

SN74LVC821A 10-BIT BUS-INTERFACE FLIP-FLOP WITH 3-STATE OUTPUTS

SCAS304J-MARCH 1993-REVISED FEBRUARY 2005

FEATURES	DB, DGV, DW, NS, OR PW PACKAGE
Operates From 1.65 V to 3.6 V	(TOP VIEW)
Inputs Accept Voltages to 5.5 V	
 Max t_{pd} of 7.3 ns at 3.3 V 	$\frac{\overline{OE}}{1} \stackrel{1}{\smile} 24 \stackrel{24}{} V_{CC}$
 Typical V_{OLP} (Output Ground Bounce) <0.8 V at V_{CC} = 3.3 V, T_A = 25°C 	1D 2 23 1Q 2D 3 22 2Q 3D 4 21 3Q
 Typical V_{OHV} (Output V_{OH} Undershoot) >2 V at V_{CC} = 3.3 V, T_A = 25°C 	4D [5 20] 4Q 5D [6 19] 5Q
Supports Mixed-Mode Signal Operation on All	6D] 7 18] 6Q
Ports (5-V Input/Output Voltage With	7D 8 17 7Q
3.3-V V _{CC})	8D 9 16 8Q
 I_{off} Supports Partial-Power-Down Mode 	9D 🛛 10 🛛 15 🔲 9Q
Operation	10DU11 14U10Q
Latch-Up Performance Exceeds 250 mA Per	GND 12 13 CLK

- Latch-Up Performance Exceeds 250 mA Pe JESD 17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)

DESCRIPTION/ORDERING INFORMATION

This 10-bit bus-interface flip-flop is designed for 1.65-V to 3.6-V V_{CC} operation.

The SN74LVC821A features 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. This device is particularly suitable for implementing wider buffer registers, I/O ports, bidirectional bus drivers with parity, and working registers.

The ten flip-flops are edge-triggered D-type flip-flops. On the positive transition of the clock (CLK) input, the device provides true data at the Q outputs.

A buffered output-enable (\overline{OE}) input can be used to place the ten outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components.

OE does not affect the internal operations of the latch. Previously stored data can be retained or new data can be entered while the outputs are in the high-impedance state.

T _A	P/	ACKAGE ⁽¹⁾	ORDERABLE PART NUMBE	R TOP-SIDE MARKING	
	SOIC – DW	Tube of 25	SN74LVC821ADW		
	5010 - 010	Reel of 2000	SN74LVC821ADWR	LVC821A	
	SOP – NS	Reel of 2000	SN74LVC821ANSR	LVC821A	
4000 to 0500	SSOP – DB	Reel of 2000	SN74LVC821ADBR	LC821A	
–40°C to 85°C		Tube of 60	SN74LVC821APW		
	TSSOP – PW	Reel of 2000	SN74LVC821APWR	LC821A	
		Reel of 250	SN74LVC821APWT		
	TVSOP – DGV	Reel of 2000	SN74LVC821ADGVR	LC821A	

ORDERING INFORMATION

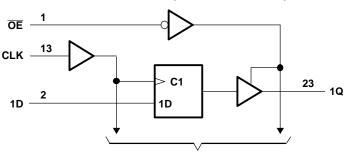
(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SN74LVC821A 10-BIT BUS-INTERFACE FLIP-FLOP WITH 3-STATE OUTPUTS

SCAS304J-MARCH 1993-REVISED FEBRUARY 2005

DESCRIPTION/ORDERING INFORMATION (CONTINUED)


Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of this device as a translator in a mixed 3.3-V/5-V system environment.

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

FUNCTION TABLE (EACH FLIP-FLOP)

	INPUTS		OUTPUT
OE	CLK	D	Q
L	\uparrow	Н	Н
L	\uparrow	L	L
L	H or L	Х	Q ₀
Н	Х	Х	Z

LOGIC DIAGRAM (POSITIVE LOGIC)

To Nine Other Channels

SCAS304J-MARCH 1993-REVISED FEBRUARY 2005

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	6.5	V
VI	Input voltage range ⁽²⁾		-0.5	6.5	V
Vo	Voltage range applied to any output in the I	high-impedance or power-off state ⁽²⁾	-0.5	6.5	V
Vo	Voltage range applied to any output in the I	high or low state ⁽²⁾⁽³⁾	-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V ₀ < 0		-50	mA
I _O	Continuous output current		±50	mA	
	Continuous current through V _{CC} or GND			±100	mA
		DB package		63	
		DGV package		86	
θ_{JA}	Package thermal impedance ⁽⁴⁾	DW package		46	°C/W
		NS package		65	
		PW package		88	
T _{stg}	Storage temperature range	· · · · ·	-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

(3) The value of V_{CC} is provided in the recommended operating conditions table.

(4) The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions⁽¹⁾

			MIN	MAX	UNIT		
V	Current und the me	Operating	1.65	3.6	V		
V _{CC}	Supply voltage	Data retention only	1.5		v		
		V _{CC} = 1.65 V to 1.95 V	$0.65 imes V_{CC}$				
VIH	High-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		V		
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2				
		V _{CC} = 1.65 V to 1.95 V		$0.35\times V_{CC}$			
V _{IL}	Low-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	V		
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8			
VI	Input voltage	·	0	5.5	V		
N/	Output uskans	High or low state	0	V _{CC}	V		
Vo	Output voltage	3-state	0	5.5	v		
		V _{CC} = 1.65 V		-4			
		V _{CC} = 2.3 V		-8			
I _{OH}	High-level output current	V _{CC} = 2.7 V		-12	mA		
		$V_{CC} = 3 V$		-24			
		V _{CC} = 1.65 V		4			
		V _{CC} = 2.3 V		8	mA		
I _{OL}	Low-level output current	V _{CC} = 2.7 V		12			
		V _{CC} = 3 V		24			
$\Delta t/\Delta v$	Input transition rise or fall rate	·		10	ns/V		
T _A	Operating free-air temperature		-40	85	°C		

 All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN74LVC821A **10-BIT BUS-INTERFACE FLIP-FLOP** WITH 3-STATE OUTPUTS

SCAS304J-MARCH 1993-REVISED FEBRUARY 2005

TEXAS ISTRUMENTS www.ti.com

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST C	ONDITIONS	V _{cc}	MIN	TYP ⁽¹⁾	MAX	UNIT		
	I _{OH} = −100 μA		1.65 V to 3.6 V	$V_{CC} - 0.2$					
	$I_{OH} = -4 \text{ mA}$		1.65 V	1.2					
V	$I_{OH} = -8 \text{ mA}$		2.3 V	1.7			V		
V _{OH}	I _{OH} = −12 mA		2.7 V	2.2			V		
	$I_{OH} = -12$ IIIA		3 V	2.4					
	I _{OH} = -24 mA		3 V	2.2					
	I _{OL} = 100 μA		1.65 V to 3.6 V			0.2			
	$I_{OL} = 4 \text{ mA}$		1.65 V			0.45			
V _{OL}	$I_{OL} = 8 \text{ mA}$		2.3 V			0.7	V		
	$I_{OL} = 12 \text{ mA}$		2.7 V			0.4			
	$I_{OL} = 24 \text{ mA}$		3 V			0.55			
I _I	$V_{I} = 0$ to 5.5 V		3.6 V			±5	μA		
I _{off}	$V_{I} \text{ or } V_{O} = 5.5 \text{ V}$		0			±10	μA		
I _{OZ}	$V_{O} = 0$ to 5.5 V		3.6 V			±10	μA		
	$V_I = V_{CC}$ or GND		3.6 V			10			
Icc	$3.6 \ V \leq V_{I} \leq 5.5 \ V^{(2)}$	$I_0 = 0$	5.0 V			10	μA		
ΔI_{CC}	One input at V_{CC} – 0.6 V,	Other inputs at V_{CC} or GND	2.7 V to 3.6 V			500	μA		
C _i Control inputs	$V_{I} = V_{CC}$ or GND		3.3 V	5			pF		
Data inputs			5.5 V		4		ы		
Co	$V_{O} = V_{CC}$ or GND		3.3 V		7		pF		

Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

		$ \begin{array}{c c} V_{CC} = 1.8 \ V & V_{CC} = 2.5 \\ \pm \ 0.15 \ V & \pm \ 0.2 \ V \end{array} $		2.5 V 2 V	V V _{CC} = 2.7 V		V_{CC} = 3.3 V ± 0.3 V		UNIT	
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
f _{clock}	Clock frequency		(1)		(1)		150		150	MHz
t _w	Pulse duration, CLK high or low	(1)		(1)		3.3		3.3		ns
t _{su}	Setup time, data before CLK	(1)		(1)		1.9		1.9		ns
t _h	Hold time, data after CLK	(1)		(1)		1.5		1.5		ns

(1) This information was not available at the time of publication.

SCAS304J-MARCH 1993-REVISED FEBRUARY 2005

Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = ± 0.1	V _{CC} = 1.8 V ± 0.15 V		V_{CC} = 2.5 V \pm 0.2 V		2.7 V	V _{CC} = 3.3 V ± 0.3 V		UNIT
		(001201)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
f _{max}			(1)		(1)		150		150		MHz
t _{pd}	CLK	Q	(1)	(1)	(1)	(1)		8.5	2.2	7.3	ns
t _{en}	OE	Q	(1)	(1)	(1)	(1)		8.8	1.3	7.6	ns
t _{dis}	ŌĒ	Q	(1)	(1)	(1)	(1)		6.8	1.6	6.2	ns
t _{sk(o)}										1	ns

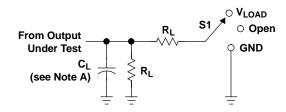
(1) This information was not available at the time of publication.

Operating Characteristics

 $T_A = 25^{\circ}C$

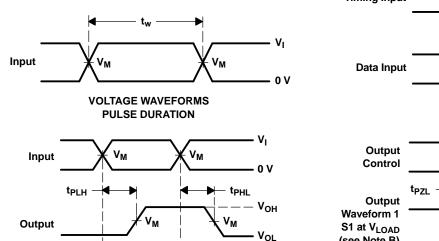
	PARAMETER	TEST CONDITIONS	V _{CC} = 1.8 V TYP	V _{CC} = 2.5 V TYP	V _{CC} = 3.3 V TYP	UNIT		
C	Power dissipation capacitance	Outputs enabled	f = 10 MHz	(1)	(1)	65	pF	
C _{pd}	per flip-flop	Outputs disabled		(1)	(1)	48	- рг	

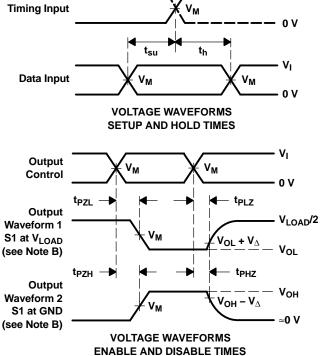
(1) This information was not available at the time of publication.


SN74LVC821A 10-BIT BUS-INTERFACE FLIP-FLOP WITH 3-STATE OUTPUTS

SCAS304J-MARCH 1993-REVISED FEBRUARY 2005

٧ı


PARAMETER MEASUREMENT INFORMATION



LOAD CIRCUIT

TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V _{LOAD}
t _{PHZ} /t _{PZH}	GND

	INPUTS				•	_	V.
V _{CC}	VI	t _r /t _f	V _M	V _{LOAD}	CL	RL	\mathbf{V}_{Δ}
1.8 V \pm 0.15 V	V _{CC}	≤2 ns	V _{CC} /2	$2 \times V_{CC}$	30 pF	1 k Ω	0.15 V
$\textbf{2.5 V} \pm \textbf{0.2 V}$	V _{CC}	≤2 ns	V _{CC} /2	$2 \times V_{CC}$	30 pF	500 Ω	0.15 V
2.7 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
3.3 V \pm 0.3 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V

LOW- AND HIGH-LEVEL ENABLING

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

٧м

NOTES: A. C_{L} includes probe and jig capacitance.

t_{PHL}

Output

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω .
- D. The outputs are measured one at a time, with one transition per measurement.

t_{PLH}

Vм

VOH

VoL

- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
SN74LVC821ADBR	ACTIVE	SSOP	DB	24	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LC821A	Samples
SN74LVC821ADBRG4	ACTIVE	SSOP	DB	24	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LC821A	Samples
SN74LVC821ADGVR	ACTIVE	TVSOP	DGV	24	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LC821A	Samples
SN74LVC821ADW	ACTIVE	SOIC	DW	24	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVC821A	Samples
SN74LVC821ADWG4	ACTIVE	SOIC	DW	24	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVC821A	Samples
SN74LVC821ADWR	ACTIVE	SOIC	DW	24	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVC821A	Samples
SN74LVC821APW	ACTIVE	TSSOP	PW	24	60	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LC821A	Samples
SN74LVC821APWR	ACTIVE	TSSOP	PW	24	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LC821A	Samples
SN74LVC821APWRE4	ACTIVE	TSSOP	PW	24	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LC821A	Samples
SN74LVC821APWT	ACTIVE	TSSOP	PW	24	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LC821A	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

www.ti.com

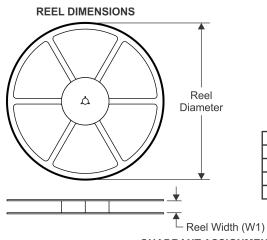
PACKAGE OPTION ADDENDUM

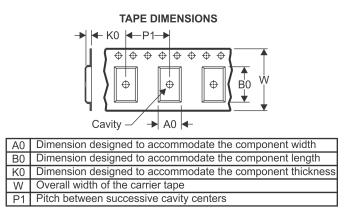
10-Dec-2020

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

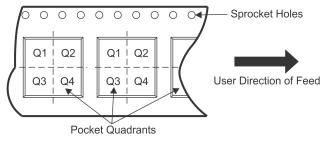
⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

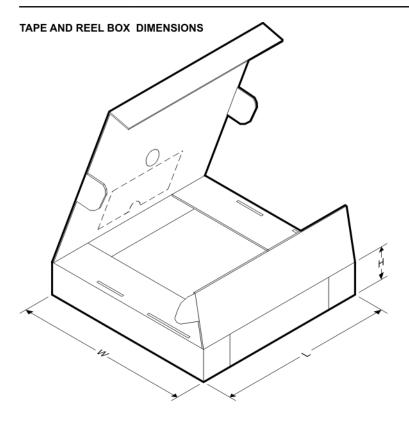

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVC821ADBR	SSOP	DB	24	2000	330.0	16.4	8.2	8.8	2.5	12.0	16.0	Q1
SN74LVC821ADGVR	TVSOP	DGV	24	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74LVC821ADWR	SOIC	DW	24	2000	330.0	24.4	10.75	15.7	2.7	12.0	24.0	Q1
SN74LVC821APWR	TSSOP	PW	24	2000	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1
SN74LVC821APWT	TSSOP	PW	24	250	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1

TEXAS INSTRUMENTS

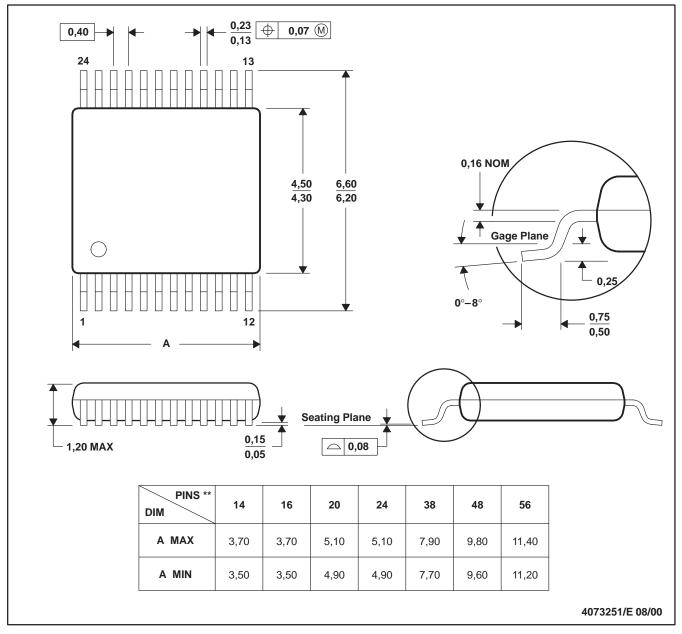
www.ti.com

PACKAGE MATERIALS INFORMATION

30-Dec-2020

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVC821ADBR	SSOP	DB	24	2000	853.0	449.0	35.0
SN74LVC821ADGVR	TVSOP	DGV	24	2000	853.0	449.0	35.0
SN74LVC821ADWR	SOIC	DW	24	2000	350.0	350.0	43.0
SN74LVC821APWR	TSSOP	PW	24	2000	853.0	449.0	35.0
SN74LVC821APWT	TSSOP	PW	24	250	853.0	449.0	35.0


MECHANICAL DATA

PLASTIC SMALL-OUTLINE

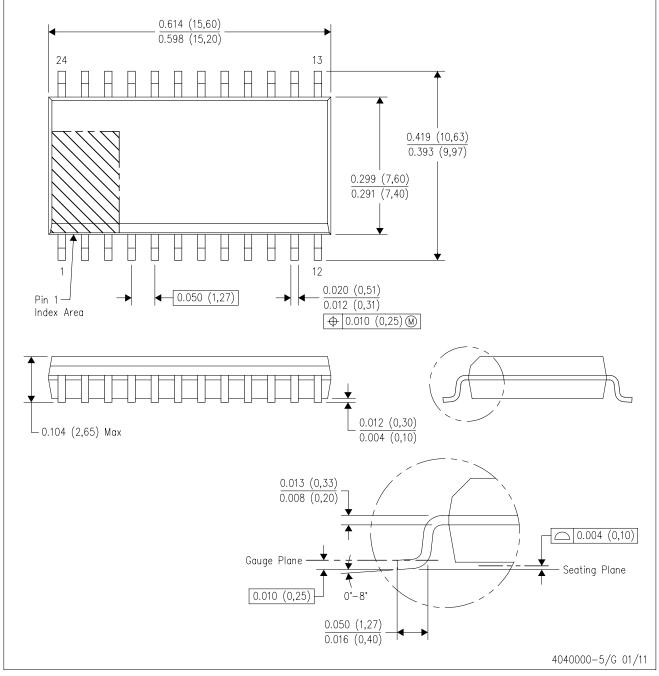
MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

DGV (R-PDSO-G**)

24 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

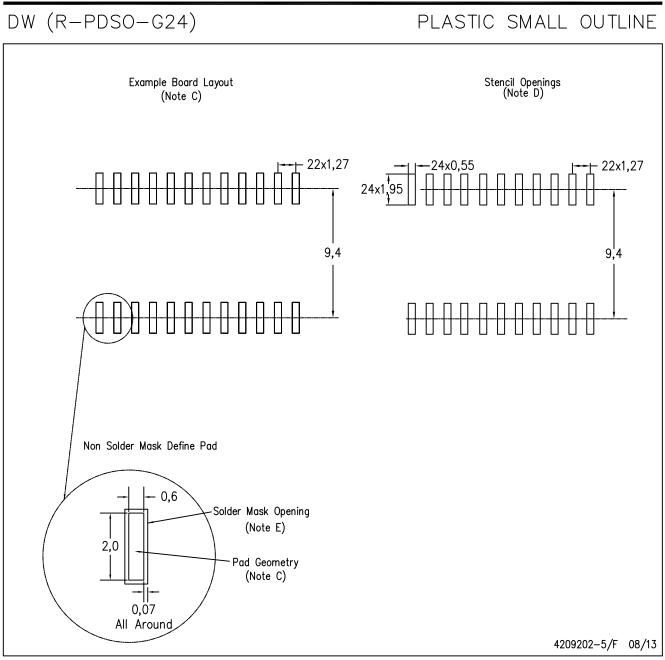

- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153

14/16/20/56 Pins – MO-194

DW (R-PDSO-G24)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.


B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

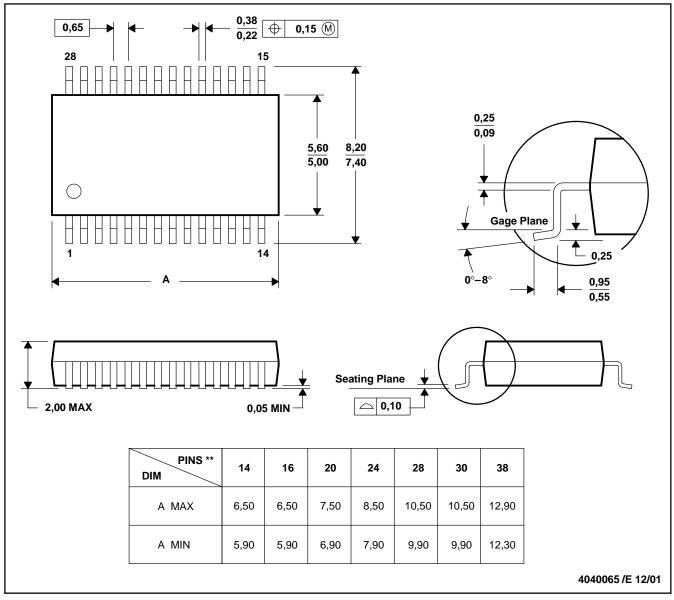
D. Falls within JEDEC MS-013 variation AD.

LAND PATTERN DATA

NOTES:

A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Refer to IPC7351 for alternate board design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.


MECHANICAL DATA

MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001

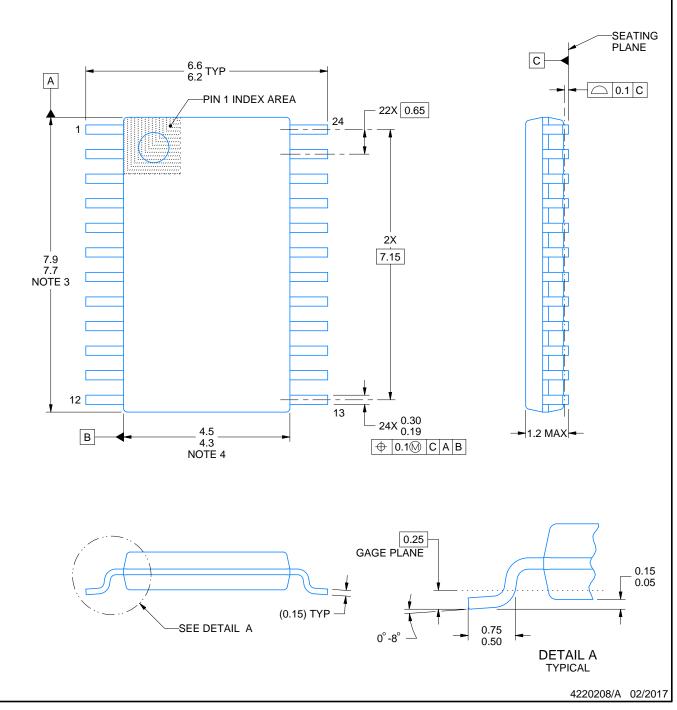
DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150


PW0024A

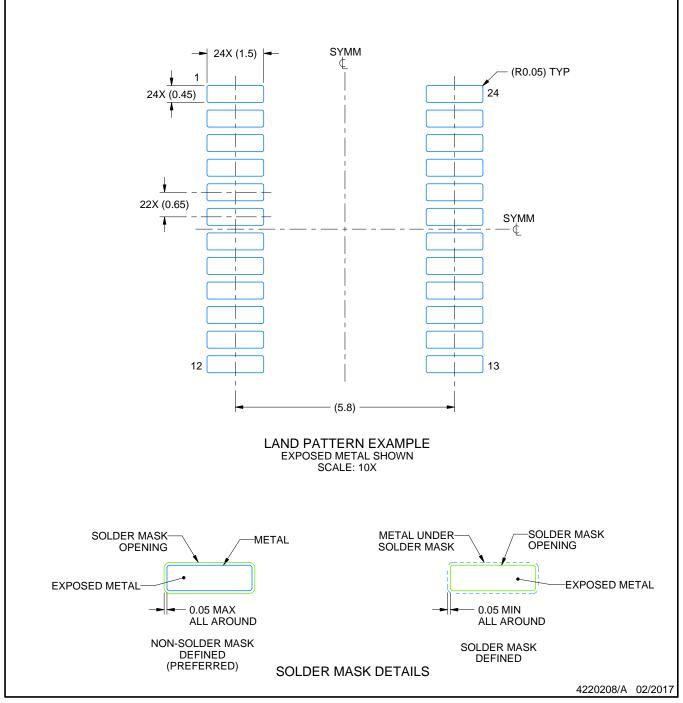
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



PW0024A

EXAMPLE BOARD LAYOUT

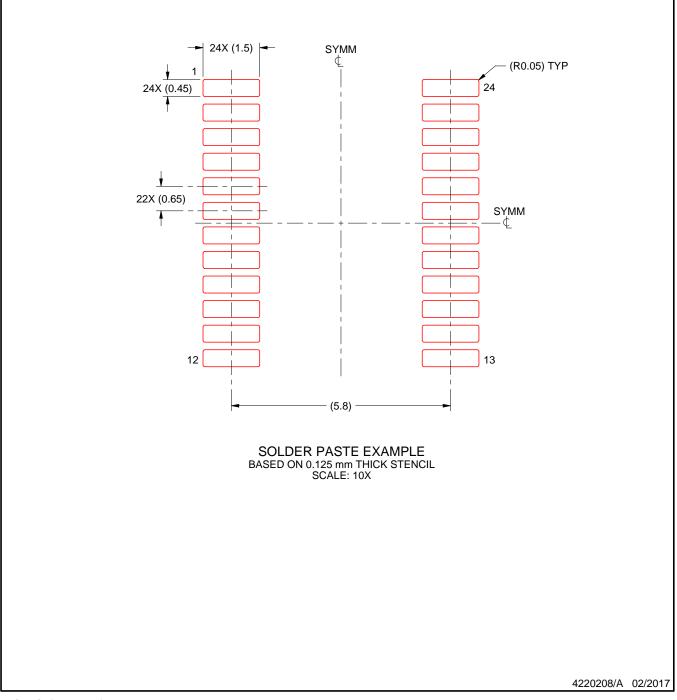
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



PW0024A

EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated