

SLM1909

Motor Driver, Forward/Reverse, Low Saturation Voltage, 28V

GENERAL DESCRIPTION

The SLM1909 is a 2-channel low saturation voltage forward/reverse motor driver IC. It is optimal for motor drive in 12V and 24V system products and can drive a stepper motor in Full-step.

Each H-bridge output consists of a pair of N-channel and P-channel MOSFETs, with circuitry that regulates the winding current. With proper PCB design, each H-bridge of the SLM1909 can drive up to 0.8A RMS continuously at 25°C. The device can support peak currents of up to 1.2A per bridge.

Internal shutdown functions are provided for undervoltage lockout, and over temperature. A low-power sleep mode is also provided.

The SLM1909 is available in a compact SOIC-10 package.

FEATURES

- DMOS output transistor adoption (upper and lower total Rdson = 0.65 Ω Typ.).
- V_{CC} Max = 28V, I_0 Max = 1.2A, I_0 RMS = 0.8A.
- 4V to 28V operating supply voltage range (The control system power supply is unnecessary.).
- The compact package (SOIC-10) is adopted.
- Current consumption 0 when standby mode.

TYPICAL APPLICATIONS

- Stage Lighting
- Refrigerator
- Flatbed Scanner, Document Scanner
- POS Printer, Label Printer
- PoE Point of Sales Terminal
- Clothes Dryer
- Vacuum Cleaner
- Time Recorder

TYPICAL APPLICATION CIRCUIT

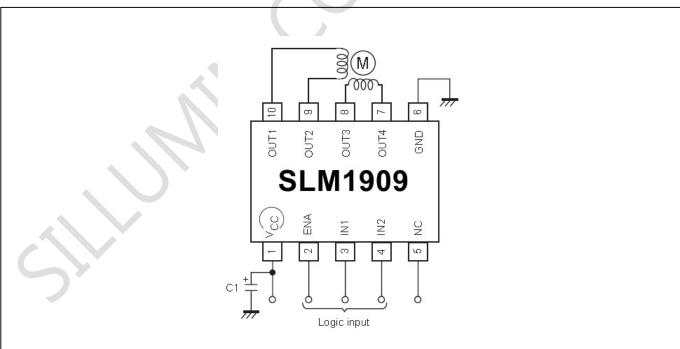
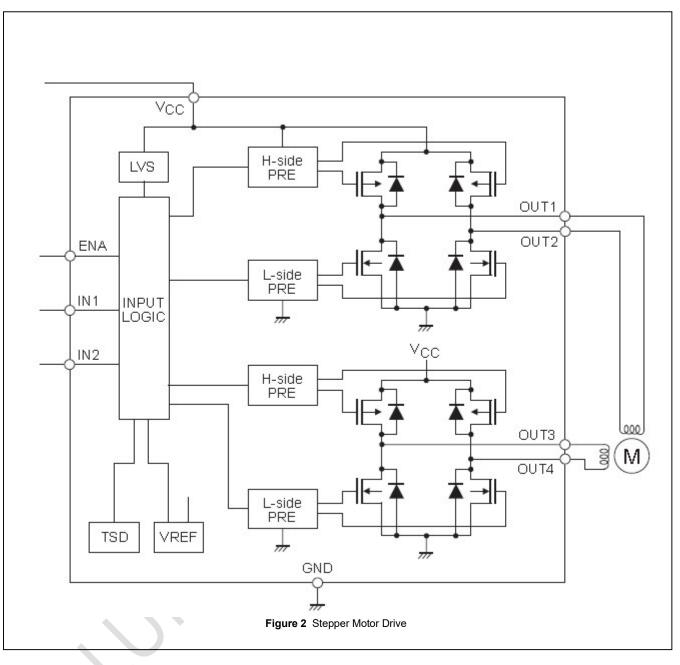


Figure 1 Typical Application Circuit

PIN CONFIGURATION

Package	Pin Configuration (Top View)			
SOIC-10	V _{CC} 1 ENA 2 IN1 3 IN2 4 NC 5) SLM1909	10 OUT1 9 OUT2 8 OUT3 7 OUT4 6 GND	

PIN DESCRIPTION


No.	Pin	Description		
1	Vcc	Power-supply voltage pin. A 10-uF (minimum) ceramic bypass capacitor to GND is recommended.		
2	ENA	Motor drive control enable pin. "0" stand-by current when ENA=L. Output is corresponding to input control logic when ENA=H.		
3	IN1	Logic input pin of OUT1 and OUT2. Internal pull-down.		
4	IN2	Logic input pin of OUT3 and OUT4. Internal pull-down.		
5	NC	No connection.		
6	GND	Device ground.		
7	OUT4	Driving output pin. Motor coil is connected between terminal OUT3 (pin8).		
8	OUT3	Driving output pin. Motor coil is connected between terminal OUT4 (pin7).		
9	OUT2	Driving output pin. Motor coil is connected between terminal OUT1 (pin10).		
10	OUT1	Driving output pin. Motor coil is connected between terminal OUT2 (pin9).		

ORDERING INFORMATION Industrial Range: -40°C to +125°C

Order Part No.	Package	QTY
SLM1909MC	SOIC-10, Pb-Free	2500/Reel

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Definition		Min.	Max.	Units
Vcc Max	Maximum power supply voltage	(Vcc)	-0.3	+30	
Vout	Output voltage (OUT1, OUT2, OUT	3, OUT4)	-0.3	+30	V
Vin	Input voltage (EN, IN1, IN2)	-0.3	+6	
Ignd	Maximum GND pin sink/source c	urrent.		+1.2	А
P _D	Package power dissipation @ $T_A \leq$ SOIC-10 +25°C			1.0	W
Rth _{JA}	Thermal resistance, junction to ambient SOIC-10			80	°C/W
TJ	Junction temperature		150		
Ts	Storage temperature		-55	150	°C
TL	Lead temperature (soldering, 10 s	econds)		300	

Note:

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to GND. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

RECOMMENDED OPERATION CONDITIONS

Symbol	Definition	Min.	Max.	Units
Vcc	Power supply voltage (V _{cc})	4.0	28	
VIH	Logic "1" input voltage (EN, IN1, IN2)	1.8	5.5	
VIL	Logic "0" input voltage (EN, IN1, IN2)	-0.3	+0.7	
VLO	Low-side output voltage	0	Vcc	
T _A	Ambient temperature	- 40	125	°C

Note:

The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions.

SLM1909

DYNAMIC ELECTRICAL CHARACTERISTICS

 V_{CC} = 12 V and T_A = 25°C unless otherwise specified.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
t _{on}	Turn-on propagation delay	V _{CC} = 12 / 24 V	170	200	230	
t _{off}	Turn-off propagation delay	V _{CC} = 12 / 24 V	80	100	120	
tr	Turn-on rise time	V _{cc} = 12 / 24 V, 16Ω to GND, 10% to 90% V _{cc}	160	200	240	ns
t _f	Turn-off fall time	V _{CC} = 12 / 24 V, 16Ω to GND, 90% to 10% V _{CC}	220	260	300	
DT	Deadtime, LS turn-off to HS turn-on & HS turn-on to LS turn-off	V _{CC} = 12 / 24 V	220	270	320	

STATIC ELECTRICAL CHARACTERISTICS

 V_{CC} = 12 V and T_A = 25°C unless otherwise specified.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Vcc	Power supply voltage		4.0		28	V
V _{CCUV+}	V _{CC} supply undervoltage positive going threshold		3.5	3.7	3.95	
Vccuv-	V _{CC} supply undervoltage negative going threshold	V _{cc} = 12 / 24 V	3.1	3.3	3.6	v
Vih	Logic "1" input voltage		1.8			V
VIL	Logic "0" input voltage				0.7	
Icco	Quiescent current (standby mode)	V _{CC} = 12 / 24 V, EN = "0"			1	μA
Icc1	Operating current (no load)	V _{CC} = 12 / 24 V, EN = "1"		1.5	2.3	mA
lin	Input current	V _{CC} = 12 / 24 V, V _{IN} = 5V	40	56	65	μA
Tsd	Thermal shutdown temperature		150	160	170	°C
Tsd_hys	Thermal shutdown hysteresis			25		°C
Rdson	Output ON resistance (high-side and low-side total)	I _{OUT} = 0.8A	550	650	900	mΩ
Ioleak	Output leakage current	Vo = 30V			10	μA
VD	Diode forward voltage	I _D = 0.8A		1.0	1.2	V

SLM1909

APPLICATION INFORMATION

STM Output Control Logic

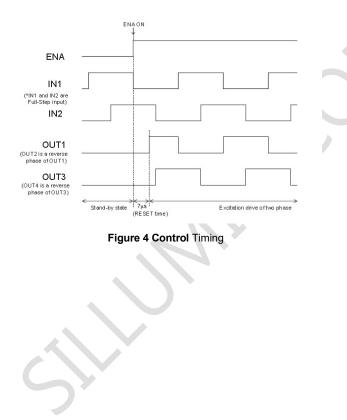
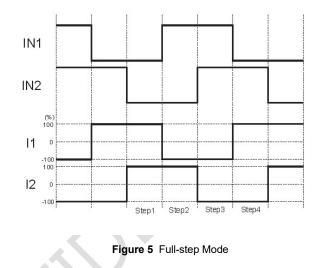

	Input	2		Output			0	
ENA	IN1	IN2	OUT1	OUT2	OUT3	OUT4	State	
L	15	5	OFF	OFF	OFF	OFF	Stand-by	
	L	L	Н	L	Н	L	Step 1	
н	Н	L	L	Н	Н	L	Step2	
	Н	Н	L	Н	L	Η	Step3	
	L	Н	Н	L	L	Н	Step4	

Figure 3 Control Logic


Timing

About the switch time from the stand-by state to the state of operation, this IC has completely stopped operating when ENA pin is logic "0". After the time of reset of about 7μ s of and internal setting, it shifts to a prescribed output status corresponding to the state of the input when ENA pin is logic "1".

During reset time, all output TR OFF is maintained.

Current Waveforms

Thermal Shutdown

The thermal shutdown circuit is incorporated and the output is turned off when junction temperature exceeds 160°C. As the temperature falls by hysteresis, the output turned on again.

The thermal shutdown circuit doesn't guarantee the protection of the final product because it operates when the temperature exceed the junction temperature of T_{jmax} =150°C.

 $T_{SD} = 160^{\circ}C (TYP)$

T_{SD_HYS} = 25°C (TYP)

CLASSIFICATION REFLOW PROFILES

Profile Feature	Pb-Free Assembly
Preheat & Soak Temperature min (Tsmin) Temperature max (Tsmax) Time (Tsmin to Tsmax) (ts)	150°C 200°C 60-120 seconds
Average ramp-up rate (Tsmax to Tp) Liquidous temperature (TL)	3°C/second max. 217°C
Time at liquidous (tL)	60-150 seconds
Peak package body temperature (Tp)*	Max 260°C
Time (tp)** within 5°C of the specified classification temperature (Tc)	Max 30 seconds
Average ramp-down rate (Tp to Tsmax)	6°C/second max.
Time 25°C to peak temperature	8 minutes max.

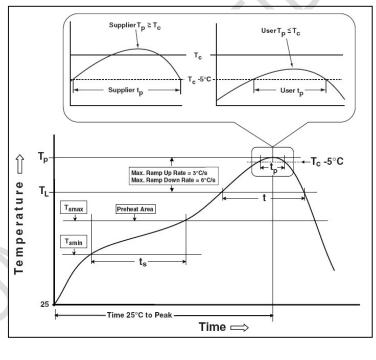
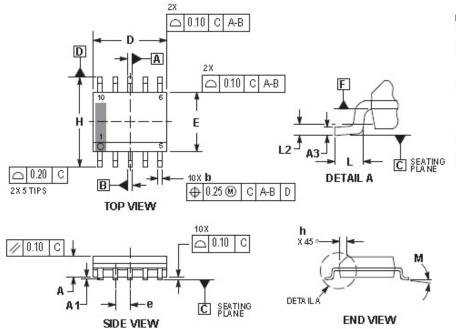
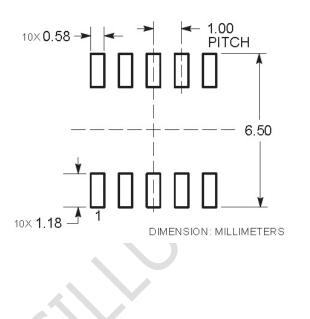



Figure 6 Classification Profile

PACKAGE CASE OUTLINES



SLM1909

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSIONS DOES NOT INCLUDE DAMBAR PROT RUSION. ALLOWABLE PROTRUSION SHALL BE 0.10mm TOTAL IN EXCESS OF 'b' AT MAXIMUM MATERIAL CONDITION. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEEDO. 16mm PER SIDE. DIMENSIONS D AND E ARE DE-TERMINED AT DATUM F. 5. DIMENSIONS D AND E ARE TO BE DETERM-INED AT DATUM F. 6. AI IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY. MILLIMETERS

	MILLIMETERS			
DIM	MIN	MAX		
A	1.25	1.75		
A1	0.10	0.25		
A3	0.17	0.25		
Ь	0.31	0.51		
D	4.80	5.00		
E	3.80	4.00		
e	1.00 BSC			
Н	5.80	6.20		
h	0.37 REF			
L	0.40	1.27		
12	0.25	i BSC		
M	0°	8°		

RECOMMENDED SOLDERING FOOTPRINT

Revision History Note: page numbers for previous revisions may differ from page numbers in current version

Page or Item	Subjects (major changes since previous revision)
Rev 1.0 datasheet, 2019-9-3	
Whole document	New company logo released
Page 1	Remove "Rev 1.2 September 2019"