

14701 Firestone Blvd * La Mirada, Ca 90638 Phone: (562) 404-4474 * Fax: (562) 404-1773 ssdi@ssdi-power.com * www.ssdi-power.com

Designer's Data Sheet

Part Number/Ordering Information ^{1/}

SM720

l	[∟] Screening ^{2/}

Package Type MD = 16 Pin SBDIP MM = 20 Pin CLCC

SM720MD and SM720MM

70 mA, 35 VOLTS HIGH RELIABILITY ELECTRONIC PROTECTION ARRAY for ESD and OVERVOLTAGE PROTECTION

FEATURES:

- MIL-M-38510 Compliant
- Military Temperature Range -55 to +125 °C
- An Array of 14 SCR/Diode Pairs
- ESD Interface Capability for HBM Standards: 6kV (MIL-STD-3015.7)
- High Peak Surge Capability ±5A (4µs Single Pulse)
- High Reliability Hermetic Ceramic Packages
- Provides Over-Voltage Protection +30V (Single Ended Voltage Range)
- Fast Switching- 2ns Risetime
- No Thermal Fatigue
- Low Input Leakage Current- 1nA
- Low Input Capacitance- 3pF Typical
- Class B and Class S Screening Available ^{2/}
- Replacement for SP720MD, MM

MAXIMUM RATINGS ^{3/}				
RAT	ING	SYMBOL	VALUE	UNIT
Continuous Supply Voltage		V _{SUPPLY}	35	Volts
DC Input Current		I _{IN1}	70	mAmps
Peak Input Current	(Single Pin Stress, 15V, 1 ms pulse) (Dual Pin Stress, 15V, 1 ms pulse)	I _{IN2}	2 4	Amps
Power Dissipation	SM720MD @ 93°C SM720MM @105°C	P _D	1	Watts
Operating Temperature Range Storage Temperature Range Maximum Junction Temperature Maximum Lead Temperature	(Soldering 10 seconds)	T ₀ T _{STG} T _J T _L	-55 to +125 -65 to +150 +175 +265	°C
Thermal Resistance $(R_{\theta JA} \text{ is measured with the } R_{\theta JA} \text{ is measured on an } R_{\theta JA} \text{ is measured on } R_{\theta JA} \text{ is measured } R_{\theta JA} $	16 Pin SBDIP 20 Pin CLCC	$\mathbf{R}_{\mathbf{\theta}\mathbf{JC}}$	18 16	°C/W
component mounted on an evaluation PC board in free air)	16 Pin SBDIP 20 Pin CLCC	$R_{\theta JA}$	80 70	

NOTES:

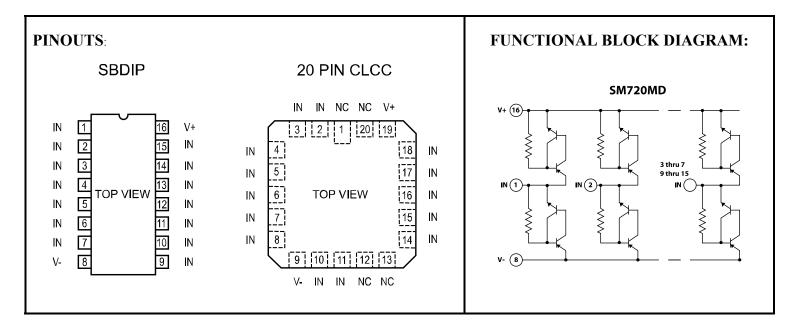
1/ For Ordering Information, Price, Operating Curves, and Availability- Contact Factory.

<u>2</u>/ Screened to MIL-M-38510.

 $\underline{3}$ / Unless Otherwise Specified, All Electrical Characteristics @25°C.

NOTE: All specifications are subject to change without notification. SCD's for these devices should be reviewed by SSDI prior to release.	DATA SHEET #: LA0009A	DOC
---	-----------------------	-----

SM720MD and SM720MM

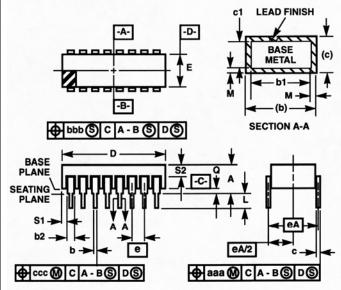


14701 Firestone Blvd * La Mirada, Ca 90638 Phone: (562) 404-4474 * Fax: (562) 404-1773 ssdi@ssdi-power.com * www.ssdi-power.com

ELECTRICAL CHARACTERISTICS ^{3/}						
CHARACTERISTICS	SYMBOL	MIN	ТҮР	MAX	UNIT	
Operating Voltage Range ($V_{SUPPLY} = [(V+) - (V-)]$)	V _{SUPPLY}	0	2 to 30	35	Volts	
Peak Forward/Reverse Voltage Drop IN to V- (with V- Reference), $I_{IN} = -1A$ (1 ms Peak Pulse) IN to V+ (with V+ Reference), $I_{IN} = +1A$ (1 ms Peak Pulse)	$\mathbf{V}_{}$		-2 +2		Volts	
DC Forward/Reverse Voltage Drop IN to V- (with V- Reference), $I_{IN} = -100$ mA to V- IN to V+ (with V+ Reference), $I_{IN} = +100$ mA to V+	V _{IN} -(V-) V _{IN} -(V+)	-1.5		+1.5	Volts	
Input Leakage Current $V- < V_{IN} < V+, V_{SUPPLY} = 30V$	I _{IN}	-15	5	+15	nA	
Quiescent Supply Current $V- < V_{IN} < V+, V_{SUPPLY} = 30V$	IQUIESCENT		50	150	nA	
Equivalent SCR ON Threshold			1.1		Volts	
Equivalent SCR ON Resistance (V _{FWD} /I _{FWD} ,)			1		Ohms	
Input Capacitance	C _{IN}		3		pF	
Input Switching Speed	t _{ON}		2		ns	

NOTES:

- 1/ For Ordering Information, Price, Operating Curves, and Availability- Contact Factory.
- <u>2</u>/ Screened to MIL-M-38510.
- 3/ Unless Otherwise Specified, All Electrical Characteristics @25°C.



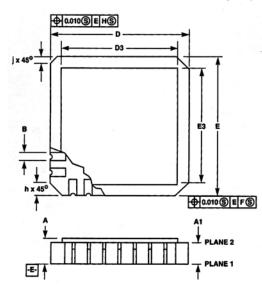
SBDIP Package Outline:

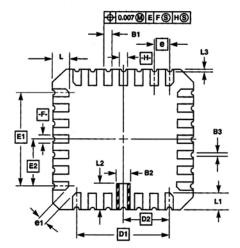
Ceramic Dual-In-Line Metal Seal Packages (SBDIP)

NOTES:

- Index area: A notch or a pin one identification mark shall be located ed adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
- The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
- 3. Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness.
- Corner leads (1, N, N/2, and N/2+1) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b2.
- Dimension Q shall be measured from the seating plane to the base plane.
- 6. Measure dimension S1 at all four corners.
- 7. Measure dimension S2 from the top of the ceramic body to the nearest metallization or lead.
- 8. N is the maximum number of terminal positions.
- 9. Braze fillets shall be concave.
- 10. Dimensioning and tolerancing per ANSI Y14.5M 1982.
- 11. Controlling dimension: INCH.

D16.3 MIL-STD-1835 CDIP2-T16 (D-2, CONFIGURATION C) 16 LEAD CERAMIC DUAL-IN-LINE METAL SEAL PACKAGE


	INCHES		MILLIMETERS		1. 1. 1. 1. 1.
SYMBOL	MIN	MAX	MIN	MAX	NOTES
A		0.200		5.08	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
с	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	0.840	-	21.34	-
E	0.220	0.310	5.59	7.87	
е	0.100 BSC		2.54 BSC		-
eA	0.300 BSC		7.62 BSC		-
eA/2	0.150 BSC		3.81 BSC		-
L	0.125	0.200	3.18	5.08	-
Q	0.015	0.060	0.38	1.52	5
S1	0.005	-	0.13	-	6
S2	0.005	-	0.13	-	7
α	90 ^o	105 ⁰	90 ^o	105°	-
aaa	-	0.015	-	0.38	-
bbb		0.030	-	0.76	-
CCC	-	0.010	-	0.25	-
м	-	0.0015	-	0.038	2
N	16		16		8



SM720MD and SM720MM

20 Pin CLCC Package Outline:

Ceramic Leadless Chip Carrier Packages (CLCC)

J20.A MIL-STD-1835 CQCC1-N20 (C-2) 20 PAD CERAMIC LEADLESS CHIP CARRIER PACKAGE

	INC	INCHES MILL		METERS	
SYMBOL	MIN	MAX	MIN	MAX	NOTES
A	0.060	0.100	1.52	2.54	6, 7
A1	0.050	0.088	1.27	2.23	-
В		•	•		- '
B1	0.022	0.028	0.56	0.71	2,4
B2	0.072	REF	1.83	REF	•
B3	0.006	0.022	0.15	0.56	•.
D	0.342	0.358	8.69	9.09	-
D1	0.200 BSC		5.08	BSC	-
D2	0.100	BSC	2.54	BSC	
D3		0.358		9.09	2
E	0.342	0.358	8.69	9.09	•
E1	0.200	0.200 BSC		BSC	-
E2	0.100	0.100 BSC		2.54 BSC	
E3		0.358	•	9.09	2
е	0.050	BSC	1.27	BSC	-
e1	0.015	-	0.38		2
h	0.040	REF	1.02	REF	5
j	0.020 REF		0.51	REF	5
L	0.045	0.055	1.14	1.40	
L1	0.045	0.055	1.14	1.40	-
L2	0.075	0.095	1.91	2.41	
L3	0.003	0.015	0.08	0.38	-
ND	5	5		5	
NE	5		5		3
N	2	0	20		3

NOTES:

- Metallized castellations shall be connected to plane 1 terminals and extend toward plane 2 across at least two layers of ceramic or completely across all of the ceramic layers to make electrical connection with the optional plane 2 terminals.
- Unless otherwise specified, a minimum clearance of 0.015 inch (0.38mm) shall be maintained between all metallized features (e.g., lid, castellations, terminals, thermal pads, etc.)
- Symbol "N" is the maximum number of terminals. Symbols "ND" and "NE" are the number of terminals along the sides of length "D" and "E", respectively.
- The required plane 1 terminals and optional plane 2 terminals (if used) shall be electrically connected.
- 5. The corner shape (square, notch, radius, etc.) may vary at the manufacturer's option, from that shown on the drawing.
- 6. Chip carriers shall be constructed of a minimum of two ceramic layers.
- Dimension "A" controls the overall package thickness. The maximum "A" dimension is package height before being solder dipped.
- 8. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- 9. Controlling dimension: INCH.