

General-purpose High-speed FIR Digital Filter

OVERVIEW

The SM5834AG is an FIR digital filter fabricated in Molygate[®] CMOS for video signal processors.

The SM5834AG processes 10-bit signal data using mathematical blocks set by 10-bit coefficient data. It comprises six 10×10 -bit multipliers and eleven 16-bit adders, enabling it to be configured as a single-chip, asymmetrical 6-tap filter or a symmetrical 11-tap filter. Several devices can be cascaded to realize longer filters.

The filter coefficients are stored in six programmable registers which can be updated during normal operation. The maximum signal sampling frequency is 25 MHz.

FEATURES

- Filter configuration
 - Asymmetrical 6-tap FIR filter (Mode I)
 - Symmetrical 11-tap FIR filter (Mode II)
 - · Devices can be cascaded for longer filters
- Data format
 - 10-bit 2s-complement input data
 - 10-bit 2s-complement coefficient data
 - 16-bit 2s-complement internal processing
- 25 MHz maximum sampling rate
- Arithmetic blocks
 - Six 10×10 -bit $\rightarrow 16$ -bit multipliers
 - Six 10-bit coefficient buffers
 - Six 10-bit coefficient registers
 - Eleven 16 + 16-bit \rightarrow 16-bit adders
- 25 MHz throughput rate with fixed coefficients, and 20 MHz with adaptive coefficients
- Coefficient registers can be read.
- Two-tier coefficient registers for synchronized update
- Support for 8-bit bus interface
- Overflow detect function
- TTL-compatible input/outputs
- 5 ±0.5 V supply
- 84-pin PGA (pin-grid array)
- Molygate[®] CMOS process

APPLICATIONS

Digital VCR filters

PINOUT

PACKAGE DIMENSIONS

Unit: mm

NIPPON PRECISION CIRCUITS-1

BLOCK DIAGRAM

PIN DESCRIPTION

Number	Pin Number	Name	I/O	Description
1	B2	Dio	ip	Signal data input bit 0 (LSB)
2	C2	Dit	ip	Signal data input bit 1
3	B1	Di2	ip	Signal data input bit 2
4	C1	DI3	ip	Signal data input bit 3
5	D2	Di4	ip	Signal data input bit 4
6	D1	DI5	ip	Signal data input bit 5
7	E3	DI6	ip	Signal data input bit 6
8	E2	DI7	ip	Signal data input bit 7
9	E1	DI8	ip	Signal data input bit 8
10	F2	DI9	ip	Signal data input bit 9 (MSB)
11	F3	VSS1		Ground
12	G3	VDD1		5 V supply
13	G1	DO9	0	Signal data output bit 9 (MSB)
14	G2	DO8	0	Signal data output bit 8
15	F1	DO7	0	Signal data output bit 7
16	H1	DO6	0	Signal data output bit 6
17	H2	DO5	0	Signal data output bit 5
18	J1	DO4	0	Signal data output bit 4
19	K1	DO3	0	Signal data output bit 3
20	J2	DO2	<u> </u>	Signal data output bit 2
21	L1	NC		No connection
22	K2	NC		No connection
23	КЗ	NC		No connection
24	L2	DO1	0	Signal data output bit 1
25	L3	DO0	0	Signal data output bit 0 (LSB)
26	K4	SO15	0	Sum output bit 15 (MSB)
27	L4	SO14	0	Sum output bit 14
28	J5	SO13	0	Sum output bit 13
29	K5	SO12	0	Sum output bit 12
30	L5	SO11	0	Sum output bit 11
31	K6	SO10	0	Sum output bit 10
32	J6	VSS2		Ground
33	J7	VDD2		5 V supply
34	L7	SO9	o	Sum output bit 9
35	К7	SO8	0	Sum output bit 8
36	L6	S07	0	Sum output bit 7

NIPPON PRECISION CIRCUITS-3

1

Number	Pin Number	Name	Vo	Description
37	L8	SO6	0	Sum output bit 6
38	K8	SO5	0	Sum output bit 5
39	L9	SO4	0	Sum output bit 4
40	L10	SO3	0	Sum output bit 3
41	K9	SO2	0	Sum output bit 2
42	L11	NC		No connection
43	K10	SO1	0	Sum output bit 1
44	J10	SO0	0	Sum output bit 0 (LSB)
45	K11	OVF	0	Overflow detect (active-HIGH)
46	J11	SIO	ip	Cascade sum input bit 0 (LSB)
47	H10	Sit	ip	Cascade sum input bit 1
48	H11	S12	ip	Cascade sum input bit 2
49	F10	SI3	ip	Cascade sum input bit 3
50	G10	SI4	ip	Cascade sum input bit 4
51	G11	SI5	ip	Cascade sum input bit 5
52	G9	S16	ip	Cascade sum input bit 6
53	F9	SI7	ip	Cascade sum input bit 7
54	F11	VSS3		Ground
55	É11	VDD3		5 V supply
56	Ė10	SI8	ip	Cascade sum input bit 8
57	E9	SI9	ip	Cascade sum input bit 9
58	D11	SI10	ip	Cascade sum input bit 10
59	D10	Si11	ip	Cascade sum input bit 11
60	C11	SI 12	ip	Cascade sum input bit 12
61	B11	SI13	ip	Cascade sum input bit 13
62	C10	SI14	ip	Cascade sum input bit 14
63	A11	SI15	ip	Cascade sum input bit 15
64	B10	6TP	ip	Filter tap number select. 6-tap asymmetrical mode when HIGH and 11-tap symmetrical mode when LOW
65	B9	VSS4		Ground
66	A10	CS	i	Chip select
67	A9	RD	i	Coefficient read signal
68	B8	WR	i	Coefficient write signal
69	A8	C8H	ip	Coefficient high-order byte select. High byte when C8H = HIGH
70	B6	A2	ip	Coefficient register address bit 2
71	B7	A1	ip	Coefficient register address bit 1
72	A7	A0	ip	Coefficient register address bit 0

ł

Number	Pin Number	Name	Vo	Description
73	C7	CLK	i	Clock input
74	C6	Cl9	io	Coefficient data input/output bit 9 (MSB)
75	A6	Cl8	io	Coefficient data input/output bit 8
76	A5	Ci7	io	Coefficient data input/output bit 7
77	B5	Cl6	io	Coefficient data input/output bit 6
78	C5	CI5	io	Coefficient data input/output bit 5
79	A4	Cl4	io	Coefficient data input/output bit 4
80	B4	Cl3	io	Coefficient data input/output bit 3
81	Аз	Cl2	io	Coefficient data input/output bit 2
82	A2	C[1	io	Coefficient data input/output bit 1
83	B3	Clo	io	Coefficient data input/output bit 0 (LSB)
84	A1	VDD4		5 V supply

Note

i = input, ip = input with pull-down resistance, o = output, io = input/output

SPECIFICATIONS

Absolute Maximum Ratings

 $V_{SS}\,=\,0~V$

Parameter	Symbol	Rating	Unit
Supply voltage range	V _{DD}	-0.3 to 7.0	V
Input voltage range	Vin	-0.3 to V _{DD} + 0.3	v
Power dissipation	Pw	1.2	w
Storage temperature range	T _{stg}	-40 to 125	deg. C
Soldering temperature	T _{ski}	255	deg. C
Soldering time	t _{sid}	10	s

Recommended Operating Conditions

 $V_{SS} = 0 V$

,

Parameter	Symbol	Rating	Unit	
Supply voltage range	V _{DD}	4.75 to 5.25	V	
Operating temperature range	T _{opr}	—20 to 70	deg. C	

DC Electrical Characteristics

$V_{DD} = 4.75$ to 5.25	V, $T_a = -20 t$	o 70 deg. C, $V_{ss} =$	= 0 V unless otherwise noted
-------------------------	------------------	-------------------------	------------------------------

Parameter	Symbol	Condition		Unit				
Falameter	Symbol	Condition	min	typ	max			
Standby current consumption	ls .	$V_{IN} = V_{DD}$ or 0 V	_	-	10.0	μА		
Operating current consumption	lop	$V_{DD} = 5 V, f = 25 MHz,$ all outputs open		-	200	mA		
HIGH-level input voltage	ViH	See notes 1 and 2.	2.4	-	_	v		
LOW-level input voltage	VIL	See note 3.	-	-	0.5	v		
	Vон	lон = -0.4 mA. See note 3.	2.5	-	-	v		
HIGH-level output voltage	₩ОН	l _{OH} = —1.0 mA. See note 4.	2.5	-	— .	v		
LOW-level output voltage	M	l _{OL} = 1.6 mA. See note 3.	-	-	0.4			
LOw-level output vollage	Vol	l _{OL} = 4.0 mA. See note 4.	-	-	0.4	- V		
HIGH-level input current	Ιн	$V_{IN} = V_{DD}$. See note 2.	_	10	20	μА		
HIGH-Level input leakage current	lui	V _{IN} = V _{DD} . See note 1.	-	-	1.0	μА		
LOW-level input leakage current	lμ	V _{IN} = 0 V. See notes 1 and 2.	-	_	1.0	μА		
High-impedance HIGH-level output leakage current	lzн	$V_{\overline{RD}} = V_{IH}, V_{OUT} = V_{DD}$	-	-	5.0	μА		
High-impedance LOW-level output leakage current	lzı	V rd = V _{IH} , V _{out} = 0 V	-	_	5.0	μА		

Notes

1. Pins CLK, \overline{RD} , \overline{WR} and \overline{CS} are TTL-level inputs.

2. Pins SI0 to SI15, DI0 to DI9, 6TP, C8H and A0 to A2 are TTL-level inputs with pull-down resistances.

- 3. Pins CI0 to CI9 are TTL-level input/outputs.
- 4. Pins SO0 to SO15, DO0 to DO9, and OVF are TTL-level outputs.

AC Electrical Characteristics

 V_{DD} = 4.75 to 5.25 V, T_a = –20 to 70 deg. C, V_{SS} = 0 V unless otherwise noted

Parameter	Symbol Condition			Rating					
Falallielei	Зушрої	Condition	min	typ	max	Unit			
Clock frequency	4	Fixed coefficients	1	-	25				
	fclk	Adaptive coefficients	1	_	20	MHz			
Clock LOW-level pulsewidth	t _{PWL}		15	_	-	ns			
Clock HIGH-level pulsewidth	tрwн		15	-	-	ns			
Clock rise time	tr	See figure 1.	-		100	ns			
Clock fall time	tr	-		-	100	ns			
DIO to DI9 data input setup time	tsı		10	-	-	ns			
DIO to DI9 data input hold time	t _{H1}	See figure 2.	5	-	-	ns			

Deservation	<u>Ormital</u>			Rating		
Parameter	Symbol	Condition	min	typ	max	Unit
SIO to SI15 sum input setup time	ts2	0	10	-	_	ns
SIO to SI15 sum input hold time	t _{H2}	See figure 3.	3	_	-	ns
CLK to DO <i>n</i> data output delay time	t _{PD1}	See figure 4. See note 5.	_	-	25	ns
CLK to DOn data output hold time	tонı		8	-	_	ns
CLK to SO <i>n</i> sum output delay time	t _{PD2}	See figure 5. See note 5.	-	-	27	ns
CLK to SOn sum output hold time	toh2		8	-	-	ns
CLK to OVF overflow output delay time	t _{PD3}	See four & See note 5	-	-	25	ns
CLK to OVF overflow output hold time	tонз	See figure 6. See note 5.	8	-	_	ns
Write cycle time	twc		50	-	_	ns
WR write clock pulsewidth	t _{PW2}		25	-	-	ns
CI0 to CI9 coefficient data setup time	tsa		5	-	-	ns
CI0 to CI9 coefficient data hold time	tнз		15	_	_	ns
A0 to A2 and \overline{CS} address setup time	ts4	See figure 7.	5		-	ns
A0 to A2 and \overline{CS} address hold time	t _{H4}		5	_	_	ns
C8H high-byte setup time	ts5		15	_	-	ns
C8H high-byte hold time	t _{H5}		15		-	ns
Read cycle time	t _{RC}		100	-	-	ns
A0 to A2 address access time	taa	- -	-	-	80	ns
CS chip select access time	tacs		-	-	80	ns
C8H high-byte access time	taceн	See figure 8. See note 6.		-	80	ns
A0 to A2 coefficient output hold time	toh4		8	-	_	ns
C8H coefficient output hold time	tон5		8	-	-	ns
RD coefficient output enable, output delay time (low impedance)	toLZ		8	-	-	ns
CS coefficient output enable, output delay time (low impedance)	toız	See figure 8. See note 6.	8	-	_	ns
$\overline{\text{RD}}$ to Cl_{n} coefficient output enable, output delay time	toe		_	-	90	ns
RD coefficient output disable, output delay time	tонz		-	-	30	ns
CS coefficient output disable, output delay time	tснz	See figure 8. See note 6.		_	35	ns

I.

SM5834AG

Parameter	Symbol	Condition		Unit		
	Symbol	Condition	min	typ	max	Unit
Input capacitance	C _{IN}	f = 1 MHz. See notes 1 and 2.	-	-	10	pF
Input/output capacitance	Сю	$f = 1 \text{ MHz}, V_{\text{RD}} = V_{\text{IH}}$	_	-	20	pF

Notes

1. Pins CLK, \overline{RD} , \overline{WR} and \overline{CS} are TTL-level inputs.

- 2. Pins SI0 to SI15, DI0 to DI9, 6TP, C8H and A0 to A2 are TTL-level inputs with pull-down resistances.
- 3. Pins CI0 to CI9 are TTL-level input/outputs.
- 4. Typical values are measured at V_{DD} = 5 V and T_{a} = 25 deg. C
- 5. Measurement circuit 1

6. Measurement circuit 2

Timing Diagrams

Figure 1. Clock input waveform

Figure 2. Data input timing

Figure 3. Sum input timing

Figure 4. Data output timing

Figure 5. Sum output timing

Figure 6. Overflow output timing

Figure 7. Coefficient write timing

Note \overline{RD} should be held HIGH during the write cycle.

Figure 8. Coefficient read timing

Note

WR should be held HIGH during the read cycle.

FUNCTIONAL DESCRIPTION

Filter Type Select

The SM5834AG can be configured as a symmetrical filter—with filter coefficients symmetrical about the center tap—or an asymmetrical filter as shown in the following table.

Mode	6TP	Filter configuration
	HIGH	Asymmetrical 6-tap FIR filter
11	LOW	Symmetrical 11-tap FIR filter

Mode I

Flow diagram

Timing diagram

Mode II

Flow diagram

Timing diagram

Signal Data and Coefficient Data Format

The filter input data, signal data output and coefficient input/output data all use the same 10-bit 2s-complement format.

Multiplier Input/Output Data

The multipliers multiply 10-bit signal data by 10-bit coefficient data to produce a 16-bit internal result. The following figures show the relationship between the input data, coefficient data and output data.

The five least-significant bits from the multiplier output are rounded off. The multiplier output sign bit is extended into the extended-precision bits.

Note

If both the signal data and coefficient data are set to -1 (the maximum negative value), then an overflow

will occur and an incorrect result will be produced. Accordingly, do not set any coefficients to -1.

Adder Arithmetic Data Format

All internal arithmetic operations are performed using 16-bit 2s-complement format.

					Decir	nal po	int										
					ł												
				DI9	Di8	Di7	DH6	DI5	DH	Dia	DI2	DI1	DIO]			
Signal data	(10 bits)			-2 ⁰	• 2 ⁻¹	2-2	2 ⁻³	2-4	2-5	2-6	2-7	2-8	2-9]			
Multiplier data	(16 bits)	-2 ²	21	20	• 2-1	2-2	2-3	2-4	2-5	2-6	2-7	2 ⁻⁸	2 ⁻⁹	2-10	2-11	2-12	2-13
		SI15	SI14	SI13	SI12	SI11	SI10	SI9	SIB	SI7	SI6	S15	S14	SI3	SI2	SI1	S10
Sum data	(16 bits)	-2 ²	21	20	• 2-1	2-2	2~3	2-4	2-5	2-6	2-7	2-8	2-0	2-10	2-11	2-12	2 ⁻¹³
		Overfi	ow bits	3									(S	imilarly	for S	DO to S	3015)

The range of the sum result before overflow is $(-4 < SUM < 4 - 2^{-13})$

Overflow Detect Function (OVF)

If an overflow occurs in any of the adders, the OVF output flag goes HIGH. All adder overflow outputs are ORed synchronously, so the OVF flag does not necessarily go HIGH at the same time as the sum output resulting from the erroneous data. The corresponding sum output can be any of the six (in

asymmetric filter mode) or eleven (in symmetric filter mode) outputs, starting from the one that was output immediately before OVF went HIGH. The shaded regions indicate the outputs that could be in error.

Figure 9. Overflow processor block diagram

Figure 10. OVF and sum output relation

Programming Coefficient Data

The SM5834AG employs a buffered coefficient register architecture to enable simultaneous update of all coefficients. This enables smooth frequency response changes in applications such as adaptive filters. Changing the filter coefficients thus involves two steps: writing to the coefficient buffers, and updating the coefficient registers with the buffer contents.

Figure 11. Coefficient bus interface

Writing to the coefficient buffer

To write to the coefficient buffers, the address lines A0 to A2 are first used to select one of the six buffers, CBUF0 to CBUF5. The \overline{CS} and \overline{WR} strobes are then used to write the data on C0 to C9 into the selected buffer. C8H should be kept LOW during this time.

Figure 12. Coefficient write

Reading from the coefficient buffer

To read from the coefficient buffers, A0 to A2 are used to select one of the six buffers, then the \overline{CS} and \overline{WR} strobes are used to read data from the selected buffer. C8H should be kept LOW during this time.

Note that it is the coefficient buffers which are read, not the coefficient registers.

Figure 13. Coefficient read

Updating Coefficient registers

To update a register, A0 to A2 are all set HIGH and then a coefficient write cycle is performed. This simultaneously updates all coefficient registers with the values in the corresponding buffers. At least two clock cycles must elapse before the registers can be updated again.

Table 1. Coefficient buffer addresses

A2	A1	A0	Selected registor or operation
LOW	LOW	LOW	CBUF0
LOW	LOW	HIGH	CBUF1
LOW	HIGH	LOW	CBUF2
LOW	HIGH	HIGH	CBUF3
HIGH	LOW	LOW	CBUF4
HIGH	LOW	HIGH	CBUF5
HIGH	HIGH	HIGH	Update coefficient registers

Coefficient high-byte select function

The C8H pin allows the SM5834AG to be connected to an 8-bit bus. When C8H is HIGH, the two least-significant bits of the coefficient input/output bus (CI0 and CI1) correspond to the top two bits of the buffer data (CB8 and CB9). Note that on a buffer read, CB9 is extended into bits 2 through 7 of the output data (CI2 to CI7).

Table 2. Writing to the coefficient buffer high-order byte (C8H = HIGH)

CBUF bit	CBUF data
CB9	Cl1
CB8	ClO
CB7 to CB0	Can't write

Table 3. Reading from the coefficient buffer highorder byte (C8H = HIGH)

C1 bit	Ci output data
Cl9	C89
Ci8	CB8
CI7 to CI2	CB9
Cl1	CB9
Clo	CB8

8-bit bus read/write

Writing to (or reading from) the coefficient buffer when connected to an 8-bit bus is simply a matter of performing two consecutive writes (or reads), changing the level on the C8H pin between read or write strobes. Figures 14 and 15 illustrate the timing of this process.

In this example, the data read or written is 3FCH. Note the output value of FFH when the high byte is read, due to extension of bit 9 into the output word.

Casade Connection

Two or more SM5834AGs can be cascaded to realize longer filters. For cascade connection, the sum outputs (SO0 to SO15) of each device are connected to the sum inputs (SI0 to SI15) of the next device. Similarly, the data outputs (DO0 to DO9) of each device are connected to the data inputs (DI0 to DI9) of the next device. The coeffi-

Figure 14. Coefficient write to 8-bit bus

Figure 15. Coefficient read from 8-bit bus

cients of each device are programmed by connecting each \overline{CS} input to individual chip select lines.

Symmetrical filter configuration

The center device in the chain in configured as a symmetrical 11-tap filter, and the remainder as asymmetrical 6-tap filters.

Asymmetrical filter configuration

All devices are configured as asymmetrical 6-tap filters.

Filter Coefficient Limitations

Although each adder has two extended-precision bits to allow for an increase in gain, the possibility of overflow in the adders increases for longer filters.

The range of permissible filter coefficients is

 $-1 \le Ci \le 1 - 2^{-9} \ (0 \le i \le N - 1)$

where N is the number of filter taps.

Filter Tap Number Limitations

Multiplier output is rounded to 16 bits in each stage, which generates quantization noise that accumulates in the final stage. The quantization noise generated by each multiplier stage is

$$N_{QM} = \frac{(2^{-13})^2}{12}$$

and the quantization noise caused at the output by rounding at the mth bit is

$$N_{QO} = \frac{(2^{-m})^2}{12}$$

The sum result range before overflow is

$$D_{\max} \times \sum_{i=0}^{N-1} |Ci| \le 4 - 2^{-13}$$

assuming that the magnitude of the input data is

 $|D_k| \leq D_{max}$ (where $D_{max} \leq 1$)

Filter coefficients should be determined so that no overflow can occur at the frequency at which the filter gain is maximum. Overflow may still occur on rare occasions, but these can be detected by monitoring the OVF pin.

Therefore, the maximum number of taps a filter can have, N_F , before the internal quantization noise exceeds the output noise is given by

$$N_F \le \frac{N_{QO}}{N_{OM}}$$

The range of bits of the sum output word depends on the gain of the filter. The output signal, therefore, should not exceed the maximum value represented by the selected bits.

Maximum gain	Maximum number of tap s
1	256
2	1024
4	4096

TYPICAL APPLICATION

23-tap Linear Phase Filter

NIPPON PRECISION CIRCUITS LTD. reserves the right to make changes to the products contained in this data sheet in order to improve the design or performance and to supply the best possible products. Nippon Precision Circuits Ltd. assumes no responsibility for the use of any circuits shown in this data sheet, conveys no license under any patent or other rights, and makes no claim that the circuits are free from patent infringement. Applications for any devices shown in this data sheet are for illustration only and Nippon Precision Circuits Ltd. makes no claim or warranty that such applications will be suitable for the use specified without further testing or modification.

NIPPON PRECISION CIRCUITS LTD.

Shuwa Sakurabashi Building 5-4, Hachobori 4-chome Chuo-ku, Tokyo 104, Japan Telephone: 03-3555-7521 Facsimile: 03-3555-7528

NC8928AE 1993.07