 1 \text{ kHz}$, AFADJ = 0 dB, MODADJ = 5 dB, PLTADJ = 0 dB, $f_{RF} = 98.1\text{MHz}$, BAND = 0		1		%
S/N _{ST83}	Stereo signal-to-noise ratio at 83 MHz Main + Sub = 90%, Pilot = 10%	L = R = 225 mVrms, f_{AF} = 1 kHz, AFADJ = 0 dB, MODADJ = 11 dB, PLTADJ = 0 dB, f_{RF} = 83 MHz, BAND = 1		55		dB
SEP _{ST83}	Stereo separation at 83 MHz Main + Sub = 30%, Pilot = 10%	L or R = 75 mVrms, $f_{AF} = 1 \text{ kHz}$, AFADJ = 0 dB, MODADJ = 11 dB, PLTADJ = 0 dB, $f_{RF} = 83 \text{ MHz}$, BAND = 1		30		dB
THD _{ST83}	Stereo total harmonic distortion at 83 MHz Main + Sub = 30%, Pilot = 10%	L or R = 75 mVrms, $f_{AF} = 1 \text{ kHz}$, AFADJ = 0 dB, MODADJ = 11 dB, PLTADJ = 0 dB, $f_{RF} = 83 \text{ MHz}$, BAND = 1		0.5		%
DIFF _{ST MOD}	Left and right channel modulation difference	$\begin{array}{l} L=R=75 \text{ mVrms}, \ f_{AF}=1 \text{ kHz},\\ AFADJ=0 \text{ dB}, \text{ MODADJ}=11 \text{ dB},\\ PLTADJ=0 \text{ dB}, \ f_{RF}=98.1 \text{ MHz},\\ BAND=1 \text{ Lch level ref.} \end{array}$	-1		1	dB

EXT IN

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{EXT MAX}	Maximum input level	$EN_EXTIN = 1$, $DIS_LRIN = 0$			500	mVpp
f _{R EXT}	Input frequency range	$EN_EXTIN = 1$, $DIS_LRIN = 0$	20		80 k	Hz
V _{OPLT}	Pilot output level	$EN_EXTIN = 1$, $DIS_LRIN = 0$		40		mVrms
V _{EXT TYP}	Typical input level for 100% dev	EN_EXTIN = 1, DIS_LRIN = 0		125		mVrms

RF Power

	PARAMETER	TEST CONDITIONS	ТҮР	UNIT
		TXPOW[1:0] = 00, R_{TX} = open, R_L = 50 Ω , EN_EXTIN = 0, DIS_LRIN = 1	-7	
V		TXPOW[1:0] = 01, R_{TX} = 300 Ω , R_L = 50 Ω , EN_EXTIN = 0, DIS_LRIN = 1	-3	dBm
V _{TxOUT}	Tx output power	TXPOW[1:0] = 10, R_{TX} = 300 Ω , R_{L} = 50 Ω , EN_EXTIN = 0, DIS_LRIN = 1	1	ubm
		TXPOW[1:0] = 11, R_{TX} = 150 Ω, R_L = 50 Ω, EN_EXTIN = 0, DIS_LRIN = 1	4	

TEXAS INSTRUMENTS www.ti.com

I²C DATA FORMAT

I²C Write Data (R/W = 0)

		Table	e 1. RX-IVIODE W	Inte Data (Ad	iaress Bit 2, 1	= 0,0)			
BYTE	BIT 7 (MSB)	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0 (LSB)	
Address	1	1	0	0	0	0	0	R/W = 0	
Data 1	MUTE	SM	N13	N12	N11	N10	N9	N8	
Data 2	N7	N6	N5	N4	N3	N2	N1	N0	
Data 3	SM_UD	SM_SL1	SM_SL0	LOC_HL	MONO_ST	MUTE_R	MUTE_L	PORT1	
Data 4	PORT2	STBY	BAND	A_MUTE	S_MUTE	HCC	SNC	SM_IND	
Data 5	DIS_EM	EMTC	EN_MPXOUT	0	0	0	CP1	CP0	
Data 6-8	3 Reserved ⁽¹⁾								

Table 1. Rx-Mode Write Data (Address Bit 2, 1 = 0,0)

(1) Do not write any data on reserved area. The data of this area is loaded at power-on-reset.

Table 2. Tx-Mode Write Data (Address Bit 2, 1 = 1,1)

BYTE	BIT 7 (MSB)	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0 (LSB)	
Address	1	1	0	0	0	1	1	R/W = 0	
Data 1	MUTE	0	N13	N12	N11	N10	N9	N8	
Data 2	N7	N6	N5	N4	N3	N2	N1	N0	
Data 3	PLTADJ2	PLTADJ1	PLTADJ0	EN_EXTIN	MONO_ST	TxPOW1	TxPOW0	PORT1	
Data 4	PORT2	STBY	BAND	MODADJ3	MODADJ2	MODADJ1	MODADJ0	DIS_AFLPF	
Data 5	DIS_EM	EMTC	DIS_LRIN	AFADJ2	AFADJ1	AFADJ0	CP1	CP0	
Data 6-8	Reserved ⁽¹⁾								

(1) Do not write any data on reserved area. The data of this area is loaded at power-on-reset.

I²C Write Data (R/W = 1)

Table 3. Rx-Mode Write Data (Address Bit 2, 1 = 0,0)

BYTE	BIT 7 (MSB)	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0 (LSB)
Address	1	1	0	0	0	0	0	R/W = 1
Data 1	READY	BAND_LMT	N13	N12	N11	N10	N9	N8
Data 2	N7	N6	N5	N4	N3	N2	N1	N0
Data 3	ST_IND	IFC6	IFC5	IFC4	IFC3	IFC2	IFC1	IFC0
Data 4	RSSI3	RSSI2	RSSI1	RSSI0	LOCKDET	Х	Х	Х

Table 4. Tx-Mode Write Data (Address Bit 2, 1 = 1,1)

					•			
BYTE	BIT 7 (MSB)	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0 (LSB)
Address	1	1	0	0	0	1	1	R/W = 1
Data 1	0	0	N13	N12	N11	N10	N9	N8
Data 2	N7	N6	N5	N4	N3	N2	N1	N0
Data 3	ST_IND	1	1	1	1	1	1	1
Data 4	1	1	1	1	Х	1	1	1

SLES210-OCTOBER 2007

SYMBOL		DESCRIPTION	DEFAULT		
MUTE	Mute control bit	0: Mute off 1: Mute on	0		
SM	Search mode control bit	0: Off 1: On (start search when 0 to 1)	0		
N13–N0	Programmable counter bits	Set main counter	All 0		
SM_UD	Search up/down set bit	0: Down 1: Up	1		
SM_SL1, SM_SL0	Search stop-level bits	SM_L1 SM_L0 RSSI Level 0 0 ≥0 (test function) 0 1 ≥5 1 0 ≥8 1 1 ≥12	1, 1		
LOC_HL	Local high-/low-side injection control bit	0: Low-side LO injection 1: High-side LO injection	1		
MONO_ST	Mono/stereo switch	0: Auto stereo 1: Forced mono	0		
MUTE_R, MUTE_L	R-ch mute switch, L-ch mute switch	0: Mute off 1: Mute on	0, 0		
PORT1	Port 1 control bit	PORT 1 is enable as general purpose port in condition of SM_IND = 0 0: Low (Nch-MOS open drain on) 1: High (Nch-MOS open drain off) When SIM_IND = 1, PORT 1 outputs search indicator.	1		
PORT2	Port 2 control bit	0: Low (open drain on) 1: High (open drain off)	1		
STBY	Standby control bit	0: Standby off 1: Standby on	1		
BAND	Band selection at search mode	0: US/EU band (87.5 MHz to 108 MHz) 1: Japan band (76 MHz to 90 MHz)	0		
A_MUTE	Auto mute control bit	0: Off 1: On (auto mute when PLL unlocked or search mode)	0		
S_MUTE	Soft mute control bit	0: Off 1: On	0		
HCC	High cut control bit	0: Off 1: On	0		
SNC	Stereo noise cancel bit	0: Off 1: On	0		
SM_IND	Search indicator control bit	0: Disable indicator. Port 1 is controlled by bit PORT1. 1: Enable indicator. Port1 outputs as search indicator (in search sequence: L, Normal operation: H).	0		
DIS_EM	Disable De-emphasis bit	0: De-emphasis on 1: De-emphasis off	0		
EMTC	Time constant control bit for De-emphasis	0: 50 µs 1: 75 µs	1		
EN_MPXOUT	MPX output control bit	0: Output disable 1: Output enable			
CP1,	CP current selection bit 1,	CP1 CP0 CP Current	1,		
CP0	CP current selection bit 0	0 0 0.6 μA 0 1 1.25 μA 1 0 2.5 μA 1 1 5 μA	0		

Table 5. Rx-Mode Write Data Symbol Description (Address Bit 2, 1 = 0,0)

SYMBOL DESCRIPTION DEFAULT MUTE 0: Mute off Mute control bit 0 1: Mute on N13-N0 Programmable counter bits Set main counter All 0 PLTADJ2 PLTADJ2, PLTADJ1 PLTADJ0 Pilot-level adjust bits Level 0, PLTADJ1, 1, 0 0 0 -6 dB PLTADJ0 1 0 0 -4 dB 1 0 0 -2 dB 1 1 0 dB 0 1 2 dB 0 0 1 0 4 dB 1 0 6 dB 1 1 Pilot off 1 1 1 (AFADJ[2:0] = 011, 0 dB = L = R = 10% of 250 mVrms 100% dev) EN_EXTIN 0: Disable EXT IN, PLT OUT EXT input enable bit 0 1: Enable EXT IN, PLT OUT MONO_ST Mono/stereo switch 0: 38 kHz subcarrier on 0 1: 38 kHz subcarrier off For mono mode, PLTADJ bits have to be set as PLTADJ[2:0] = 111 TxPOW1, Tx power-level selection TxPOW1 TxPOW0 Level 0, TxPOW0 bits 0 –7 dBm 0 0 3 dBm 0 1 1 dBm 1 0 1 1 4 dBm PORT1. Port 1 control bit, PORT1 and PORT2 are enabled as general purpose ports. 1. PORT2 0: Low (Nch-MOS open drain on) Port 2 control bit 1 1: High (Nch-MOS open drain off) STBY Standby control bit 0: Standby off 1 1: Standby on 0: US/EU band (87.5 MHz to 108 MHz) BAND Band selection at search 0 mode 1: Japan band (76 MHz to 90 MHz) **Total Composite** MODADJ3, Modulation adjust bits MODADJ3 MODADJ2 MODADJ1 MODADJ0 MODADJ2, Level MODADJ1, 0 dB 0 0 0 0 MODADJ0 0 0 0 1 dB 1 0 0 0 2 dB 1 3 dB 0 0 1 1 0 1 0 0 4 dB 0 5 dB 0 1 1 0 0 6 dB 1 1 0 7 dB 1 1 1 0 0 0 8 dB 1 1 0 0 1 9 dB 0 0 10 dB 1 1 0 11 dB 1 1 1 0 0 12 dB 1 1 0 13 dB 1 1 1 0 14 dB 1 1 1 1 15 dB 1 1 1 DIS AFLPF Disable 15-kHz LPF 0: AF 15-kHz LPF enable 0 1: AF 15-kHz LPF disable DIS_EM Disable pre-emphasis bit 0: Pre-emphasis on 0 1: Pre-emphasis off EMTC Time constant control bit 0: 50 µs 1 for pre-emphasis 1:75 µs DIS_LIN, 0: Output disable MPX output control bit 0 DIS_RIN 1: Output enable

Table 6. Tx-Mode Write Data Symbol Description (Address Bit 2, 1 = 1,1)

SLES210-OCTOBER 2007

Table 6 Tx-Mode Write Data St	whol Description	(Address Bit 2 1 - 1 1) (continue	Ч)
Table 6. TX-INODE Write Data 5	ymbol Description ((Address Bit 2, 1 = 1,1) (continue	a)

SYMBOL	DESCRIPTION							
AFADJ2,	AF-level adjust bits	AFADJ2	AFADJ0	AFADJ1	Level	0,		
AFADJ1,	-	0	0	0	–9 dB	1,		
AFADJ0		0	0	1	–6 dB	1		
		0	1	0	–3 dB			
		0	1	1	0 dB			
		1	0	0	3 dB			
		1	0	1	6 dB			
		1	1	0	9 dB			
		1	1	1	12 dB			
CP1,	CP current selection bit 1,	CP1	CP0	CP	Current	1,		
CP0	CP current selection bit 0	0	0	C).6 μA	0		
		0	1		.25 µA			
		1	0		2.5 µA			
		1	1		5 µA			

Table 7. Rx-Mode Read Data Symbol Description (Address Bit 2, 1 = 0,0)

SYMBOL		DESCRIPTION
READY	Ready flag	0: PLL unlocked or search operation 1: Normal operation
BAND_LMT	Band limit flag at end of search operation	0: Not reached band limit (found station) 1: Reached band limit (not found station) (reset to 0 when I ² C date write)
N13-N0	Programmable counter bits	Setting of counter after search
ST_IND	Stereo indicator bit	0: Mono reception 1: Stereo reception
IFC6–0	IF counter result bits	IF counter result (0 to 127 dec) Step frequency = $(64 \times 32.768 \text{ k})/400 = 5.24288 \text{ k}$ (Hz)
RSSI3-0	RSSI level bits	RSSI level (0 to 15 dec)
LOCKDET	Lock detect flag	0: Unlocked 1: Locked

Table 8. Tx-Mode Read Data Symbol Description (Address Bit 2, 1 = 1,1)

SYMBOL	DESCRIPTION					
N13-N0	Programmable counter bits	Setting of main counter				
ST_IND	Stereo indicator bit	0: Stereo modulation 1: Other status				

PLL Setting

N13–N0 14-bit word (NPLL) can be calculated as follows:

f_{IF}= IF frequency (325 kHz)

f_{RF} = Wanted tuning frequency

 f_{IXTAL} = Crystal frequency (32.768 kHz)

F	x	Тх
Upper Local Setting	Lower Local Setting	IX
$N_{PLL} = 4 \times \frac{f_{RF} + f_{IF}}{f_{XTAL}}$	$N_{PLL} = 4 \times \frac{f_{RF} - f_{IF}}{f_{XTAL}}$	$N_{PLL} = 4 \times \frac{f_{RF}}{f_{XTAL}}$

Example for Rx mode:

 $f_{RF} = 81.3 \text{ MHz}$, lower local

 $N_{PLL} = 4 \times \frac{81.3M - 325k}{32.768} = 9885$

The PLL word becomes 269Dh (N[13:0] = 10 0110 1001 1101).

Example for Tx mode:

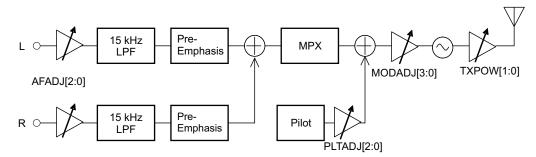
 $f_{RF} = 88 \text{ MHz}$

 $N_{PLL} = 4 \times \frac{88M}{32.768k} = 10742$

The PLL word becomes 26F6h (N[13:0] = 10 1001 1111 0110).

Standby Mode

Standby mode can be controlled by STBY pin voltage and STBY bit data as shown in Table 9.


Table 9. Standby Mode

VOLTAGE APPLIED ON STBY PIN	I ² C STBY BIT DATA	DEVICE OPERATION
L	0	Standby
L	1	Standby
Н	0	Normal Operation
Н	1	Standby

SLES210-OCTOBER 2007

FM Transmitter Block

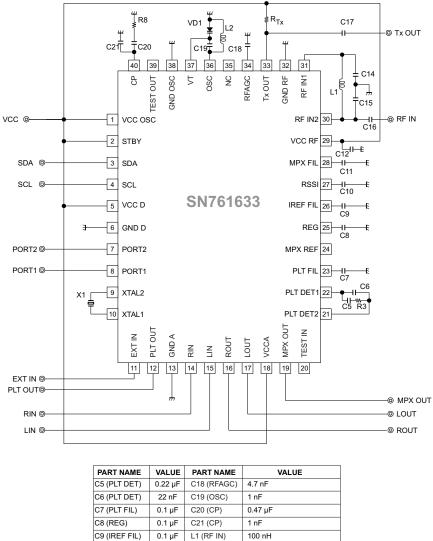


Figure 25. FM Transmitter Block Diagram

Initial setting Audio input level: Pilot level: FM modulation: Output power: L = R = 75 mVrms, AFADJ = 0 dB, fs = 400 Hz PLTADJ = 0 dB means 10% MODADJ depends on Tx frequency to be 22.5 kHz dev. TxPOW = -7 dBm Pullup resistance is not necessary. TxPOW =-3, 1 dB Antenna load 50 Ω add pullup resistance R_{TX} 300 Ω TxPOW = 4 dBm Antenna load 50 Ω add pullup resistance R_{TX} 150 Ω

SLES210-OCTOBER 2007

APPLICATION INFORMATION

C8 (REG)	0.1 µF	C21 (CP)	1 nF
C9 (IREF FIL)	0.1 µF	L1 (RF IN)	100 nH
C10 (RSSI)	0.01 µF	L2 (OSC)	24 or 27 nH
C11 (MPX FIL)	0.47 µF	R3 (PLT DET)	2.2 kΩ
C12 (VCC RF)	0.1 µF	R8 (CP)	22 kΩ
C14 (RF IN1)	68 pF	R _{Tx} (Tx OUT)	150 or 300 or open
C15 (RF IN2)	22 pF	VD1	BB202 or RKV651KK
C16 (RF IN2)	330 pF	X1	32.768 kHz, C _L = 12.5 pF
C17 (Tx OUT)	0.01 µF		

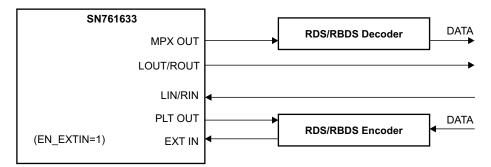
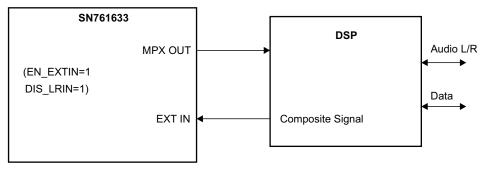

A. This application information is advisory and a performance check is required at actual application circuits. TI assumes no responsibility for the consequences of use of this circuit, such as an infringement of intellectual property rights or other rights, including patents of third parties.

Figure 26. Application Circuit


SLES210-OCTOBER 2007

RDS Solution

Mixing Mode (Tx)

LIN/RIN and EXT IN signals can be mixed as a Tx signal.

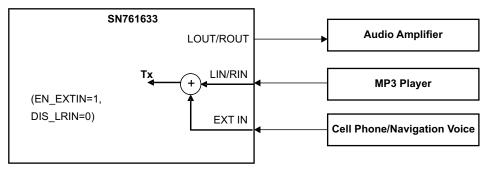


Figure 29. Mixing Mode of Tx Signal

SN761633 FM STEREO RADIO WITH TRANSMITTER SLES210-OCTOBER 2007

TYPICAL CHARACTERISTICS 10 (A) 0 (C) -10 Conditions: Audio Output Level (dB) V_{CC} = 3 V, T_A = 25°C, 30 kHz LPF -20 $0 \, dB = mVrms$ (B) (D) HCC = 0 (off) SNC = 0 (off) MONO_ST = 0 (auto stereo) -30 $TC = 75 \ \mu s, \ CP = 2.5 \ \mu A$ f_{RF} = 98.1 MHz, upper LO -40 -50 -60 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120

RF Input Level (dBµVemf)

A. Mono signal, soft mute off (f_{AF} = 1 kHz, 22.5 kHz dev, 30%)

B. Noise in mono mode, soft mute off

C. Mono signal, soft mute on (f_{AF} = 1 kHz, 22.5 kHz dev, 30%)

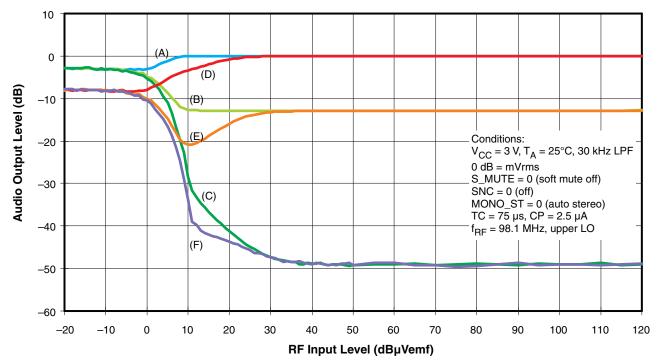

D. Noise in mono mode, soft mute on

Figure 30. Rx-Mode FM Mono Characteristics (Soft Mute On/Off)

SLES210-OCTOBER 2007

A. Mono signal, high cut off (f_{AF} = 1 kHz, 22.5 kHz dev, 30%)

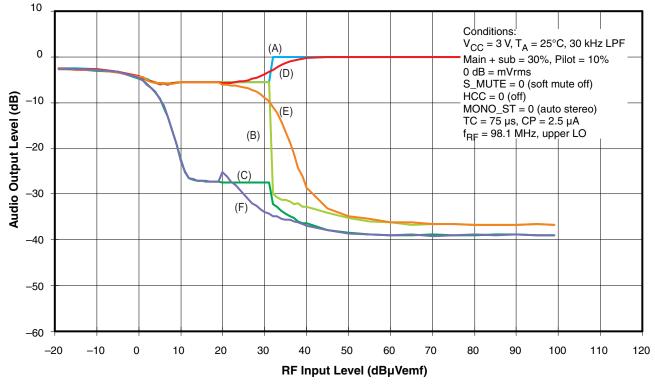

- B. Mono signal, high cut off (f_{AF} = 10 kHz, 22.5 kHz dev)
- C. Noise in mono mode, high cut off
- D. Mono signal, high cut on (f_{AF} = 1 kHz, 22.5 kHz dev, 30%)
- E. Mono signal, high cut on (f_{AF} = 10 kHz, 22.5 kHz dev)
- F. Noise in mono mode, high cut on

Figure 31. Rx-Mode FM Mono Characteristics (High Cut Control [HCC] On/Off)

SLES210-OCTOBER 2007

A. Stereo left signal, noise control off (f_{AF} = 1 kHz, 22.5 kHz dev)

B. Stereo right signal, noise control off (audio signal off)

C. Noise in stereo mode, noise control off

D. Stereo left signal, noise control on (f_{AF} =1 kHz, 22.5 kHz dev)

E. Stereo right signal, noise control on (audio signal off)

F. Noise in stereo mode, noise control cut on

Figure 32. Rx-Mode FM Stereo Characteristics [Stereo Noise Control (SNC) On/Off]

SLES210-OCTOBER 2007

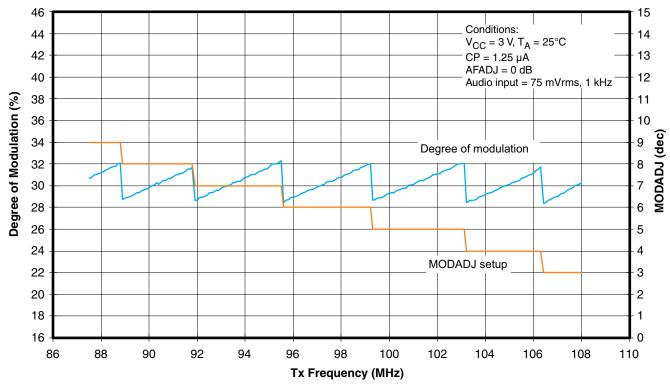
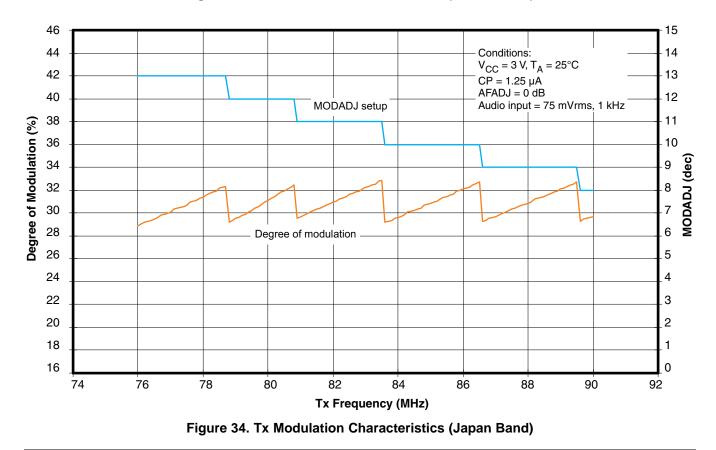



Figure 33. Tx Modulation Characteristics (US/EU Band)

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN761633RTAR	PREVIEW	QFN	RTA	40	TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

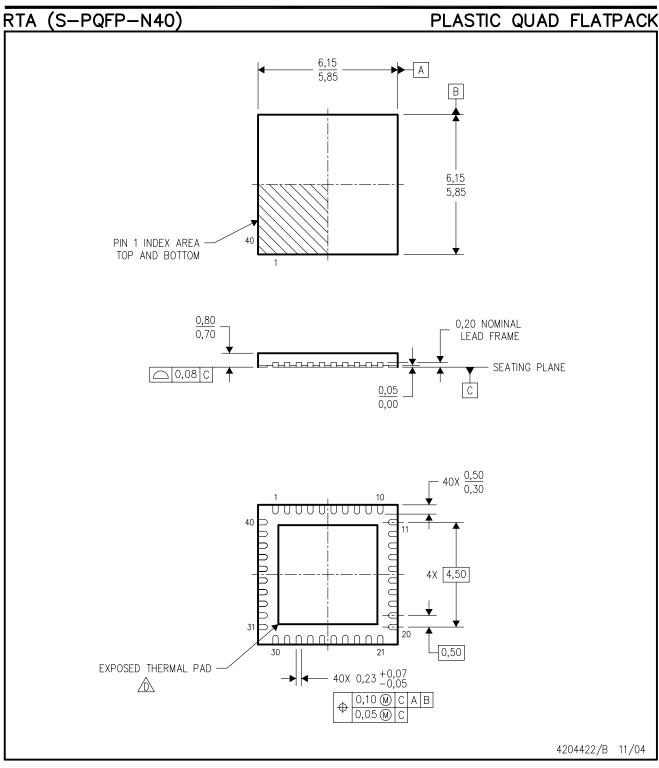
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. **TBD:** The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.


Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

MECHANICAL DATA

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) Package configuration.
- A The package thermal pad must be soldered to the board for thermal and mechanical performance. See the Product Data Sheet for details regarding the exposed thermal pad dimensions.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Telephony	www.ti.com/telephony
Low Power Wireless	www.ti.com/lpw	Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2007, Texas Instruments Incorporated