Hex D Flip-Flop

The LSTTL/MSI SN74LS174 is a high speed Hex D Flip-Flop. The device is used primarily as a 6-bit edge-triggered storage register. The information on the D inputs is transferred to storage during the LOW to HIGH clock transition. The device has a Master Reset to simultaneously clear all flip-flops. The LS174 is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all ON Semiconductor TTL families.

- Edge-Triggered D-Type Inputs
- Buffered-Positive Edge-Triggered Clock
- Asynchronous Common Reset
- Input Clamp Diodes Limit High Speed Termination Effects

GUARANTEED OPERATING RANGES

V _{CC} Supply Voltage 4.75 5.0 5.25 V T _A Operating Ambient Temperature Range 0 25 70 °C I _{OH} Output Current – High -0.4 mA I _{OL} Output Current – Low 8.0 mA
Temperature Range -0.4 mA I _{OL} Output Current – High -0.4 mA I _{OL} Output Current – Low 8.0 mA
PI-FR PI-FR
De SN74LS

ON Semiconductor™

http://onsemi.com

LOW POWER SCHOTTKY

PLASTIC N SUFFIX CASE 648

D SUFFIX CASE 751B

SOEIAJ M SUFFIX CASE 966

ORDERING INFORMATION

Device	Package	Shipping
SN74LS174N	16 Pin DIP	2000 Units/Box
SN74LS174D	SOIC-16	38 Units/Rail
SN74LS174DR2	SOIC-16	2500/Tape & Reel
SN74LS174M	SOEIAJ-16	See Note 1
SN74LS174MEL	SOEIAJ-16	See Note 1

 For ordering information on the EIAJ version of the SOIC package, please contact your local ON Semiconductor representative.

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

○ = PIN NUMBERS

FUNCTIONAL DESCRIPTION

The LS174 consists of six edge-triggered D flip-flops with individual D inputs and Q outputs. The Clock (CP) and Master Reset (\overline{MR}) are common to all flip-flops.

Each D input's state is transferred to the corresponding flip-flop's output following the LOW to HIGH Clock (CP) transition.

A LOW input to the Master Reset ($\overline{\text{MR}}$) will force all outputs LOW independent of Clock or Data inputs. The LS174 is useful for applications where the true output only is required and the Clock and Master Reset are common to all storage elements.

TRUTH TABLE

Inputs (t = n, MR = H)	Outputs (t = n+1) Note 1
D	Q
H L	HL

Note 1: t = n + 1 indicates conditions after next clock.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

			Limits				.G
Symbol	Parameter	Min	Тур	Max	Unit	Tes	t Conditions
V _{IH}	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage for All Inputs	
V _{IL}	Input LOW Voltage			0.8	V	Guaranteed Input LOW Voltage for All Inputs	
V _{IK}	Input Clamp Diode Voltage		-0.65	-1.5	V	V_{CC} = MIN, I _{IN} =	–18 mA
V _{OH}	Output HIGH Voltage	2.7	3.5	S	v	V_{CC} = MIN, I_{OH} = MAX, V_{IN} = V_{IH} or V_{IL} per Truth Table	
			0.25	0.4	v	I _{OL} = 4.0 mA	$V_{CC} = V_{CC} MIN,$
V _{OL}	Output LOW Voltage		0.35	0.5	V	I _{OL} = 8.0 mA	V _{IN} = V _{IL} or V _{IH} per Truth Table
1	Input HIGH Current		1	20	μA	V_{CC} = MAX, V_{IN}	= 2.7 V
IIH				0.1	mA	V_{CC} = MAX, V_{IN}	= 7.0 V
IIL	Input LOW Current			-0.4	mA	V_{CC} = MAX, V_{IN} = 0.4 V	
I _{OS}	Short Circuit Current (Note 2)	-20		-100	mA	V _{CC} = MAX	
I _{CC}	Power Supply Current			26	mA	$V_{CC} = MAX$	

2. Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS ($T_A = 25^{\circ}C$)

			Limits					
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions		
f _{MAX}	Maximum Input Clock Frequency	30	40		MHz			
t _{PHL}	Propagation Delay, MR to Output		23	35	ns	V _{CC} = 5.0 V C _L = 15 pF		
t _{PLH} t _{PHL}	Propagation Delay, Clock to Output		20 21	30 30	ns			

AC SETUP REQUIREMENTS (T_A = 25°C)

			Limits			
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
t _W	Clock or \overline{MR} Pulse Width	20			ns	
t _s	Data Setup Time	20			ns	
t _h	Data Hold Time	5.0			ns	V _{CC} = 5.0 V
t _{rec}	Recovery Time	25			ns	

AC WAVEFORMS

*The shaded areas indicate when the input is permitted to change for predictable output performance.

Figure 1. Clock to Output Delays, Clock Pulse Width, Frequency, Setup and Hold Times Data to Clock Figure 2. Master Reset to Output Delay, Master Reset Pulse Width, and Master Reset Recovery Time

tPHL

1.3 V

trea

1.3 V

1.3 V

1.3 \

DEFINITIONS OF TERMS

SETUP TIME (t_s) — is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from LOW to HIGH in order to be recognized and transferred to the outputs.

HOLD TIME (t_h) — is defined as the minimum time following the clock transition from LOW to HIGH that the logic level must be maintained at the input in order to ensure

continued recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from LOW to HIGH and still be recognized.

RECOVERY TIME (t_{rec}) — is defined as the minimum time required between the end of the reset pulse and the clock transition from LOW to HIGH in order to recognize and transfer HIGH Data to the Q outputs.

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative