SKYWORKS

ADVANCE DATA SHEET

SKY77189 Power Amplifier Module for WCDMA / HSDPA Band VIII (880–915 MHz)

Applications

- WCDMA handsets
- HSDPA

Features

- Low voltage positive bias supply 3.2 V to 4.2 V
- Good linearity
- · High efficiency
 - 40% @ 28.75 dBm
- Large dynamic range
- 10-pad package
 3 x 3 x 0.85 mm
- Power down control
- InGaP
- Supports low collector voltage operation
- Digital Enable
- No VREF required
- CMOS compatible control signals
- Integrated Directional Coupler

Skyworks Green™ products are lead (Pb)-free, RoHS (Restriction of Hazardous Substances)-compliant, conform to the EIA/EICTA/JEITA Joint Industry Guide (JIG) Level A guidelines, and are free from antimony trioxide and brominated flame retardants. The SKY77189 Power Amplifier Module (PAM) is a fully matched 10-pad surface mount module developed for Wideband Code Division Multiple Access (WCDMA) applications. This small and efficient module packs full 880–915 MHz bandwidth coverage into a single compact package. Because of high efficiencies attained throughout the entire power range, the SKY77189 delivers unsurpassed talk-time advantages. The SKY77189 meets the stringent spectral linearity requirements of High Speed Downlink Packet Access (HSDPA) data transmission with high power added efficiency. A directional coupler is integrated into the module thus eliminating the need for any external coupler.

The single Gallium Arsenide (GaAs) Microwave Monolithic Integrated Circuit (MMIC) contains all active circuitry in the module. The MMIC contains on-board bias circuitry, as well as input and interstage matching circuits. Output match into a 50-ohm load is realized off-chip within the module package to optimize efficiency and power performance.

The SKY77189 PAM is manufactured with Skyworks' InGaP GaAs Heterojunction Bipolar Transistor (HBT) BiFET process that provides for all positive voltage DC supply operation while maintaining high efficiency and good linearity. Primary bias to the SKY77189 is supplied directly from any three-cell Ni-Cd, a single-cell Li-lon, or other suitable battery with an output in the 3.2 to 4.2 volt range. No VREF voltage is required. Power down is accomplished by setting the voltage on VENABLE to zero volts. No external supply side switch is needed as typical "off" leakage is a few microamperes with full primary voltage supplied from the battery.

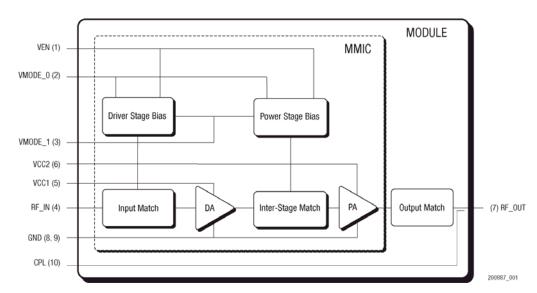


Figure 1. Functional Block Diagram

Electrical Specifications

The following tables list the electrical characteristics of the SKY77189 Power Amplifier. Table 1 lists the absolute maximum ratings, while Table 2 shows the recommended operating conditions to achieve WCDMA and HSDPA performance

characteristics listed in Table 4. Table 3 presents a truth table for the power settings. Table 5 and Table 6 provide the standard test configurations for WCDMA (STC1) and HSDPA (STC2), respectively.

Table 1. Absolute Maximum Ratings ¹

Parameter		Symbol Minimum		Nominal	Maximum	Unit
RF Input Power		Pin	_	0	10	dBm
Supply Voltage		VCC1, VCC2	_	3.4	6.0	Volts
Enable Control Voltage		VEN	_	1.8	4.2	Volts
Mode Control Voltage	Mode Control Voltage		_	1.8	4.2	Volts
		VMODE_1	_	1.8	4.2	
Case Temperature ²	Operating	TCASE	-30	25	+110	°C
	Storage	Тѕтс	– 55	_	+125	

 $^{^{1}\,}$ No damage assuming only one parameter is set at limit at a time with all other parameters set at nominal value.

Table 2. Recommended Operating Conditions

Parameter		Symbol	Minimum	Nominal	Maximum	Unit
RF Output Power ¹	WCDMA	Po_max	_	_	28.75	dBm
	HSDPA	Po_max	_	_	27.75	
Operating Frequency		Fo Fo	880.0	897.5	915.0	MHz
Supply Voltage		VCC1, VCC2	3.2 ²	3.4	4.2	Volts
Enable Control Voltage	Low	V _{EN_L}	0.0	0.0	0.5	Volts
	High	V _{EN_} H	1.35	1.8	3.1	
Mode Control Voltage	Low	VMODE_0	1.35	1.8	3.1	Volts
		VMODE_1	1.35	1.8	3.1	
	Medium	VMODE_0	1.35	1.8	3.1	
		VMODE_1	0.0	0.0	0.5	
	High	VMODE_0	0.0	0.0	0.5	
		VMODE_1	0.0	0.0	0.5	
Case Operating Temperature		TCASE	-20	+25	+85	°C

 $^{^{1}}$ For VCC < 3.4 V, output power back-off = 0.5 dB.

Table 3. Modes of Operation

Power Setting	ENABLE	VMODE_0	VMODE_1	VCC
Power Down Mode	Low	Low	Low	On
Standby Mode	Low	_	_	On
High Power Mode (17.0 dBm ≤ Poυτ ≤ 28.75 dBm	High	Low	Low	On
Medium Power Mode (7.0 dBm ≤ Pout ≤ 17.0 dBm)	High	High	Low	On
Low Power Mode (Pout ≤ 7.0 dBm)	High	High	High	On
Optional Lower VCC Mode (Pout ≤ 7.0 dBm)	High	Low	Low	1.5 V

 $^{^{2}}$ Case Operating Temperature (TCASE) refers to the temperature of the GROUND PAD at the underside of the package.

² Recommended minimum VCc for maximum power output is indicated. VCc2 down to 0.5 V may be used for backed-off power when using DC/DC converter to conserve battery current.

SKY77189 POWER AMPLIFIER MODULE FOR WCDMA / HSDPA WWW. BAND VIII (880–915 MHz)

Table 4. Electrical Specifications for Nominal Operating Conditions ¹

Characteristics		Symbol	Condition	Minimum	Typical	Maximum	Unit
Gain		GLOW	Po = 7.0 dBm	8.0	12.0	16.0	dB
		Gмid	Po = 17.0 dBm	13.0	18.0	24.0	
		Gніgн	Po = 28.75 dBm	24.5	27.0	29.5	
Rx Band Gain		RxG	_	_	_	-0.5	dB
				_	-14.0	-3.0	
		RxG_ISM	_	_	-20.0	-6.0	
Power Added Efficiency		PAELOW	Po = 7.0 dBm	_	9.0	_	%
		РАЕмір	Po = 17.0 dBm	_	16.5		
		PAEHIGH	Po = 28.75 dBm	40.0	-	_	
Total Supply Current		Icc_Low	Po = 7.0 dBm		7.5	_	mA
		ICC_MID	Po = 17.0 dBm	_	40.0	_	
	Icc_нідн	Po = 28.75 dBm	_	_	550		
Quiescent Current		lq_Low	Low Power Mode		2.5	_	mA
	IQ_MED	Medium Power Mode		10.0	_		
Enable Control Current		len	_	_	0.01	0.1	mA
Mode Control Current		IMODE_0	_	_	0.05	0.1	mA
		IMODE_1	_	_	0.05	0.1	
Total Supply Current in Power Down Mode		IPD	VCC = 3.4 V VEN = LOW VMODE_0 = LOW VMODE_1 = LOW	_	_	10	μА
Adjacent Channel Leakage power Ratio ²	5 MHz offset	ACLR5	Po = 7.0 dBm	_	-42	-36	dBc
			Po = 17.0 dBm	_	-46	-36	
			Po = 28.75 dBm	_	-40	-36	
	10 MHz offset	ACLR10	Po = 7.0 dBm	_	-65	-46	
			Po = 17.0 dBm	_	-60	-46	
			Po = 28.75 dBm	_	-55	-46	
Harmonic Suppression	Second	fo2	$P0 \leq 28.75 \; dBm$	_	-45	-35	dBc
	Third	fo3		_	-50	-35	
Tx Noise in Rx Bands	Rx		925 MHz-960 MHz		-138	-136	dBm/Hz
	GPS Rx		1574 MHz-1577 MHz	_	-142	-140	1
	ISM Rx		2400 MHz-2483.5 MHz	_	-145	-143	
Input Voltage Standing Wave Ratio		VSWR	_	_	1.5:1	1.8:1	_
EVM		EVM1	Po = Pmax	_	_	3.35	%
		EVM2	$P_0 = P_{MAX} - 3$	_	_	2.50	
Rise / Fall Time	DC	TonDC	_	_	_	20	μs
		ToffDC	_	_	_	20	1
	RF	TonRF	_	_		6	1
		ToffRF	_	_	_	6	1
Coupling Factor			Po = 28.75 dBm	_	-18	_	dB
Coupling Factor Stability (Spurious output)		CPL S	Po = 28.75 dBm 5:1 VSWR All phases		-18 		dB dBc

 $^{^{\,1}\,}$ Per Table 2 over dynamic range up to 28.75 dBm output power, unless specified otherwise.

² ACLR is expressed as a ratio of total adjacent power to WCDMA modulated in-band, both measured in 3.84 MHz bandwidth at specified offsets.

³ All phases, time = 10 seconds.

ADVANCE DATA SHEET

www.DataSheet4U.com

Table 5. Standard Test Configuration – STC1 WCDMA Mode

Parameter	Level	Spread Code	Spread Factor	I/Q	βc	βd	βhs	βес	βed	Relative Power (dB)
DPCCH	15 kbps	0	256	Q	8/15	_	_	_	_	-6.547
DPDCH	60 kbps	16	64	I	_	15/15	_	_	_	-1.087

Table 6. Standard Test Configuration – STC2 HSDPA Mode

Parameter	Level	Spread Code	Spread Factor	I/Q	βc	βd	βhs	βес	βed	Relative Power (dB)
DPCCH	15 kbps	0	256	Q	12/15	_	_	_	_	-7.095
DPDCH	60 kbps	16	64	I	_	15/15	_	_	_	-5.157
HS-DPCCH	15 kbps	64	256	Q	_	_	24/15	_	_	-3.012

Evaluation Board Description

The evaluation board is a platform for testing and interfacing design circuitry. To accommodate the interface testing of the SKY77189, the evaluation board schematic and assembly

diagrams are included for preliminary analysis and design. Figure 2 shows the basic schematic of the board for the 880 MHz to 915MHz range.

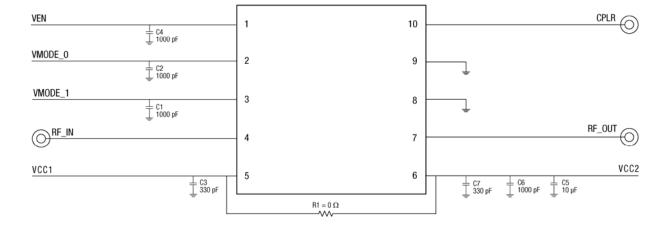
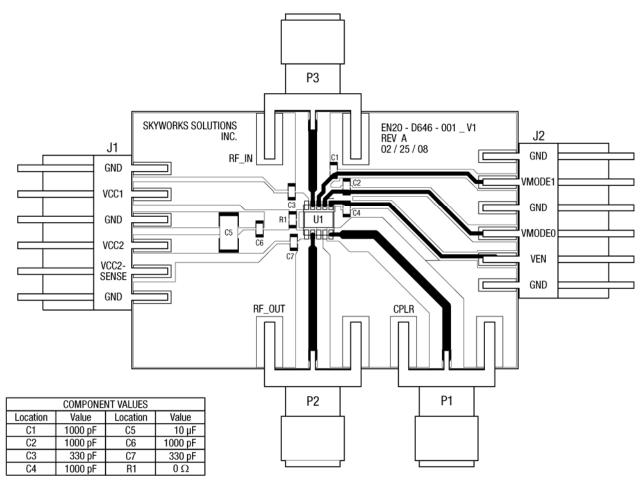
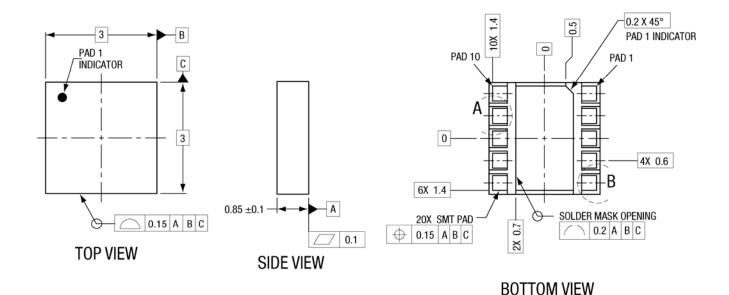
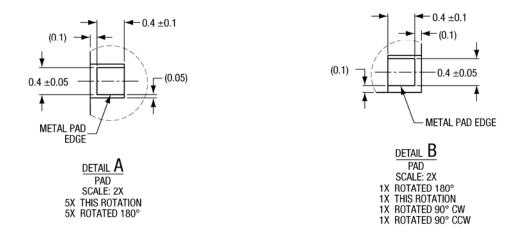


Figure 2. Evaluation Board Schematic

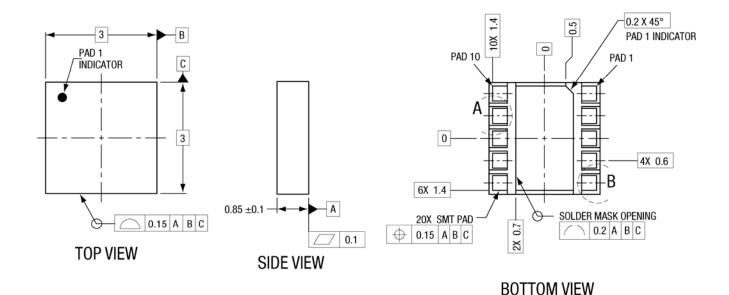




Figure 3. Evaluation Board Assembly Diagram

Package Dimensions

The SKY77189 is a multi-layer laminate base, overmold encapsulated modular package designed for surface mount solder attachment to a printed circuit board. Figure 4 is a mechanical drawing of the pad layout for this package. Figure 5 provides a

recommended phone board layout footprint for the PAM to help the designer attain optimum thermal conductivity, good grounding, and minimum RF discontinuity for the 50-ohm terminals.





- NOTES: Unless otherwise specified.

 1. DIMENSIONING AND TOLERANCING IN ACCORDANCE WITH ASME Y14.5 1994
- SEE APPLICABLE DIAGRAM AND DEVICE ASSEMBLY DRAWING FOR DIE AND COMPONENT PLACEMENT.
- 3. PAD DEFINITIONS PER DETAILS ON DRAWING.
- 4. PCB TYPE 4L PPG TEV MCM (100).

Figure 4. Dimensional Diagram for 3 mm x 3 mm x 0.85 mm Package - SKY77189 Specific

- NOTES: Unless otherwise specified.

 1. DIMENSIONING AND TOLERANCING IN ACCORDANCE WITH ASME Y14.5 1994

 2. SEE APPLICABLE DIAGRAM AND DEVICE ASSEMBLY DRAWING FOR DIE AND COMPONENT PLACEMENT.
- 3. PAD DEFINITIONS PER DETAILS ON DRAWING. 4. PCB TYPE 4L PPG TEV MCM (100).

Figure 5. Phone PCB Layout Diagram - 3 mm x 3 mm, 10-Pad Package - SKY77189

Package Description

Figure 6 shows the pad functions and the pad numbering convention, which starts with pad 1 in the upper left and increments counter-clockwise around the package. Typical case markings are illustrated in Figure 7.

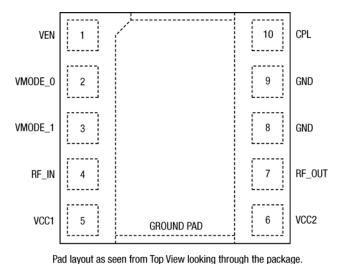


Figure 6. SKY77189 Pad Names and Configuration (Top View)

GROUND PAD is package underside.

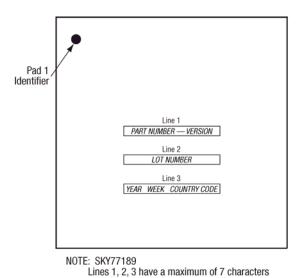


Figure 7. Typical Case Markings

Country Code = Country of Manufacture (MX)

WEEK = Week Package Was Sealed

YEAR = Year of Manufacture

Package Handling Information

Because of its sensitivity to moisture absorption, this device package is baked and vacuum-packed prior to shipment. Instructions on the shipping container label must be followed regarding exposure to moisture after the container seal is broken, otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly.

The SKY77189 is capable of withstanding an MSL3/260 °C solder reflow. Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. If the part is attached in a reflow oven, the temperature ramp rate should not exceed 3 °C per second; maximum temperature should not exceed 260 °C. If the part is manually attached, precaution should be taken to insure that the part is not subjected to temperatures exceeding 260 °C for more than 10 seconds. For details on attachment techniques, precautions, and handling procedures recommended by Skyworks, please refer to Skyworks Application Note: *PCB Design and SMT Assembly/Rework*, Document Number 101752. Additional information on standard SMT reflow profiles can also be found in the JEDEC Standard J-STD-020.

Production quantities of this product are shipped in the standard tape-and-reel format. For packaging details, refer to Skyworks Application Note: *Tape and Reel Information – RF Modules*, Document Number 101568.

Electrostatic Discharge Sensitivity (ESD)

To avoid ESD damage, both latent and visible, it is very important that the product assembly and test areas follow the Class 1 ESD handling precautions listed below.

- Personnel Grounding
 - Wrist Straps

200887 006

200887 007

- Conductive Smocks, Gloves and Finger Cots
- Antistatic ID Badges
- Protective Workstation
 - Dissipative Table Top
- Protective Test Equipment (Properly Grounded)
- Grounded Tip Soldering Irons
- Solder Conductive Suckers
- Static Sensors
- Facility
 - Relative Humidity Control and Air Ionizers
- Dissipative Floors (less than $10^9 \Omega$ to GND)
- Protective Packaging and Transportation
 - Bags and Pouches (Faraday Shield)
 - Protective Tote Boxes (Conductive Static Shielding)
 - Protective Trays
 - Grounded Carts
 - Protective Work Order Holders

Ordering Information

Model Number	Manufacturing Part Number	Product Revision	Package	Operating Temperature
SKY77189	SKY77189		MCM 3 x 3 x 0.85 mm	−20 °C to +85 °C

Revision History

Revision	Date	Description
А	April 4, 2008	Initial Release – Advance Information
В	April 23, 2008	Revise: Tables 1-4; Figures 1-3, 6; Tx freq. to 880-915; Rx freq. to 925-960
С	May 20, 2008	Revise: Features list (p1); Tables 1, 2, 4, 5; Figures 2–5; Add: Skyworks Green tag (p1)
D	November 13, 2008	Revise: Features list (p1); Figure 3; Tables 1–4; ESD section Add: Tables 5, 6
E	February 3, 2009	Revise: Order Information table, Package column

References

Skyworks Application Note: PCB Design and SMT Assembly/Rework, Document Number 101752. Skyworks Application Note: Tape and Reel Information – RF Modules, Document Number 101568

Standard SMT Reflow Profiles: JEDEC Standard J-STD-020

Copyright © 2008, Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products. These materials are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials. Skyworks may make changes to its documentation, products, specifications and product descriptions at any time, without notice. Skyworks makes no commitment to update the information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from future changes to its documentation, products, specifications and product descriptions.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by or under this document. Except as may be provided in Skyworks' Terms and Conditions of Sale for such products, Skyworks assumes no liability whatsoever in association with its documentation, products, specifications and product descriptions.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED OR OTHERWISE, RELATING TO SALE AND/OR USE OF SKYWORKS PRODUCTS INCLUDING WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. SKYWORKS FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THESE MATERIALS WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications. Skyworks' customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

The following are trademarks of Skyworks Solutions, Inc.: Skyworks®, the Skyworks logo®, and Breakthrough Simplicity®. Product names or services listed in this publication are for identification purposes only, and may be trademarks of Skyworks or other third parties. Third-party brands and names are the property of their respective owners. Additional information, posted at www.skyworksinc.com, is incorporated by reference.