SM1A57NHG

N-Channel Enhancement Mode MOSFET

Pin Description

TO-263-2

D

Features

- 100V/120A
 - $R_{DS(ON)}$ =4.8m Ω (max.)@V_{GS}=10V
- 100% UIS + R_g Tested
- Reliable and Rugged
- Lead Free and Green Devices Available (RoHS Compliant)
- Moisture Sensitivity Level MSL1 (per JEDEC J-STD-020D)

Applications

- High Efficiency Synchronous Rectification in SMPS.
- Hard Switched and High Frequency Circuits.

Ordering and Marking Information

Note : SINOPOWER lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which are fully compliant with RoHS. SINOPOWER lead-free products meet or exceed the leadfree requirements of IPC/JEDEC J-STD-020D for MSL classification at lead-free peak reflow temperature. SINOPOWER defines "Green" to mean lead-free (RoHS compliant) and halogen free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by weight).

SINOPOWER reserves the right to make changes to improve reliability or manufacturability without notice, and advise customers to obtain the latest version of relevant information to verify before placing orders.

Absolute Maximum Ratings (T_A=25°C Unless Otherwise Noted)

Symbol	Parameter	Rating	Unit		
Common	Ratings				
V _{DSS}	Drain-Source Voltage	100	V		
V_{GSS}	Gate-Source Voltage		±20	v	
TJ	Maximum Junction Temperature		150	- °C	
T _{STG}	Storage Temperature Range		-55 to 150		
ls	Diode Continuous Forward Current	T _c =25°C	70	A	
	Continuous Drain Current	T _c =25°C	120 ^a		
I _D	Continuous Drain Current	T _c =100°C	86		
I _{DM} ^b	Pulsed Drain Current	T _c =25°C	400		
P	Marian Barrow Disatesting	T _c =25°C	192	- w	
P_{D}	Maximum Power Dissipation	T _c =100°C	76		
$R_{_{ ext{ heta}JC}}$	Thermal Resistance-Junction to Case		0.65	°C/W	
I	Continuous Drain Current	T _A =25°C	16.1		
I _D		T _A =70°C	12.9	— A	
P _D	Maximum Power Dissipation	T _A =25°C	2.5	10/	
		T _A =70°C	1.6	— W	
$R_{_{\theta JA}}{}^{d}$	Thermal Resistance-Junction to Ambient		50	°C/W	
I _{AS} ^c	Avalanche Current, Single pulse	L=0.5mH	42	A	
E _{AS} ^c	Avalanche Energy, Single pulse	L=0.5mH	441	mJ	

Note a : Calculated continuous current based on maximum allowable junction temperature. Bonding wire limitation current is 120A.

Note b : Pulse width limited by max. junction temperature.

Note c : UIS tested and pulse width limited by maximum junction temperature 150° C (initial temperature $T_i=25^{\circ}$ C).

Note d : Surface Mounted on 1in² pad area.

Electrical Characteristics (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Static Ch	aracteristics					
BV_{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _{DS} =250μA	100	-	-	V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =80V, V _{GS} =0V	-	-	1	μΑ
		T _J =85°C	-	-	30	
V _{GS(th)}	Gate Threshold Voltage	V _{DS} =V _{GS} , I _{DS} =250μA	2	3	4	V
I _{GSS}	Gate Leakage Current	V _{GS} =±20V, V _{DS} =0V	-	-	±100	nA
R _{DS(ON)} ^e	Drain-Source On-state Resistance	V _{GS} =10V, I _{DS} =40A	-	4	4.8	mΩ
Diode Ch	aracteristics					
V_{SD}^{e}	Diode Forward Voltage	I _{SD} =40A, V _{GS} =0V	-	0.8	1.3	V
t _{rr}	Reverse Recovery Time	I _{sp} =40A, dI _{sp} /dt=100A/μs	-	65	-	ns
Q _{rr}	Reverse Recovery Charge	I_{SD} - 40A, U_{SD} / U_{C} - 100A/ μ S	-	135	-	nC
Dynamic	Characteristics ^f					
R_{G}	Gate Resistance	V _{GS} =0V,V _{DS} =0V,F=1MHz	-	2	-	Ω
C _{iss}	Input Capacitance	V _{GS} =0V,	-	4600	6000	
C _{oss}	Output Capacitance	V _{DS} =50V,	-	720	-	pF
C _{rss}	Reverse Transfer Capacitance	Frequency=1.0MHz	-	50	-	
t _{d(ON)}	Turn-on Delay Time		-	30	54	
t _r	Turn-on Rise Time	V_{DD} =30V, R _L =30 Ω ,	-	16	29	
$t_{d(OFF)}$	Turn-off Delay Time	—I _{DS} =1A, V _{GEN} =10V, R _G =6Ω	-	74	134	ns
t _f	Turn-off Fall Time		-	118	213	
Gate Cha	rge Characteristics ^f					
Qg	Total Gate Charge		-	77	108	
Q_{gs}	Gate-Source Charge	──V _{DS} =50V, V _{GS} =10V, ──I _{DS} =40A	-	20	-	nC
Q_{gd}	Gate-Drain Charge		-	18	-	

Note e : Pulse test ; pulse width \leq 300µs, duty cycle \leq 2%.

Note f : Guaranteed by design, not subject to production testing.

Typical Operating Characteristics

Drain Current

T_j - Junction Temperature (°C)

Thermal Transient Impedance

Square Wave Pulse Duration (sec)

Typical Operating Characteristics(Cont.)

Output Characteristics

Drain-Source On Resistance

I_D - Drain Current (A)

Typical Operating Characteristics(Cont.)

(Y) the property of the prope

Source-Drain Diode Forward

V_{sD} - Source - Drain Voltage (V)

Capacitance

Gate Charge

Typical Operating Characteristics(Cont.)

V_{gs} - Gate-Source Voltage (V)

Copyright © Sinopower Semiconductor Inc. Rev. A.1 - May, 2019

Avalanche Test Circuit and Waveforms

Switching Time Test Circuit and Waveforms

Disclaimer

Sinopower Semiconductor Inc. (hereinafter "Sinopower") has been making great efforts to development high quality and better performance products to satisfy all customers' needs. However, a product may fail to meet customer's expectation or malfunction for various situations.

All information which is shown in the datasheet is based on Sinopower's research and development result, therefore, Sinopower shall reserve the right to adjust the content and monitor the production.

In order to unify the quality and performance, Sinopower has been following JEDEC while defines assembly rule. Notwithstanding all the suppliers basically follow the rule for each product, different processes may cause slightly different results.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the products. Sinopower does not grant customers explicitly or implicitly, any license to use or exercise intellectual property or other rights held by Sinopower and other parties. Sinopower shall bear no responsible whatsoever for any dispute arising from the use of such technical information.

The products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability, such as the failure or malfunction of which any may result in a direct threat to human life or a risk of human injury. Sinopower shall bear no responsibility in any way for use of any of the products for the above special purposes. If a product is intended to use for any such special purpose, such as vehicle, military, or medical controller relevant applications, please contact Sinopower sales representative before purchasing.

Classification Profile

Classification Reflow Profiles

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly	
Preheat & Soak Temperature min (T_{smin}) Temperature max (T_{smax}) Time $(T_{smin}$ to $T_{smax})$ (t_s)	100 °C 150 °C 60-120 seconds	150 °C 200 °C 60-120 seconds	
Average ramp-up rate $(T_{smax}$ to $T_{P})$	3 °C/second max.	3°C/second max.	
Liquidous temperature (T_L) Time at liquidous (t_L)	183 °C 60-150 seconds	217 °C 60-150 seconds	
Peak package body Temperature $(T_p)^*$	See Classification Temp in table 1	See Classification Temp in table 2	
Time $(t_P)^{**}$ within 5°C of the specified classification temperature (T_c)	20** seconds	30** seconds	
Average ramp-down rate $(T_p \text{ to } T_{smax})$	6 °C/second max.	6 °C/second max.	
Time 25°C to peak temperature	6 minutes max.	8 minutes max.	

* Tolerance for peak profile Temperature (T_p) is defined as a supplier minimum and a user maximum. ** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.

Table 1. SnPb Eutectic Process – Classification Temperatures (Tc)

Package Thickness	Volume mm ³ <350	Volume mm³ ≥350
<2.5 mm	235 °C	220 °C
≥2.5 mm	220 °C	220 °C

Table 2. Pb-free Process - Classification Temperatures (Tc)

Package Thickness	Volume mm ^³ <350	Volume mm ³ 350-2000	Volume mm ^³ >2000
<1.6 mm	260 °C	260 °C	260 °C
1.6 mm – 2.5 mm	260 °C	250 °C	245 °C
≥2.5 mm	250 °C	245 °C	245 °C

Reliability Test Program

Test item	Method	Description
SOLDERABILITY	JESD-22, B102	5 Sec, 245°C
HTRB	JESD-22, A108	1000 Hrs, 80% of VDS max @ Tjmax
HTGB	JESD-22, A108	1000 Hrs, 100% of VGS max @ Tjmax
PCT	JESD-22, A102	168 Hrs, 100%RH, 2atm, 121°C
ТСТ	JESD-22, A104	500 Cycles, -65°C~150°C

Customer Service

Sinopower Semiconductor Inc.

5F, No. 6, Dusing 1St Rd., Hsinchu Science Park, Hsinchu, 30078, Taiwan TEL: 886-3-5635818 Fax: 886-3-5635080