SN74CBTK32245 32-BIT FET BUS SWITCH WITH ACTIVE-CLAMP UNDERSHOOT-PROTECTION CIRCUIT SCDS106E – APRIL 2000 – REVISED SEPTEMBER 2003

 Member of the Texas Instruments Widebus+[™] Family

- 5-Ω Switch Connection Between Two Ports
- TTL-Compatible Input Levels
- I_{off} Supports Partial-Power-Down Mode Operation
- Active-Clamp Undershoot-Protection Circuit on the I/Os Clamps Undershoots Up To -2 V
- Flow-Through Architecture Optimizes PCB Layout
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

description/ordering information

The SN74CBTK32245 provides 32 bits of high-speed TTL-compatible bus switching. The low on-state resistance of the switch allows connections to be made with minimal propagation delay.

The A and B ports have an active-clamp undershoot-protection circuit. When there is an undershoot, the active-clamp circuit is enabled and current from V_{CC} is supplied to clamp the output, preventing the pass transistor from turning on.

The device is organized as four 8-bit bus switches, two 16-bit bus switches, or one 32-bit bus switch. When the output-enable (\overline{OE}) input is low, the switch is on and port A is connected to port B. When \overline{OE} is high, the switch is open and the high-impedance state exists between the two ports.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

TA	PACKAGE		ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 85°C	LFBGA – GKE	Tapa and real	SN74CBTK32245GKER	KT245
	LFBGA – ZKE (Pb-free)	Tape and reel	SN74CBTK32245ZKER	K1245

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE
(each 8-bit bus switch)

INPUT OE	FUNCTION
L	A port = B port
Н	Disconnect

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

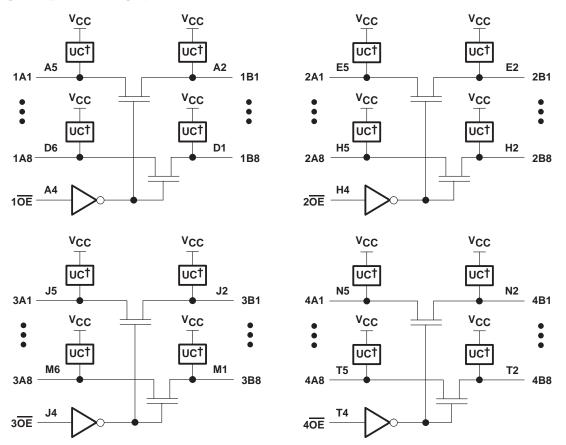
Widebus+ is a trademark of Texas Instruments.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SCDS106E - APRIL 2000 - REVISED SEPTEMBER 2003

GKE OR ZKE PACKAGE (TOP VIEW) 1 2 3 4 5 6 000000 Α 000000 В 000000 С D 000000 000000 Ε 000000 F 000000 G 000000 н 000000 J 000000 Κ 000000 L 000000 Μ Ν 000000 000000 Ρ 000000 R 000000 т

terminal assignments


	1	2	3	4	5	6
Α	1B2	1B1	NC	1 <mark>OE</mark>	1A1	1A2
в	1B4	1B3	GND	GND	1A3	1A4
С	1B6	1B5	VCC	VCC	1A5	1A6
D	1B8	1B7	GND	GND	1A7	1A8
Е	2B2	2B1	GND	GND	2A1	2A2
F	2B4	2B3	VCC	VCC	2A3	2A4
G	2B6	2B5	GND	GND	2A5	2A6
н	2B7	2B8	NC	2 <mark>0E</mark>	2A8	2A7
J	3B2	3B1	NC	3 <mark>0E</mark>	3A1	3A2
κ	3B4	3B3	GND	GND	3A3	3A4
L	3B6	3B5	VCC	VCC	3A5	3A6
м	3B8	3B7	GND	GND	3A7	3A8
Ν	4B2	4B1	GND	GND	4A1	4A2
Р	4B4	4B3	VCC	VCC	4A3	4A4
R	4B6	4B5	GND	GND	4A5	4A6
т	4B7	4B8	NC	40E	4A8	4A7

NC - No internal connection

SCDS106E - APRIL 2000 - REVISED SEPTEMBER 2003

logic diagram (positive logic)

[†] Undershoot clamp

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input voltage range, V _I (see Note 1)	–0.5 V to 7 V
Continuous channel current	128 mA
Input clamp current, I _{IK} (V _{I/O} < 0)	–50 mA
Package thermal impedance, θ_{JA} (see Note 2): GKE/ZKE package	40°C/W
Storage temperature range, T _{stg} –	65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

SCDS106E - APRIL 2000 - REVISED SEPTEMBER 2003

recommended operating conditions (see Note 3)

		MIN	MAX	UNIT
VCC	Supply voltage	4	5.5	V
VIH	High-level control input voltage	2		V
VIL	Low-level control input voltage		0.8	V
TA	Operating free-air temperature	-40	85	°C

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to TI application report *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PA	RAMETER		TEST CONDITIO	NS	MIN	TYP [†]	MAX	UNIT
VIK		$V_{CC} = 4.5 V,$	l _l = –18 mA				-1.2	V
VIKU		V _{CC} = 5.5 V,	$0 \text{ mA} \ge I_I \ge -50 \text{ mA},$	OE = 5.5 V			-2	V
$V_{CC} = 5.5 V$, $V_{I} = 5.5 V \text{ or GND}$							±5	μΑ
$V_{\rm CC} = 0,$		$V_{CC} = 0,$	V_{I} or V_{O} = 0 to 5.5 V			20	μΑ	
ICC		V _{CC} = 5.5 V,	$V_I = V_{CC}$ or GND,	IO = 0			6	μΑ
ΔICC^{\ddagger}	Control inputs	V _{CC} = 5.5 V,	One input at 3.4 V,	Other inputs at V_{CC} or GND			3.5	mA
Ci	Control inputs	V _I = 3 V or 0				3.5		pF
Cio(OFF	=)	V _O = 3 V or 0,	$\overline{OE} = V_{CC}$			5.5		pF
ron§		$V_{CC} = 4 V$, TYP at $V_{CC} = 4 V$	V _I = 2.4 V,	l _l = 15 mA		14	20	
				l _l = 64 mA		5	7	Ω
		$V_{CC} = 4.5 V$	$V_{I} = 0$	lj = 30 mA		5	7	
			V _I = 2.4 V,	lj = 15 mA		8	12	

[†] All typical values are at V_{CC} = 5 V (unless otherwise noted), T_A = 25°C.

[‡]This is the increase in supply current for each input that is at the specified TTL-voltage level, rather than V_{CC} or GND.

§ Measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two (A or B) terminals.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

PARAMETER	FROM	TO	V _{CC} = 4 V	= V _{CC} ± 0.	= 5 V 5 V	UNIT
	(INPUT)	(OUTPUT)	MIN	MAX		
t _{pd} ¶	A or B	B or A	0.35		0.25	ns
ten	OE	A or B	7.4	1.6	4.9	ns
^t dis	OE	A or B	7.4	4.2	7.5	ns

The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).

SN74CBTK32245 **32-BIT FET BUS SWITCH** WITH ACTIVE-CLAMP UNDERSHOOT-PROTECTION CIRCUIT SCDS106E – APRIL 2000 – REVISED SEPTEMBER 2003

undershoot characteristics

PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
νουτυ	See Figures 1 and 2, and Table 1	2	V _{OH} -0.3		V

[†] All typical values are at V_{CC} = 5 V (unless otherwise noted), T_A = 25°C.

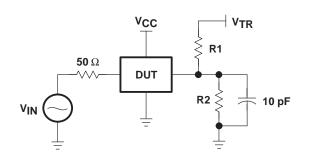


Figure 1. Device Test Setup

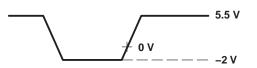


Figure 2. Transient Input Voltage Waveform

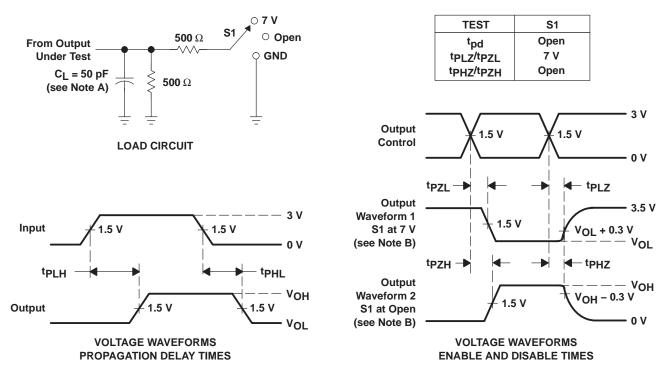

PARAMETER	VALUE	UNIT
B port under test‡	See Figure 1	
VIN	See Figure 2	V
tw	20	ns
tr	2	ns
tf	2	ns
R1 = R2	100	kΩ
V _{TR}	11	V
VCC	5.5	V

Table 1. Device Test Conditions

[‡]Other B-port outputs are open

SCDS106E - APRIL 2000 - REVISED SEPTEMBER 2003

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω, t_r \leq 2.5 ns. t_f \leq 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 3. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Order	able Device S	Status F	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
								(6)				
SN74CB	TK32245ZKER OBS	SOLETE	LFBGA	ZKE	96		TBD	Call TI	Call TI		KT245	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

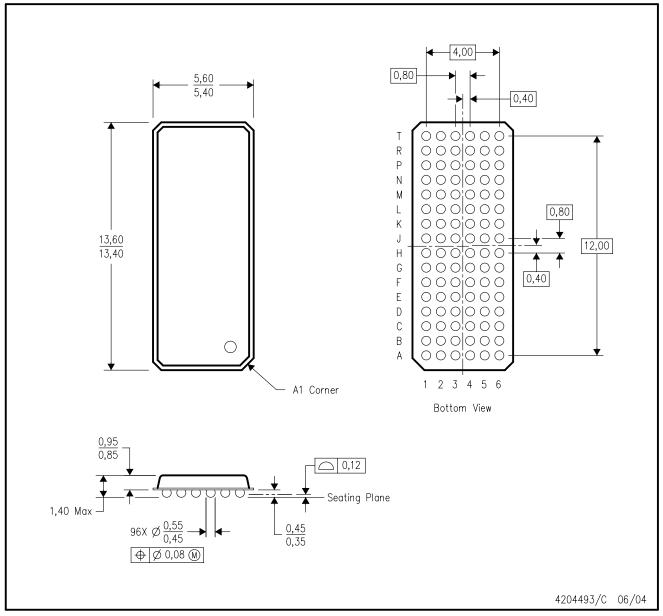
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.


(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

ZKE (R-PBGA-N96)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Falls within JEDEC MO-205 variation CC.

D. This package is lead-free. Refer to the 96 GKE package (drawing 4188953) for tin-lead (SnPb).

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated