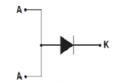


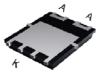
SMBRP15100


Schottky Barrier Rectifier

Reverse Voltage 100 Volts Forward Current 15 Amperes

Features

Ultra Low Vf=0.56V at IF=10A (25°C)/Vf=0.64V at IF=15A(25°C)


- Thin Package:1.0mm
- Low forward voltage drop, low power losses
- High efficiency operation
- Halogen Free Plastic package has underwriters Laboratory
 Flammability Classification 94V-0

Package: POWER QFN5x6

50

°C /W

Mechanical Data

- Case: Epoxy, Molded
- Weight: 0.1grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 sec
- Shipped 3000 units per reel

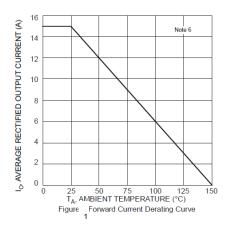
Maximum Ratings & Electrical Characteristics

(TA=25°C unless otherwise noted)

PARAMETER		TEST		SYMBOL	SMBRP15100	UNIT
		CONDITIONS				
Maximum repetitive peak reverse voltage				VRRM	100	V
Working peak reverse voltage				VRWM	100	V
Maximum DC blocking voltage				VDC	100	V
Maximum average forward rectified current at				Ir(AV)	15	Α
T _c =105°C total device per diode						
Peak forward surge current 8.3ms single half sine-wave superimposed				IFSM	150	Α
on rated load per diode						
Peak repetitive reverse current per leg at t _p =2.0us ,1KHz				IRRM	1.0	А
Operating junction temperature range				TJ	—55 to+150	°C
Storage temperature range				Тѕтс	—55 to+150	°C
Maximum instantaneous forward voltage per leg		I _F =15A	Tc=25°C	VF	0.71	V
		I=15A	Tc=125°C		0.62	
Maximum reverse current per leg at working peak			TJ=25℃	lr	200	uA
Reverse voltage			TJ=100°C		15	mA
Т	hermal Characteristics TA=	25℃ unl	ess otherwi	se noted		1
Symbol Parameter	Parameter		TYP (POWER QFN 5x6)			Unit
RθJC Thermal Resistance, June	Thermal Resistance, Junction to Case per Leg		2.5			

Note: Pulse test:300us pulse width, duty cycle=2%

Thermal Resistance, Junction to Ambient per Leg


RθJA

Schottky Barrier Rectifier

Reverse Voltage 100 Volts Forward Current 15 Amperes

Ratings and Characteristics Curves

(T_A = 25^oC unless otherwise noted)

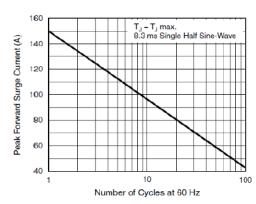


Figure 2. Maximum Non-Repetitive Peak Forward Surge Current

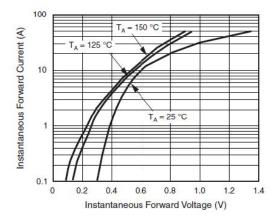


Fig. 3 - Typical Instantaneous Forward Characteristics Per Diode

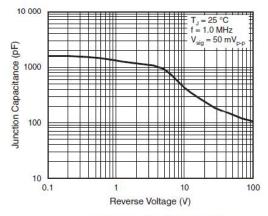


Fig. 5 - Typical Junction Capacitance

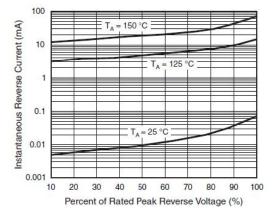


Fig. 4 - Typical Reverse Characteristics Per Diode

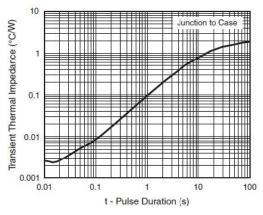
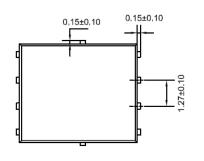
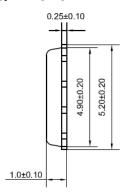
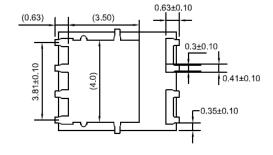


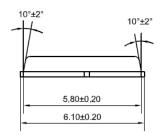
Fig. 6 - Typical Transient Thermal Impedance Per Diode

SMBRP15100


Schottky Barrier Rectifier


Reverse Voltage 100 Volts Forward Current 15 Amperes


Package Outline Dimensions


Unit: millimeters

POWER QFN 5x6

<u>SMBRP15100</u>

Schottky Barrier Rectifier

Reverse Voltage 100 Volts Forward Current 15 Amperes

Disclaimers

These materials are intended as a reference to assist our customers in the selection of the Suzhou Goo-Ark product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Suzhou Good-Ark Electronics Co., Ltd.or a third party.

Suzhou Good-Ark Electronics Co., Ltd. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Suzhou Good-Ark Electronics Co., Ltd. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Suzhou Good-Ark Electronics Co., Ltd. or an authorized Suzhou Good-Ark Electronics Co., Ltd. for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Suzhou Good-Ark Electronics Co., Ltd. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Suzhou Good-Ark Electronics Co., Ltd. by various means, including our website home page. (http://www.goodark.com)

When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, Please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Suzhou Good-Ark Electronics Co., Ltd. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

The prior written approval of Suzhou Good-Ark Electronics Co., Ltd. is necessary to reprint or reproduce in whole or in part these materials.

Please contact Suzhou Good-Ark Electronics Co., Ltd. or an authorized distributor for further details on these materials or the products contained herein.