
SCLS178C - MARCH 1984 - REVISED MARCH 2003

- Operating Voltage Range of 4.5 V to 5.5 V
- Low Power Consumption, 80-μA Max I_{CC}
- Typical t_{pd} = 12 ns
- ±6-mA Output Drive at 5 V
- Low Input Current of 1 μA Max
- Inputs Are TTL-Voltage Compatible

SN54HCT646	. JT OR	W PACKAGE
SN74HCT646	DW OR	NT PACKAGE
(TC	P VIEW)

CLKAB [1	U	24	b	V _{CC}
SAB [2		23	þ	CLKBA
DIR [3		22	þ	SBA
A1 [4		21	þ	OE
A2 [5		20	þ	B1
A3 [6		19	þ	B2
A4 [7		18	þ	B3
A5 [8		17	þ	B4
A6 [9		16	þ	B5
A7 [10		15	þ	B6
A8 [11		14	þ	B7
GND [12		13	þ	B8
l					

- Independent Registers for A and B Buses
- Multiplexed Real-Time and Stored Data
- True Data Paths
- High-Current 3-State Outputs Can Drive Up To 15 LSTTL Loads

NC - No internal connection

description/ordering information

The 'HCT646 devices consist of bus-transceiver circuits with 3-state outputs, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal registers. Data on the A or B bus is clocked into the registers on the low-to-high transition of the appropriate clock (CLKAB or CLKBA) input. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the 'HCT646 devices.

Output-enable (\overline{OE}) and direction-control (DIR) inputs control the transceiver functions. In the transceiver mode, data present at the high-impedance port can be stored in either or both registers.

TA	PACKA	3E†	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP – NT	Tube	SN74HCT646NT	SN74HCT646NT
–40°C to 85°C	SOIC - DW	Tube	SN74HCT646DW	HCT646
	3010 - 010	Tape and reel	SN74HCT646DWR	
	CDIP – JT	Tube	SNJ54HCT646JT	SNJ54HCT646JT
–55°C to 125°C	CFP – W	Tube	SNJ54HCT646W	SNJ54HCT646W
	LCCC – FK	Tube	SNJ54HCT646FK	SNJ54HCT646FK

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2003, Texas Instruments Incorporated

SN54HCT646, SN74HCT646 OCTAL BUS TRANSCEIVERS AND REGISTERS WITH 3-STATE OUTPUTS SCLS178C - MARCH 1984 - REVISED MARCH 2003

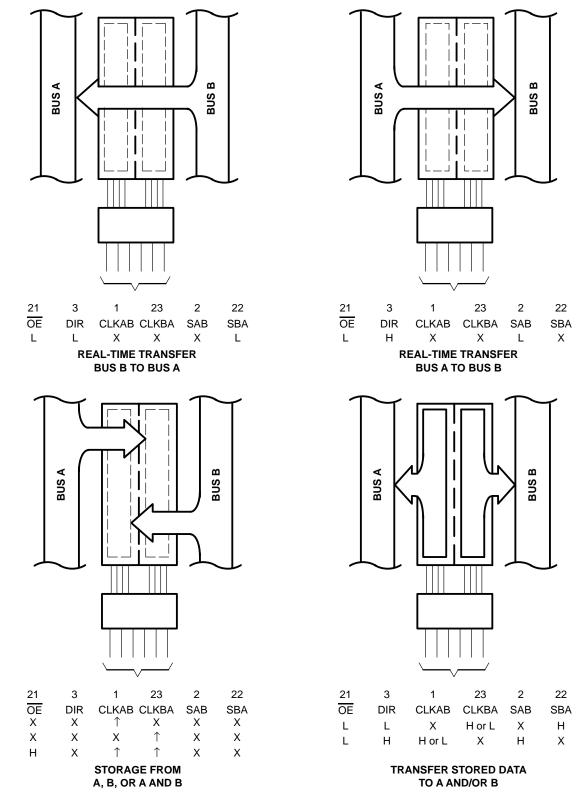
description/ordering information (continued)

The select-control (SAB and SBA) inputs can multiplex stored and real-time (transparent mode) data. DIR determines which bus receives data when \overline{OE} is active (low). In the isolation mode (\overline{OE} high), A data can be stored in one register and/or B data can be stored in the other register.

When an output function is disabled, the input function still is enabled and can be used to store data. Only one of the two buses, A or B, can be driven at a time.

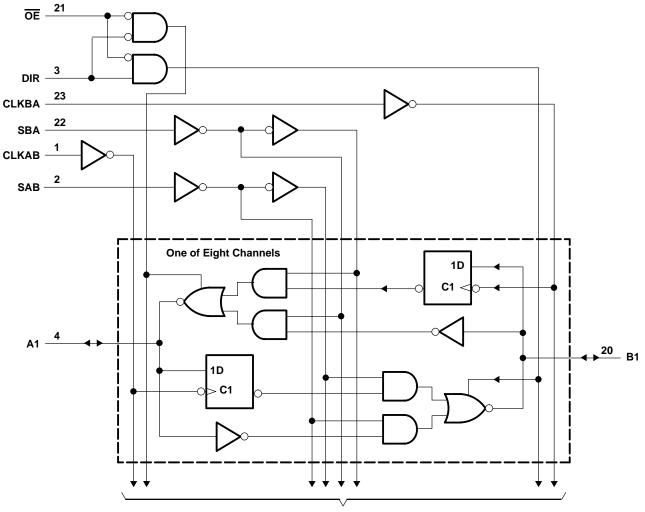
To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

		INP	UTS			DAT	A I/O	OPERATION OR FUNCTION
OE	DIR	CLKAB	CLKBA	SAB	SBA	A1-A8	B1–B8	OPERATION OR FUNCTION
Х	Х	\uparrow	Х	Х	Х	Input	Unspecified [†]	Store A, B unspecified [†]
х	Х	Х	\uparrow	Х	Х	Unspecified [†]	Input	Store B, A unspecified [†]
Н	Х	\uparrow	\uparrow	Х	Х	Input	Input	Store A and B data
н	Х	H or L	H or L	Х	Х	Input disabled	Input disabled	Isolation, hold storage
L	L	Х	Х	Х	L	Output	Input	Real-time B data to A bus
L	L	Х	H or L	Х	Н	Output	Input	Stored B data to A bus
L	Н	Х	Х	L	Х	Input	Output	Real-time A data to B bus
L	Н	H or L	Х	Н	Х	Input	Output	Stored A data to B bus


FUNCTION TABLE

[†] The data-output functions can be enabled or disabled by various signals at \overline{OE} and DIR. Data-input functions always are enabled; i.e., data at the bus terminals is stored on every low-to-high transition of the clock inputs.

SCLS178C - MARCH 1984 - REVISED MARCH 2003


Pin numbers shown are for the DW, JT, NT, and W packages.

SCLS178C - MARCH 1984 - REVISED MARCH 2003

logic diagram (positive logic)

To Seven Other Channels

Pin numbers shown are for the DW, JT, NT, and W packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input clamp current, I _{IK} (V _I < 0 or V _I > V _{CC}) (see Note 1)	±20 mA
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{CC}) (see Note 1)	±20 mA
Continuous output current, $I_O (V_O = 0 \text{ to } V_{CC})$	±35 mA
Continuous current through V _{CC} or GND	±70 mA
Package thermal impedance, θ_{JA} (see Note 2): DW package	46°C/W
(see Note 3): NT package	67°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

- 2. The package thermal impedance is calculated in accordance with JESD 51-7.
- 3. The package thermal impedance is calculated in accordance with JESD 51-3.

SCLS178C - MARCH 1984 - REVISED MARCH 2003

recommended operating conditions (see Note 4)

			SN	54HCT6	646	SN	74HCT6	46	UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage		4.5	5	\$ 5.5	4.5	5	5.5	V
VIH	High-level input voltage	V_{CC} = 4.5 V to 5.5 V	2		15	2			V
VIL	Low-level input voltage	$V_{CC} = 4.5 V \text{ to } 5.5 V$		RE	0.8			0.8	V
VI	Input voltage		0	70	VCC	0		VCC	V
Vo	Output voltage		0	50	VCC	0		VCC	V
tt	Input transition (rise and fall) time		Ô	2	500			500	ns
Т _А	Operating free-air temperature		-55		125	-40		85	°C

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DA	RAMETER	TEST CO	NDITIONS		Т	A = 25°C	;	SN54H	CT646	SN74H	СТ646	UNIT	
FA	RAMEIER	TEST CO	NDITION5	Vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX		
∨он		VI = VIH or VIL	I _{OH} = -20 μA	4.5 V	4.4	4.499		4.4		4.4		V	
VОН			$I_{OH} = -6 \text{ mA}$	4.5 V	3.98	4.3		3.7		3.84] `	
Vei		$\mathcal{M} = \mathcal{M} + \mathcal{O} + $	I _{OL} = 20 μA	4.5 V		0.001	0.1		0.1		0.1	V	
VOL		VI = VIH or VIL	4.5 V			0.17	0.26		0.4		0.33	v	
Ц	Control inputs	$V_{I} = V_{CC} \text{ or } 0$		5.5 V		±0.1	±100		±1000		±1000	nA	
IOZ	A or B	VO = ACC or 0		5.5 V		±0.01	±0.5	4	±10		±5	μΑ	
ICC		$V_{I} = V_{CC} \text{ or } 0,$	I <mark>O</mark> = 0	5.5 V			8	n	160		80	μΑ	
∆ICC†	÷	One input at 0.5 V or 2.4 V, Other inputs at 0 or V_{CC}		5.5 V		1.4	2.4	PRO1	3		2.9	mA	
Ci	Control inputs			4.5 V to 5.5 V		3	10		10		10	pF	

[†] This is the increase in supply current for each input that is at one of the specified TTL voltage levels, rather than 0 V or V_{CC}.

timing requirements over recommended operating free-air temperature range (unless otherwise noted)

		Vaa	T _A = 2	25°C	SN54H	CT646	SN74H	CT646	UNIT
		Vcc	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
f	Clock frequency	4.5 V		31		22		27	MHz
fclock	Clock nequency	5.5 V		36		24		29	IVITIZ
	Pulse duration, CLKBA or CLKAB high or low	4.5 V	16		23	EL	19		20
tw	Fulse duration, CERBA of CERAB high of low	5.5 V	14		21	L'A	17		ns
•		4.5 V	20		30	2	25		ns
^t su	Setup time, A before CLKAB \uparrow or B before CLKBA \uparrow	5.5 V	18		27		23		115
+.	Hold time, A after CLKAB↑ or B after CLKBA↑	4.5 V	5		5		5		20
^t h	HOW WITH, A AREI CENADI OF BAREI CENDAT	5.5 V	5		5		5		ns

SCLS178C - MARCH 1984 - REVISED MARCH 2003

switching characteristics over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 2)

DADAMETED	FROM	то	Ver	Т	₄ = 25°C	;	SN54H	CT646	SN74H	CT646	
PARAMETER	(INPUT)	(OUTPUT)	Vcc	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
4			4.5 V	31	54		22		27		MHz
fmax			5.5 V	36	64		24		29		
	CLKBA or CLKAB	A or B	4.5 V		18	36		54		45	
	CLKBA UI CLKAB	AUB	5.5 V		16	32		49		41	
.	A or B	B or A	4.5 V		14	27		41		34	ns
^t pd	AUB	BUIA	5.5 V		12	24		37		31	115
	and ount	A or B	4.5 V		20	38		57		48	
	SBA or SAB [†]	AUB	5.5 V		17	34		51		43	
+		A or B	4.5 V		25	49	4	र्र 74		61	-
ten	ŌĒ	AUB	5.5 V		22	44	(C)	67		55	ns
+	ŌĒ	A or B	4.5 V		25	49	na.	74		61	ns
^t dis	ÛE	AUB	5.5 V		22	44	Y.	67		55	115
+	DIR	A or B	4.5 V		25	49	1	74		61	
t _{en}	DIR	AUB	5.5 V		22	44		67		55	ns
+	DIR	A or B	4.5 V		25	49		74		61	
^t dis	DIR	AUB	5.5 V		22	44		67		55	ns
+ .		A py(4.5 V		9	12		18		15	-
tt		Any	5.5 V		7	11		16		14	ns

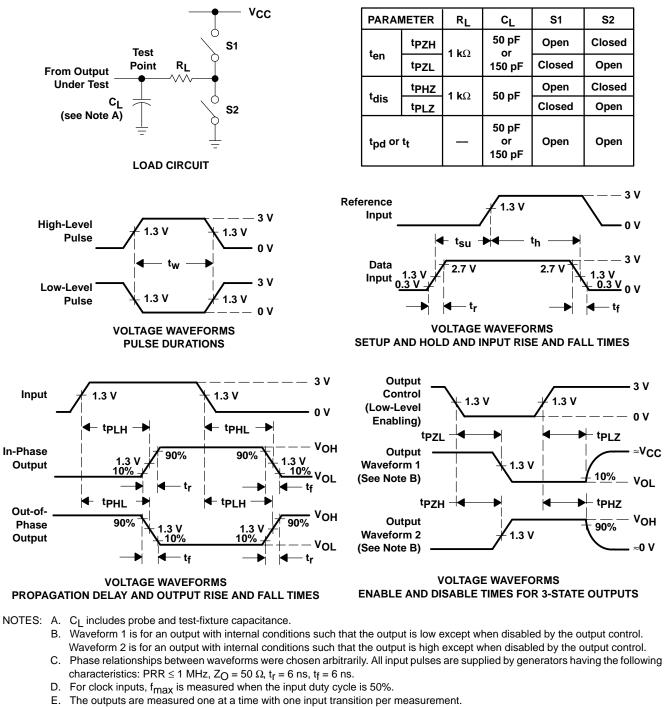
[†] These parameters are measured with the internal output state of the storage register opposite that of the bus input.

switching characteristics over recommended operating free-air temperature range, $C_L = 150 \text{ pF}$ (unless otherwise noted) (see Figure 2)

PARAMETER	FROM	то	Vaa	Τį	ן = 25°C	;	SN54HCT64	46	SN74H	СТ646	UNIT
PARAMETER	(INPUT)	(OUTPUT)	Vcc	MIN	TYP	MAX	MIN MA	٩X	MIN	MAX	UNIT
	CLKBA or CLKAB	A or B	4.5 V		24	53		80		66	
	CERBA OF CERAB	AUB	5.5 V		22	47		52		60	
↓ .	A or B	B or A	4.5 V		22	44		67		55	ns
^t pd	AULP	BUIA	5.5 V		20	39	19	60		50	115
		A or B	4.5 V		26	55	R	83		69	
	SBA or SAB [†]	AUB	5.5 V		24	49		74		62	
	ŌĒ	A or B	4.5 V		33	66	$\gamma_{\eta_{c}}$	00		87	
	ÛE	AUB	5.5 V		22	59	30	90		74	-
ten	DIR	A or B	4.5 V		33	66	Q 1	00		87	ns
	JIK	AULP	5.5 V		22	59		90		74	
•		Anv	4.5 V		17	42		63		53	
tt		Any	5.5 V		14	38		57		48	ns

[†] These parameters are measured with the internal output state of the storage register opposite that of the bus input.

operating characteristics, $T_A = 25^{\circ}C$


	PARAMETER	TEST CONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance	No load	50	pF

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

SCLS178C - MARCH 1984 - REVISED MARCH 2003

PARAMETER MEASUREMENT INFORMATION

- F. tpLz and tpHz are the same as tdis.
- G. t_{PZL} and t_{PZH} are the same as t_{en} .
- H. tPLH and tPHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms

6-Feb-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SN74HCT646DW	ACTIVE	SOIC	DW	24	25	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HCT646	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

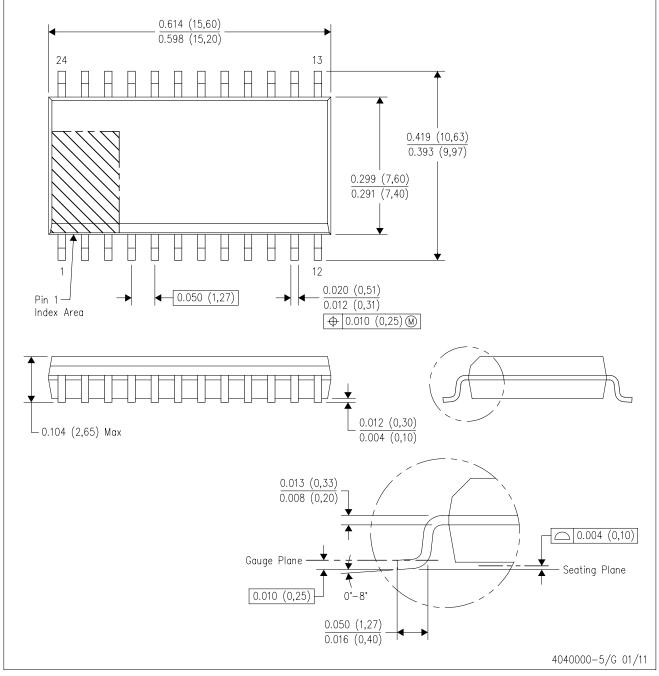
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.


(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DW (R-PDSO-G24)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AD.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated